AN UPPER BOUND OF A DERIVATIVE
FOR SOME CLASS OF POLYNOMIALS

KEAITSUDA MANEERUK NAKPRASIT AND JIRAPHORN SOMSUWAN

(Communicated by J. Pečarić)

Abstract. In [S. Kumar and R. Lal, Generalizations of some polynomial inequalities, Int. Electron. J. Pure Appl. Math., 3, 2 (2011), 111–117.], Kumar and Lal provided an upper bound of a derivative for polynomial degree n having some of zeros at the origin and rest of zeros lying on or outside the boundary of a prescribed disk. In this paper, we present an upper bound of a derivative for polynomials $p(z) = (z - z_m)^{t_m}(z - z_{m-1})^{t_{m-1}} \cdots (z - z_0)^{t_0} \left(a_0 + \sum_{\nu=\mu}^{n - (t_m + \cdots + t_0)} a_\nu z^\nu \right)$ of degree n having zeros z_0, \ldots, z_m with $|z_j| < 1$ for $0 \leq j \leq m$ and the remaining $n - (t_m + \cdots + t_0)$ zeros are outside $\{z : |z| < k\}$ where $k \geq 1$.

1. Introduction

Let $p(z)$ be a polynomial of degree n. Then we have the Bernstein’s inequality (see [2])

$$\max_{|z|=1} |p'(z)| \leq n \max_{|z|=1} |p(z)|.$$

Equality holds in (1) if and only if $p(z)$ has all of its zeros at the origin.

For a positive real number k, we let $D(0,k)$ and $C(0,k)$ denote the sets $\{z : |z| < k\}$ and $\{z : |z| = k\}$, respectively.

If we restrict ourselves to the class of polynomials having no zero in $D(0,1)$, the inequality (1) can be sharpened. In fact, it was conjectured by Erdős and later proved by Lax [8] that if $p(z)$ has no zero in $D(0,1)$, then

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{2} \max_{|z|=1} |p(z)|.$$

The equality holds if all zeros of $p(z)$ lie on $C(0,1)$, for example, $p(z) = \alpha + \beta z^n$, $|\alpha| = |\beta|$.

Aziz and Dawood [1] improved the inequality (2) under the same hypothesis and obtained that

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{2} \left[\max_{|z|=1} |p(z)| - \min_{|z|=1} |p(z)| \right].$$

Keywords and phrases: Polynomial, derivative, inequality.
Equality in (3) holds for $p(z) = \beta + \alpha z^n$, $|\beta| \geq |\alpha|$.

For the class of polynomials $p(z)$ of degree n having no zero in $D(0, k)$, $k \geq 1$, Malik [9] proved that

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{1 + k} \max_{|z|=1} |p(z)|.$$ \hfill (4)

Inequality (4) was further improved by Govil [6] under the same hypothesis as

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{1 + k} \left[\max_{|z|=1} |p(z)| - \min_{|z|=1} |p(z)| \right].$$ \hfill (5)

Inequalities (4) and (5) are sharp and extremal polynomial is $p(z) = (z + k)^n$.

Chan and Malik [3] considered the class of polynomials as in [9] and obtained the following theorem was proved by Pukhta [10], which is an improvement of Theorem 1 and a generalization of the inequality (5).

Theorem 1. [3] If $p(z) = a_0 + \sum_{v=\mu}^n a_v z^v$, $1 \leq \mu \leq n$, is a polynomial of degree n having no zero in $D(0, k)$, $k \geq 1$, then

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{1 + k^\mu} \max_{|z|=1} |p(z)|.$$ \hfill (6)

The result is best possible and extremal polynomial is $p(z) = (z^\mu + k^\mu)^\frac{n}{\mu}$, where n is a multiple of μ.

The following theorem was proved by Pukhta [10], which is an improvement of Theorem 1 and a generalization of the inequality (5).

Theorem 2. [10] If $p(z) = a_0 + \sum_{v=\mu}^n a_v z^v$, $1 \leq \mu \leq n$, is a polynomial of degree n having no zero in $D(0, k)$, $k \geq 1$, then

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{1 + k^\mu} \left[\max_{|z|=1} |p(z)| - \min_{|z|=k} |p(z)| \right].$$ \hfill (7)

The result is best possible and extremal polynomial is $p(z) = (z^\mu + k^\mu)^\frac{n}{\mu}$, where n is a multiple of μ.

For polynomials having all its zeros on $C(0, k)$, $k \leq 1$, Govil [5] proved that

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{k^n + k^{n-1}} \max_{|z|=1} |p(z)|.$$ \hfill (8)

Dewan and Hans [4] generalized the inequality (7) for the polynomials of the type $p(z) = c_n z^n + \sum_{v=\mu}^n c_{n-v} z^{n-v}$, $1 \leq \mu \leq n$ and proved the following theorem.

Theorem 3. [4] If $p(z) = a_0 + \sum_{v=\mu}^n a_v z^v$, $1 \leq \mu \leq n$, is a polynomial of degree n having all its zeros on $C(0, k)$, $k \leq 1$, then

$$\max_{|z|=1} |p'(z)| \leq \frac{n}{k^{n-2\mu+1} + k^{n-\mu+1}} \max_{|z|=1} |p(z)|.$$ \hfill (9)
Kumar and Lal [7] investigated the polynomials of degree \(n \) having some zeros at the origin and the rest of zeros lying on or outside the boundary of a prescribed disk. They obtained a generalized results of some well-known results.

Theorem 5. Main If \(p(z) = a_0 + \sum_{v=1}^{n-s} a_v z^v \), \(1 \leq \mu \leq n-s \), \(0 \leq s \leq n-1 \), is a polynomial of degree \(n \) having zeros of order \(s \) at the origin and the remaining \(n-s \) zeros are outside \(D(0,k), \ k \geq 1 \), then

\[
\max_{|z|=1} |p'(z)| \leq \frac{n+sk^\mu}{1+k^\mu} \max_{|z|=1} |p(z)| - \frac{(n-s)}{ks(1+k^\mu)} \min_{|z|=k} |p(z)|.
\] (9)

2. Main results

Theorem 4. [7] If \(p(z) = (z-z_0)^s \left(a_0 + \sum_{v=s+1}^{n-s} a_v z^v \right) \), \(1 \leq \mu \leq n-s \), \(0 \leq s \leq n-1 \), is a polynomial of degree \(n \) having zero of order \(s \) at \(z_0 \) with \(|z_0| < 1 \) and the remaining \(n-s \) zeros are outside \(D(0,k), \ k \geq 1 \), then

\[
\max_{|z|=1} |p'(z)| \leq \frac{s}{(1-|z_0|)} + \frac{A}{(1-|z_0|)^s} \max_{|z|=1} |p(z)| - \frac{A}{(k+|z_0|)^s} \min_{|z|=k} |p(z)|,
\]

where \(A = \frac{(1+|z_0|)^{s+1}(n-s)}{(1+k^\mu)(1-|z_0|)} \).

Proof. Let \(p(z) = (z-z_0)^s \phi(z) \) where \(\phi(z) = a_0 + \sum_{v=s+1}^{n-s} a_v z^v \) be a polynomial of degree \(n-s \) having no zero in \(D(0,k), \ k \geq 1 \).

Then \(p'(z) = (z-z_0)^s \phi'(z) + s(z-z_0)^{s-1} \phi(z) \) and \((z-z_0)p'(z) = sp(z) + (z-z_0)^{s+1} \phi(z) \).

Therefore, \(\max_{|z|=1} |z-z_0||p'(z)| \leq s \max_{|z|=1} |p(z)| + \max_{|z|=1} |z-z_0|^{s+1} |\phi'(z)|. \)

Since \(|z-z_0| \geq |z| - |z_0| = 1 - |z_0| \) and \(|z-z_0| \leq |z| + |z_0| = 1 + |z_0| \) for \(|z| = 1 \), we obtain \((1-|z_0|) \max_{|z|=1} |p'(z)| \leq s \max_{|z|=1} |p(z)| + (1 + |z_0|)^{s+1} \max_{|z|=1} |\phi'(z)|. \)

Now let \(m = \min_{|z|=k} |\phi(z)|. \) Then \(m \leq |\phi(z)| \) for \(|z| = k \).

If \(\phi(z) \) has a zero on \(C(0,k) \), then \(m = 0 \). From now on, we assume that all \(n-s \) zeros of \(\phi(z) \) lie outside \(D(0,k), \ k \geq 1 \). Therefore, for every complex number \(\alpha \) such that \(|\alpha| < 1 \), it follows from Rouche’s Theorem that all zeros of the polynomial \(\phi(z) - \alpha m \) of degree \(n-s \) lie outside \(D(0,k), \ k \geq 1 \).

Applying the relation (6) to the polynomial \(\phi(z) - \alpha m \), we get

\[
\max_{|z|=1} |\phi'(z)| \leq \frac{n-s}{1+k^\mu} \max_{|z|=1} |\phi(z) - \alpha m|.
\] (10)

Now choosing \(\alpha \) such that

\[
|\phi(z) - \alpha m| = |\phi(z)| - |\alpha|m
\] (11)

and letting \(|\alpha| \to 1 \), we get from (10) in view of (11) that

\[
\max_{|z|=1} |\phi'(z)| \leq \frac{n-s}{1+k^\mu} \max(|\phi(z)| - m).
\] (12)
Combining the relation (11) and the relation (12), we obtain that
\[
(1 - |z_0|) \max_{|z|=1} |p'(z)| \leq s \max_{|z|=1} |p(z)| + \left[(1 + |z_0|)^{s+1} \frac{n-s}{1+k\mu} \right] \max_{|z|=1} |\phi(z)| - \left[(1 + |z_0|)^{s+1} \frac{n-s}{1+k\mu} \right] m. \tag{13}
\]

The relation between \(\phi(z) \) and \(p(z) \) implies that
\[
\max_{|z|=1} |\phi(z)| = \max_{|z|=1} \left[\frac{1}{|z-z_0|^s} |p(z)| \right] \leq \frac{1}{(1 - |z_0|)^s} \max_{|z|=1} |p(z)|. \]

Applying this relation in the relation (13), we have
\[
(1 - |z_0|) \max_{|z|=1} |p'(z)| \leq \left[s + \frac{(1 + |z_0|)^{s+1}(n-s)}{(1 + k\mu)(1 - |z_0|)^s} \right] \max_{|z|=1} |p(z)| - \left[\frac{(n-s)(1 + |z_0|)^{s+1}}{1 + k\mu} \right] m. \tag{14}
\]

Again, the relation between \(\phi(z) \) and \(p(z) \) yields
\[
m = \min_{|z|=k} |\phi(z)| = \min_{|z|=k} \left[\frac{1}{|z-z_0|^s} |p(z)| \right] \geq \frac{1}{(k + |z_0|)^s} \min_{|z|=k} |p(z)|.
\]

Applying this relation in the relation (14), we have
\[
(1 - |z_0|) \max_{|z|=1} |p'(z)| \leq \left[s + \frac{(1 + |z_0|)^{s+1}(n-s)}{(1 + k\mu)(1 - |z_0|)^s} \right] \max_{|z|=1} |p(z)| - \left[\frac{(n-s)(1 + |z_0|)^{s+1}}{(1 + k\mu)(k + |z_0|)^s} \right] \min_{|z|=k} |p(z)|.
\]

Consequently,
\[
\max_{|z|=1} |p'(z)| \leq \left[\frac{s}{(1 - |z_0|)} + \frac{A}{(1 - |z_0|)^s} \right] \max_{|z|=1} |p(z)| - \frac{A}{(k + |z_0|)^s} \min_{|z|=k} |p(z)|,
\]
where
\[
A = \frac{(1 + |z_0|)^{s+1}(n-s)}{(1 + k\mu)(1 - |z_0|)}.
\]

\[\square\]

Remark 1. By letting \(z_0 = 0 \) in Theorem 5, we get \(A = \frac{n-s}{1+k\mu} \) and
\[
\max_{|z|=1} |p'(z)| \leq (s + A) \max_{|z|=1} |p(z)| - \frac{A}{k^s} \min_{|z|=k} |p(z)|
\]
\[
= \frac{n+s k\mu}{(1 + k\mu)} \max_{|z|=1} |p(z)| - \frac{(n-s)}{k^s (1 + k\mu)} \min_{|z|=k} |p(z)|
\]

which is the relation (9).

In particular, Theorem 5 is an extension of Theorem 4.
REMARK 2. It is not shown in [7] that the upper bound (9) in Theorem 4 is best possible. Next, we give an example to show that the bound is best possible.

Consider the polynomial \(p(z) = z^s(z + k)^{n-s} \) where \(k \) is a real number with \(k \geq 1 \). Since \(p'(z) = z^{n-s} \cdot \frac{d}{dz} (z + k)^{n-s} = z^{n-s} \cdot (n-s)(z + k)^{n-s-1} \), we have

\[
\max_{|z|=1} |p'(z)| \leq (n-s) \max_{|z|=1} |z|^s |z + k|^{n-s-1} + s \max_{|z|=1} |z + k|^{n-s} |z|^{s-1} = (n + sk)(1 + k)^{n-s-1}
\]

and

\[
\max_{|z|=1} |p(z)| = \max_{|z|=1} |z|^s |z + k|^{n-s} = \max_{|z|=1} |z + k|^{n-s} = (1 + k)^{n-s}.
\]

The right-hand side of the relation (9) is

\[
\frac{n + sk^\mu}{1 + k^\mu} \max_{|z|=1} |p(z)| - \frac{(n-s)}{k^\mu (1 + k^\mu)} \min_{|z|=k} |p(z)| = \frac{n + sk}{1 + k} (1 + k)^{n-s} = (n + sk)(1 + k)^{n-s-1}
\]

which is equal to \(\max_{|z|=1} |p'(z)| \) in (15).

Thus, the bound in Theorem 4 is best possible.

COROLLARY 1. If \(p(z) = (z - z_1)^{t_1} (z - z_0)^{t_0} \left(a_0 + \sum_{\nu=\mu}^{n-(t_0+t_1)} a_{\nu} z^\nu \right) \), \(1 \leq \mu \leq n - (t_1 + t_0) \), \(0 \leq t_1 + t_0 \leq n - 1 \), is a polynomial of degree \(n \) having zeros \(z_0, z_1 \) with \(|z_0| < 1, \ |z_1| < 1 \) and the remaining \(n - (t_1 + t_0) \) zeros are outside \(D(0,k), k \geq 1 \), then

\[
\max_{|z|=1} |p'(z)| \leq \left[\frac{t_1 (1 + |z_1|)^{t_1-1}}{(1 - |z_1|)^{t_1}} + \frac{(1 + |z_1|)^{t_1} t_0}{(1 - |z_0|)(1 - |z_1|)^{t_1}} \right] \max_{|z|=1} |p(z)|
\]

\[\begin{align*}
&+ \left[\frac{(1 + |z_1|)^{t_1} A}{(1 - |z_0|)^{t_0} (1 - |z_1|)^{t_1}} \right] \min_{|z|=k} |p(z)|, \\
&- \left[\frac{(1 + |z_1|)^{t_1} A}{(k + |z_0|)^{t_0} (k + |z_1|)^{t_1}} \right] \min_{|z|=k} |p(z)|,
\end{align*}\]

where \(A = \frac{(1 + |z_0|)^{t_0+1} (n - (t_0 + t_1))}{(1 + k^\mu)(1 - |z_0|)} \).

Proof. Let \(p_0(z) = (z - z_0)^{t_0} \left(a_0 + \sum_{\nu=\mu}^{n-(t_0+t_1)} a_{\nu} z^\nu \right) \).

Then \(p(z) = (z - z_1)^{t_1} p_0(z) \) and \(p'(z) = (z - z_1)^{t_1} p'_0(z) + t_1 (z - z_1)^{t_1-1} p_0(z) \).

Theorem 5 implies that

\[
\max_{|z|=1} |p'(z)| \leq \left[t_1 (1 + |z_1|)^{t_1-1} + \frac{(1 + |z_1|)^{t_1} t_0}{(1 - |z_0|)} + \frac{(1 + |z_1|)^{t_1} A}{(1 - |z_0|)^{t_0}} \right] \max_{|z|=1} |p_0(z)|
\]

\[\begin{align*}
&- \left[\frac{(1 + |z_1|)^{t_1} A}{(k + |z_0|)^{t_0} (k + |z_1|)^{t_1}} \right] \min_{|z|=k} |p_0(z)|, \\
&- \left[\frac{(1 + |z_1|)^{t_1} A}{(k + |z_0|)^{t_0} (k + |z_1|)^{t_1}} \right] \min_{|z|=k} |p_0(z)|,
\end{align*}\]
where \(A = \frac{(1 + |z_0|)^{\gamma_0} + 1 (n - (t_0 + t_1))}{(1 + k^{\mu})(1 - |z_0|)} \).

Since
\[
\max_{|z| = 1} |p_0(z)| = \max_{|z| = 1} \left(\frac{1}{|z - z_1|^{\gamma_1}} |p(z)| \right) \leq \frac{1}{(1 - |z_1|)^{\gamma_1}} \max_{|z| = 1} |p(z)|
\]
and
\[
\min_{|z| = k} |p_0(z)| = \min_{|z| = k} \left(\frac{1}{|z - z_1|^{\gamma_1}} |p(z)| \right) \geq \frac{1}{(k + |z_1|)^{\gamma_1}} \min_{|z| = k} |p(z)|,
\]
we obtain that
\[
\max_{|z| = 1} |p'(z)| \leq \left[\frac{t_1 (1 + |z_1|)^{\gamma_1 - 1}}{(1 - |z_1|)^{\gamma_1}} + \frac{(1 + |z_1|)^{\gamma_1} t_0}{(1 - |z_0|)(1 - |z_1|)^{\gamma_1}} \right] \max_{|z| = 1} |p(z)|
\]
\[
- \left[\frac{(1 + |z_1|)^{\gamma_1} A}{(k + |z_0|)^{\gamma_0} (k + |z_1|)^{\gamma_1}} \right] \min_{|z| = k} |p(z)|. \quad \Box
\]

Remark 3. By using Theorem 5, we can obtain an upper bound of \(\max_{|z| = 1} |p'(z)| \) for a polynomial
\[
p(z) = (z - z_m)^m (z - z_{m-1})^{m-1} \cdots (z - z_0)^0 \left(a_0 + \sum_{v=\mu}^{n-(t_m+\cdots+t_0)} a_v z^v \right)
\]
of degree \(n \) having zeros \(z_0, \ldots, z_m \) with \(|z_j| < 1 \) for \(0 \leq j \leq m \) and the remaining \(n - (t_m + \cdots + t_0) \) zeros are outside \(D(0,k), k \geq 1 \).

Let \(p_0(z) = (z - z_0)^{\gamma_0} \left(a_0 + \sum_{v=\mu}^{n-(t_m+\cdots+t_0)} a_v z^v \right) \) and \(p_j(z) = (z - z_j)^{\gamma_j} p_{j-1}(z) \) for \(1 \leq j \leq m \). We obtain an upper bound of \(\max_{|z| = 1} |p_0(z)| \) by Theorem 5.

By substitution this upper bound with the facts that
\[
\max_{|z| = 1} |p_0(z)| \leq \frac{1}{(1 - |z_1|)^{\gamma_1}} \max_{|z| = 1} |p_1(z)| \quad \text{and} \quad \min_{|z| = k} |p_0(z)| \geq \frac{1}{(k + |z_1|)^{\gamma_1}} \min_{|z| = k} |p_1(z)|,
\]
we obtain an upper bound of \(\max_{|z| = 1} |p_j'(z)| \) as in Corollary 1.

Next, we can find an upper bound of \(\max_{|z| = 1} |p_j'(z)| \) for \(1 \leq j \leq m \) by similar process with using an upper bound of \(\max_{|z| = 1} |p_{j-1}(z)| \) from the previous process and the facts that \(\max_{|z| = 1} |p_{j-1}(z)| \leq \frac{1}{(1 - |z_j|)^{\gamma_j}} \max_{|z| = 1} |p_j(z)| \) and \(\min_{|z| = k} |p_{j-1}(z)| \geq \frac{1}{(k + |z_j|)^{\gamma_j}} \min_{|z| = k} |p_j(z)| \) for \(1 \leq j \leq m \).
Theorem 6. If \(p(z) = (z - z_0)^s (a_0 + \sum_{v=\mu}^{n-s} a_v z^v) \), \(1 \leq \mu \leq n - s \), \(0 \leq s \leq n - 1 \), is a polynomial of degree \(n \) having zero \(z_0 \) with \(|z_0| < 1 \) and the remaining \(n - s \) zeros are on \(C(0, k) \), \(k \geq 1 \), then

\[
\max_{|z|=1} |p'(z)| \leq \left[\frac{s}{1 - |z_0|} + \frac{(1 + |z_0|)^{s+1}(n-s)}{(kn-s-2\mu+1 + kn-s-\mu+1)(1 - |z_0|)^s+1} \right] \max_{|z|=1} |p(z)|.
\]

Proof. Let \(p(z) = (z - z_0)^s \phi(z) \) where \(\phi(z) = a_0 + \sum_{v=\mu}^{n-s} a_v z^v \) is a polynomial of degree \(n - s \) having all its zeros on \(C(0, k) \), \(k \geq 1 \).

Applying the relation (8) to \(\phi(z) \), we obtain that

\[
\max_{|z|=1} |\phi'(z)| \leq \frac{n-s}{(kn-s-2\mu+1 + kn-s-\mu+1)} \max_{|z|=1} |\phi(z)| .
\] \tag{16}

As in the proof of Theorem 5, one can show that

\[
(1 - |z_0|) \max_{|z|=1} |p'(z)| \leq s \max_{|z|=1} |p(z)| + (1 + |z_0|)^{s+1} \max_{|z|=1} |\phi'(z)| .
\] \tag{17}

Applying the relation (16) in the inequality (17), we have

\[
(1 - |z_0|) \max_{|z|=1} |p'(z)| \leq s \max_{|z|=1} |p(z)| + \frac{(1 + |z_0|)^{s+1}(n-s)}{(kn-s-2\mu+1 + kn-s-\mu+1)} \max_{|z|=1} |\phi(z)|.
\]

Using the fact that \(\max_{|z|=1} |\phi(z)| \leq \frac{1}{(1 - |z_0|)^s} \max_{|z|=1} |p(z)| \), we get

\[
(1 - |z_0|) \max_{|z|=1} |p'(z)| \leq \left[s + \frac{(1 + |z_0|)^{s+1}(n-s)}{(kn-s-2\mu+1 + kn-s-\mu+1)(1 - |z_0|)^s} \right] \max_{|z|=1} |p(z)| .
\]

Therefore,

\[
\max_{|z|=1} |p'(z)| \leq \left[\frac{s}{1 - |z_0|} + \frac{(1 + |z_0|)^{s+1}(n-s)}{(kn-s-2\mu+1 + kn-s-\mu+1)(1 - |z_0|)^s+1} \right] \max_{|z|=1} |p(z)| . \quad \square
\]

3. Conclusion

This paper gives an upper bound of a derivative for polynomials

\[
p(z) = (z - z_m)^{t_m}(z - z_{m-1})^{t_{m-1}} \cdots (z - z_0)^{t_0} \left(a_0 + \sum_{v=\mu}^{n-(t_m+\cdots+t_0)} a_v z^v \right)
\]

of degree \(n \) having zeros \(z_0, \ldots, z_m \) with \(|z_j| < 1 \) for \(0 \leq j \leq m \) and the remaining \(n - (t_m + \cdots + t_0) \) zeros are outside \(\{ z : |z| < k \} \), \(k \geq 1 \).

Acknowledgements. The first author is supported by National Research Council of Thailand and Khon Kaen University, Thailand (Grant number: kku fmis (580010)). The second author is supported in part by Development and Promotion of Science and Talents Project (DPST).
REFERENCES

(Received December 17, 2015)

Keaitsuda Maneeruk Nakprasit
Department of Mathematics, Faculty of Science
Khon Kaen University
Khon Kaen, 40002, Thailand
e-mail: kmaneeruk@hotmail.com

Jiraphorn Somsuwan
Department of Mathematics, Faculty of Science
Khon Kaen University
Khon Kaen, 40002, Thailand
e-mail: jira.somsu@hotmail.com