A NOTE ON A WIELANDT TYPE NORM INEQUALITY

XIAOHUI FU AND JUNJIAN YANG

(Communicated by G. Sinnamon)

Abstract. As a continuation of recent study on a Wielandt type norm inequality due to Lin [13, Conjecture 3.4], we prove the following result: Let $A \in M_n(C)$ satisfying $0 < m \leq A \leq M$, and let X and Y be $n \times k$ matrices such that $X^*X = Y^*Y = I_k$ and $X^*Y = 0$. Then for every 2-positive unital linear map Φ, we have

$$\|\langle \Phi(X^*AY) \Phi(Y^*AY)^{-1} \Phi(Y^*AX)^{-\frac{p}{2}} \Phi(X^*AX)^{-\frac{p}{2}} \rangle \| \leq \begin{cases} \left(\frac{M - m}{M + m} \right)^{\frac{p}{2}} \left(\frac{M^p + m^p}{M_4 m^4} \right)^{\frac{2}{p}} & 1 < p < 2 \\ \left(\frac{M - m}{M + m} \right)^{\frac{p}{2}} \left(\frac{M^p + m^p}{M_4 m^4} \right)^{\frac{2}{p}} & p \geq 2. \end{cases}$$

1. Introduction

Let M, m be scalars. $M_n(C)$ denotes the set of all $n \times n$ complex matrices. $A^* \in M_n(C)$ stands for the adjoint of A. For a Hermitian matrix $A \in M_n(C)$, we use the notation $A \geq 0$ to mean that A is positive semidefinite, and $A > 0$ to mean it is positive definite. A linear map $\Phi : M_n(C) \to M_k(C)$ is called (strictly) positive if $\Phi(A) \geq 0$ ($\Phi(A) > 0$) whenever $A \geq 0$ ($A > 0$). It is said to be unital if $\Phi(I_n) = I_k$. We say that Φ is 2-positive if whenever the 2×2 matrix $\begin{bmatrix} A & B \\ B^* & C \end{bmatrix}$ is positive, then so is $\begin{bmatrix} \Phi(A) & \Phi(B) \\ \Phi(B^*) & \Phi(C) \end{bmatrix}$. We use $\| \cdot \|$ for operator norm.

The Wielandt inequality [10, p. 443] is as follows: if $0 < mI \leq A \leq MI$, and $x, y \in H$ with $x \perp y$, then

$$|\langle x, Ay \rangle| \leq \left(\frac{m - M}{M + m} \right)^{\frac{2}{4}} \langle x,Ay \rangle \langle y, Ay \rangle. \quad (1.1)$$

Wielandt’s inequality plays an important role in different contexts. For example, it has a variety of applications in numerical methods, especially eigenvalue estimation [6]. It is also applied in multivariate analysis [2, 5, 7, 10]. For the latest study on the Wielandt and generalized Wielandt inequality, readers are referred to [12].

The operator version of (1.1) was proved by Bhatia and Davis [3] (independently by Wang and Ip [16]) as follows: Let $0 < m \leq A \leq M$, and let X, Y be two partial
isometries on a Hilbert space H whose final spaces are orthogonal to each other. Then for every 2-positive linear map Φ,

$$\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX) \leq \left(\frac{M-m}{M+m} \right)^2 \Phi(X^*AX).$$

(1.2)

Under the same condition, Lin [13, Conjecture 3.4] conjectured the following assertion could be true:

$$\|\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX)\Phi(X^*AX)^{-1}\| \leq \left(\frac{M-m}{M+m} \right)^2.$$ \hspace{1cm} (1.3)

Recently, the authors [6] obtained the following result in the finite-dimensional case: Let $A \in M_n(\mathbb{C})$ satisfying $0 < m \leq A \leq M$, and let X and Y be $n \times k$ matrices such that $X^*X = Y^*Y = I_k$ and $X^*Y = 0$. Then for every 2-positive unital linear map Φ, we have

$$\|\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX)\Phi(X^*AX)^{-1}\| \leq \frac{1}{4} \left(\frac{M-m}{M+m} \right)^2$$

$$\left(\frac{M}{M+m} + \frac{1}{m} \right)^2,$$

(1.4)

which was a step closer to the conjecture (1.3).

In this note, we obtain the following result in the finite-dimensional case: Let $A \in M_n$ with $0 < ml_n \leq A \leq MI_n$, and let X and Y be $n \times k$ matrices such that $X^*X = Y^*Y = I_k$ (i.e. isometries) and $X^*Y = 0$. Then for every 2-positive unital linear map Φ, we have

$$\|\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX)\Phi(X^*AX)^{-1}\| \leq \begin{cases} \left(\frac{M-m}{M+m} \right)^p \left(\frac{M}{M+m} \right)^{\frac{p}{2}} \left(\frac{M}{M+m} \right)^{\frac{p}{2}} \frac{1}{m} & 1 < p < 2 \\ \left(\frac{M-m}{M+m} \right)^p \frac{1}{4M^2m^2} & p \geq 2 \end{cases},$$

(1.4)

which is tighter than (1.4).

2. Main result

We need two lemmas which play a very important role in the proof of the main theorem of this paper. The first Lemma is Ando-Zhan’s celebrated result.

Lemma 1. [1] *Let A and B be positive operators. Then for $1 \leq r < \infty$*

$$\|A^r + B^r\| \leq \|(A + B)^r\|.$$ \hspace{1cm} (2.1)

The next lemma holds for positive definite matrices but a careful observation shows that it is true for positive definite operators on a Hilbert space.
LEMMA 2. [4] Let $A, B > 0$. Then the following norm inequality holds:

$$||AB|| \leq \frac{1}{4}||A + B||^2. \quad (2.2)$$

Now we are devoted to presenting the main result which is a refinement of (1.4) in the finite-dimensional case.

THEOREM 3. Let $A \in M_n$ with $0 < mI_n \leq A, B \leq MI_n$ and let X and Y be $n \times k$ matrices such that $X^*X = Y^*Y = I_k$ and $X^*Y = 0$. Then for every 2-positive unital linear map Φ,

$$||((\Phi(X^*AY)\Phi(Y^*AY))^{-1}\Phi(Y^*AX))^{\frac{p}{2}}\Phi(X^*AX)^{-\frac{p}{2}}||$$

$$\leq \begin{cases}
\frac{1}{4} \left[\left(\frac{M-m}{M+m} \right)^2 Mm\Phi(X^*AX)^{-1} \right]^{\frac{p}{2}} & 1 < p < 2 \\
\frac{1}{4} \left[\left(\frac{M-m}{M+m} \right)^2 Mm\Phi(X^*AX)^{-1} \right]^{\frac{p}{2}} & p \geq 2.
\end{cases} \quad (2.3)$$

Proof. Firstly, consider the case of $p \geq 2$. Compute

$$\left| \left(\frac{M-m}{M+m} \right)^2 \Phi(X^*AX)^{-1} \right|^{\frac{p}{2}} \leq \frac{1}{4} \left[\left(\frac{M-m}{M+m} \right)^2 Mm\Phi(X^*AX)^{-1} \right]^{\frac{p}{2}}$$

(by (2.2))

$$\leq \frac{1}{4} \left(\frac{M-m}{M+m} \right)^2 \Phi(X^*AX) + \left(\frac{M-m}{M+m} \right)^2 Mm\Phi(X^*AX)^{-1} \right|^{\frac{p}{2}} \quad (by \, (2.1))$$

$$\leq \frac{1}{4} \left(\frac{M-m}{M+m} \right)^2 \Phi(X^*AX) + \left(\frac{M-m}{M+m} \right)^2 Mm\Phi(X^*AX)^{-1} \right|^{\frac{p}{2}} \quad (by \, (1.2))$$

$$= \frac{1}{4} \left(\frac{M-m}{M+m} \right)^2 \left\| \Phi(X^*AX) + Mm\Phi(X^*AX)^{-1} \right\|$$

$$\leq \frac{1}{4} \left(\frac{M-m}{M+m} \right)^2 \left\| \Phi(X^*AX) + Mm\Phi(X^*AX)^{-1} \right\|$$

The last inequality above is obtained: Since $0 < mI_n \leq A \leq MI_n$, $mI_k \leq \Phi(X^*AX) \leq MI_k$ and $\frac{1}{M} \leq \Phi(X^*AX)^{-1} \leq \frac{1}{m}$, we have

$$\Phi(X^*AX)(m - \Phi(X^*AX))\Phi(X^*AX)^{-1} \leq 0,$$

which implies

$$Mm\Phi(X^*AX)^{-1} + \Phi(X^*AX) \leq M + m.$$
So
\[\left\| \left(\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX) \right)^{\frac{p}{2}} \Phi(X^*AX)^{-\frac{p}{2}} \right\| \leq \frac{(M-m)^p}{4M^2m^2}. \]

Next consider the case of \(1 < p < 2 \). Compute
\[
\left\| \left(\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX) \right)^{\frac{p}{2}} \left(\left(\frac{M-m}{M+m} \right)^2 Mm\Phi(X^*AX)^{-1} \right)^{\frac{p}{2}} \right\|
\leq \frac{1}{4} \left\| \left(\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX) \right)^{\frac{p}{2}} + \left(\frac{M-m}{M+m} \right)^p M^2m^2 \Phi(X^*AX)^{-\frac{p}{2}} \right\|^2
\]
(by (2.2))
\[
= \frac{1}{4} \left(\frac{M-m}{M+m} \right)^p \left(\Phi(X^*AX)^{\frac{p}{2}} + M^2m^2 \Phi(X^*AX)^{-\frac{p}{2}} \right)^2
\]
(by Löwner-Heinz inequality and (1.2))
\[
= \frac{1}{4} \left(\frac{M-m}{M+m} \right)^2 \left(M^2 + m^2 \right)^2.
\]
The last inequality above holds as follows: By using \(0 < mL_n \leq A \leq ML_n, \ m^\frac{p}{2} \leq \Phi(X^*AX)^{\frac{p}{2}} \leq M^\frac{p}{2} \) and \(M^{-\frac{p}{2}} \leq \Phi(X^*AX)^{-\frac{p}{2}} \leq m^{-\frac{p}{2}} \), we have
\[
(M^\frac{p}{2} - \Phi(X^*AX)^{\frac{p}{2}})(m^\frac{p}{2} - \Phi(X^*AX)^{\frac{p}{2}})\Phi(X^*AX)^{-\frac{p}{2}} \leq 0,
\]
which means
\[
M^\frac{p}{2}m^\frac{p}{2} \Phi(X^*AX)^{-\frac{p}{2}} + \Phi(X^*AX)^{\frac{p}{2}} \leq M^\frac{p}{2} + m^\frac{p}{2}.
\]
That is,
\[
\left\| \left(\Phi(X^*AY)\Phi(Y^*AY)^{-1}\Phi(Y^*AX) \right)^{\frac{p}{2}} \Phi(X^*AX)^{-\frac{p}{2}} \right\|
\leq \left(\frac{M-m}{M+m} \right)^p \frac{(M^\frac{p}{2} + m^\frac{p}{2})^2}{4M^2m^2}.
\]
\[\square \]

Remark 4. If \(p = 2 \), the right side of the inequality (2.3) is \(\frac{(M-m)^2}{4Mm} \). Obviously, the below inequality holds
\[
\frac{(M-m)^2}{4Mm} \leq \frac{M}{m} \left(\frac{M-m}{M+m} \right)^2 \leq \frac{1}{4} \left(\left(\frac{M-m}{M+m} \right)^2 + \frac{1}{m} \right)^2,
\]
which shows that the bound of (2.3) is smaller than that of (1.4). Thus, (2.3) is a refinement of (1.4) for \(p = 2 \).
Remark 5. When \(p = 2 \), the author [9, (2.7)] obtained a stronger result than the inequality (2.3). However, if we present \(p (p > 2) \) power of (2.7) in [9] through the similar method of the proof of Theorem 3, we will find that the result for \(p > 2 \) is very complicated and not continuous at \(p = 2 \).

Acknowledgements. This research was supported by the key project of the applied mathematics of Hainan Normal University, the Natural science foundation of Hainan Province (No. 20161005) and Doctoral scientific research foundation of Hainan Normal University.

REFERENCES

(Received November 27, 2015)