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Abstract. The Zagreb indices are among the oldest and the most famous topological molecular
structure-descriptors. The first Zagreb index is equal to the sum of the squares of the degrees
of the vertices, and the second Zagreb index is equal to the sum of the products of the degrees
of pairs of adjacent vertices of the respective graph. In this paper, we characterize the extremal
graphs with maximal, second-maximal, third-maximal, fourth-maximal and minimal, second-
minimal, third-minimal Zagreb indices among all Eulerian graphs, and then we give the tight
conditions on the Zagreb indices of a graph for the existence of a spanning eulerian subgraph,
dominating circuits, spanning circuits, Hamiltonian paths and cycles, respectively.

1. Introduction

Let G= (V (G),E(G)) be a simple graph with n= |V (G)| vertices and m = |E(G)|
edges. The first Zagreb index M1(G) and the second Zagreb index M2(G) defined as
follows:

M1(G) = ∑
u∈V (G)

d2
G(u) and M2(G) = ∑

uv∈E(G)
dG(u)dG(v),

where dG(v1),dG(v2), · · · ,dG(vn) are degrees of vertices v1, · · · ,vn , respectively, while
dG(vi)dG(v j) represents weight associated to the edge viv j . The Zagreb indices were
classical topological indices introduced by I. Gutman and N. Trinajstić [21], which
examined the dependence of total π -electron energy on molecular structure and elabo-
rated in [20]. They are later separately as topological indices in QSPR/QSAR [27] and
reflecting the extent of branching of the molecular carbon-atom skeleton [4, 30]. Main
properties of Zagreb indices were summarized in [5, 6, 7, 22, 23, 26, 27, 34, 31]. In
particular, Deng [16] gave a unified approach to determine extremal values of Zagreb
indices for trees, unicyclic graphs, and bicyclic graphs, respectively. Other recent re-
sults on ordinary Zagreb indices can be found in [5, 6, 7, 19, 22, 23, 26, 31] and the
references cited therein.

An Eulerian circuit in an undirected graph is a closed trail that uses each edge ex-
actly once. If such a circuit exists, the graph is called Eulerian. According to the result
of Euler [2], a graph is Eulerian if and only if it is connected and all its vertices have
even degrees. Denoted by Gn the set of all Eulerian graphs with n � 3 vertices. In
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section 3, we use the techniques from [18] to determine the extremal graphs with max-
imal, second-maximal, third-maximal, fourth-maximal and minimal, second-minimal
Zagreb indices among all Eulerian graphs.

If a graph is supereulerian if it has a spanning eulerian subgraph. Motivated by
the Chinese Postman Problem, Boesch et al. [8] proposed the supereulerian graph
problem: determine when a graph has a spanning eulerian subgraph. Pulleyblank [29]
showed that such a decision problem, even when restricted to planar graphs, is NP-
complete. The literatures on supereulerian graph can be found in [9, 12, 13, 14, 25]. In
section 4, we give the tight conditions on Zagreb indices of a graph for the existence
of supereulerian subgraphs, and then give the bounds of complement graphs on Zagreb
indices for the existence of supereulerian subgraphs.

A spanning circuit of a graph G , is a circuit that contains all vertices of G , while
a dominating circuit of G , is a circuit such that every edge of G is incident with at
least one vertex of the circuit. A. Benhocine et al. [3] proposed the condition that the
graph contains a spanning circuit and dominating circuit, respectively. In section 5, we
propose the tight condition on Zagreb indices of a graph for the existence of spanning
circuits or dominating circuits, and the bounds are in terms of number of vertices and
edges.

A Hamiltonian path (resp. cycle) is a path (resp. cycle) in a graph that visits
each vertex exactly once. the problem of finding a Hamiltonian cycle is NP-complete.
Fiedler and Nikiforo [17] gave tight conditions on spectral radius of a graph for the ex-
istence of Hamiltonian paths and cycles, and later B. Zhou [35] gave the similar result
on the signless Laplacian spectral radius. Motivated by the results above, in section
6, we give the tight conditions on the Zagreb indices of a graph for the existence of
Hamiltonian paths and cycles.

2. Preliminaries

Let Gn be the set of Eulerian graphs with n � 3 vertices. Let even-degree sub-
graph be a subgraph of G that all its degrees are positive even integers. Denoted by
Kn the complete graph with n vertices. If n is odd, then Kn ∈ Gn . If n is even, the
cocktail-party graph CPn ∈ Gn with n vertices, where CPn obtained by deleting n/2
independent edges from Kn . Denoted by K1,n−1 the start with n vertices, and by Cn

the cycle with n � 3 vertices. Let B(p,q) be the bicyclic graph obtained by identified
a vertex of cycle Cp and a vertex of cycle Cq , and B(r,s,t) the tricycle graphs obtained
by identified a vertex of degree two of B(r,s) with a vertex of cycle Ct , where r+s � 7
and two vertices with degree 4 are nonadjacent.

Let δ (G) and Δ(G) be the minimum degree and maximum degree of G , respec-
tively. The edge connectivity is the size of a smallest edge cut, and a graph is called
k -edge-connected if its edge connectivity is k or greater. The Petersen graph is an
undirected graph with 10 vertices and 15 edges, and a pancyclic graph is a graph that
contains cycles of all possible lengths from three up to the number of vertices in the
graph.
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LEMMA 2.1. [11] Let G be a simple graph with n � 3 vertices and m edges.
Then

M1(G) � m

(
2m

n−1
+n−2

)
(1)

with equality if and only if G = Sn or Kn .

LEMMA 2.2. [25] Let G be a simple graph with n � 3 vertices and m edges.
Then

M2(G) � n
2

(2m−n+1)
3
2 . (2)

LEMMA 2.3. [24] Let G be a simple graph with n � 3 vertices and m edges.
Then

M1(G) � 4m2

n
and M2(G) � 4m3

n2 .

3. Eulerian graph with extremal Zagreb index

LEMMA 3.1. [1] A connected graph G is Eulerian if and only if its edge set can
be decomposed into cycles.

THEOREM 3.1. Let G ∈ Gn with n � 4 .
(a) If n is odd, then M1(G) � n(n− 1)2 and M2(G) � 1

2n(n− 1)3 , with both
equalities if and only if G = Kn .

(b) If n is even, then M1(G) � n(n−2)2 and M2(G)2 � 1
2n(n−2)3 , with equal-

ities if and only if G = CPn .

Proof. Case (a) is obviously, since Kn has maximal first and second Zagreb in-
dices among all simple graphs in Gn , it is easily to compute that M1(G) = n(n− 1)2

and M2(Kn) = 1
2n(n−1)3 .

(b) If n is even, then dG(u) � n− 2 for u ∈ V (G) , dG(u)dG(v) � (n − 2)2

for every edge uv ∈ E(G) , and |E(G)| � 1
2n(n− 2) . Thus M1(G) � n(n− 2)2 and

M2(G) � 1
2n(n− 2)3 , with both equalities if and only if each vertex of G has degree

n− 2. Note that CPn is exactly one graph in Gn such that every vertex has degree
n−2. Then the results hold. �

A even-degree subgraph is a subgraph of given graph of which each vertex has
even degree. It is obviously that a induced connected even subgraph is Eulerian. If n
is odd, then every graph G ∈ Gn can be obtained from Kn by deleting edges of some
connected even subgraphs. If n is even, then every graph G∈ Gn can be obtained from
CPn by deleting edges of some connected even subgraphs.

THEOREM 3.2. (a) If n is odd, n � 5 , then the graphs obtained from Kn by
deleting the edges of a triangle, of a quadrangle, and of a pentagon have, respectively,
second-maximal, third-maximal, and fourth-maximal first and second Zagreb indices
in Gn .
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(b) If n is even, n � 6 , then the graphs obtained from CPn by deleting the edges
of a triangle, of a quadrangle, and of a pentagon have, respectively, seond-maximal,
third-maximal, and fourth-maximal first and second Zagreb indices in Gn .

Proof. (a) Let G ∈ Gn (G �= Kn ), since n is odd, then Kn − E(G) = H is a
even-degree subgraph, which implies that E(H) can be decomposed into cycles from
Lemma 3.1. Thus G can be obtained from Kn by deleting edges of some cycles from
H . Suppose that H contain k vertices with degree at least 2 , where 3 � s,k � n . Thus
M1(G) � M1(Kn−E(Cr)) . If s = 3, then H contains C3 as its subgraph. If s = 4, then
H contains C4 . If s = 5, then H contains C5,B(3,3) or K5 . Moreover,

M1(G) = ∑
u∈V(G)

(n−1−dH(u))2 � (n− s)(n−1)2 + s(n−3)2,

� M1(Kn −E(Cs))
M2(G) = ∑

uv∈E(G)
(n−1−dH(u)) (n−1−dH(v))

�
((

n
2

)
− s(n− s+1)

)
(n−1)2 + s(n− s)(n−1)(n−3)

+s(n−3)2 � M2(Kn −E(Cs)).

If H �= C3,C4 , then s � 5, and by equalities above, we have

M1(G) � (n−5)(n−1)2 +5(n−3)2 = M1(Kn −E(C5))

M2(G) �
((

n
2

)
−5(n−4)

)
(n−1)2 +5(n−5)(n−1)(n−3)+5(n−3)2

= M2(Kn −E(C5)),

with equality if and only if G = Kn − E(C5) , and by directly calculation, Mi(Kn −
E(C3)) � Mi(Kn −E(C4)) � Mi(Kn −E(C5)) for i = 1,2. If s � 6, then |E(H)| � 6,
thus M1(Kn −E(C5)) > M1(G) and M2(Kn −E(C5)) > M2(G) . Then the result holds.

(b) The proof is similar to (a) . �

THEOREM 3.3. [32, 33] Let G ∈ Gn with n � 3 . Then M1(G) � M1(Cn) and
M2(G) � M2(Cn) with both equalities if and only if G = Cn .

THEOREM 3.4. Let G ∈ Gn with n � 5 . If G �= Cn , then M1(G) � 4n+12 and
M2(G) � 4n+20 , with both equalities if, and only if G = B(p,q) , where 3 � p � q �
n−3 and p+q = n+1 .

Proof. Since G∈Gn and �=Cn , G must contains a vertex w such that dG(w) � 4,
which implies that G contains 4 edges with weight at least 8 , and |E(G)| � n + 1.
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Thus, d2
G(v) � 4 for every vertex v and dG(u)dG(v) � 4 for every edge uv . Therefore,

M1(G) = ∑
u �=w,u∈V (G)

d2
G(u)+d2

G(w) � 4(n−1)+16= 4n+12 = M1(B(p,q)),

M2(G) = ∑
uv∈E(G),u,v�=w

dG(u)dG(v)+ ∑
uw∈E(G)

dG(u)dG(w)

� 4(|E(G)|−4)+4 ∑
uw∈E(G)

dG(u)

� 4(n−3)+4×8= 4n+20 = M2(B(p,q)).

Then the result holds. �

THEOREM 3.5. Let G∈Gn with n � 8 . If G �=Cn , B(p,q) , where p+q = n+1 ,
then

M1(G) � M1(B(r,s,t)), and M2(G) � M2(B(r,s,t)),

with both equalities hold if and only if G = B(r,s,t) , where r+ s+ t = n+2 and s > 3 .

Proof. If G �= Cn,B(p,q) , then G contain a vertex u with dG(u) � 6 or two ver-
tices v,w with dG(v),dG(w) � 4. Let |E(G)| = m .

Case 1. G contains a vertex u such that dG(u) � 6. Then G contain at least 6
edges with weight more than 12. We have

M1(G) = d2
G(u)+ ∑

v�=u,v∈V(G)
d2

G(v) � 36+4(n−1)= 4n+32,

M2(G) = ∑
uv

dG(u)dG(v)+ ∑
wv∈E(G),w,v�=u

dG(w)dG(v)

� 12×6+4(m−6)= 4m+48.

Case 2. G contain two vertices v,w with degrees at least 4 .
Case 2.1. If v adjacent to w , then G contain at least 6 edges connected to v or

w with weight at least 8 . We have

M1(G) � 32+4(n−2)= 4n+24,

M2(G) � 8×6+16+4(m−7)= 4m+36.

Case 2.2. If v nonadjacent to w , then G contain at least 8 edges with weight at
least 8 , thus

M1(G) � 32+4(n−2)= 4n+24,

M2(G) � 8×8+4(m−8)= 4m+32.

By directly calculation, we have M1(G) � 4n+ 24 and M2(G) � 4m+ 32, with
both equalities hold if, and only if G = B(r,s,t) , then the result holds. �
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4. Existence of supereulerian subgraphs

LEMMA 4.1. [3] Let G be a 2 -edge-connected simple graph with n � 3 vertices.
If

dG(u)+dG(v) � 2n+3
3

,

whenever uv �∈ E(G), then G is supereulerian.

LEMMA 4.2. Let G be a simple graph with n � 3 vertices and m edges. If

m � n(3n−11)
6

+4,

then G is supereulerian.

Proof. Suppose by contrary that there exist nonadjacent vertices u and v in G ,
such that dG(u)+ dG(v) < 2n+3

3 . Note that G can be obtained from Kn by deleting h
edges. Therefore,

4
3
n−4 =

(
n
2

)
−

(
n(3n−11)

6
+4

)
�

(
n
2

)
−m = h,

and

h � 2(n−1)−1− (dG(u)+dG(v)) > 2(n−1)−1− 2n+3
3

=
4
3
n−4,

it is a contradiction. Thus dG(u)+dG(v) � 2n+3
3 for uv �∈ E(G) , and by Lemma 4.1, G

is supereulerian. Then the result holds. �

LEMMA 4.3. [13] Let G be a 3 -edge-connected simple graph with n vertices. If
n is large and if for every edge uv ∈ E(G) ,

dG(u)+dG(v) � n
6
−2,

then either G is a supereulerian graph, or G has the Pertesen graph as its reduction.

By the similar proof of Lemma 4.2, we have

LEMMA 4.4. Let G be a simple graph with n vertices and m edges. If n is large
and

m � n(3n−14)
6

,

then then either G is a supereulerian graph, or G has the Pertesen graph as its reduc-
tion.
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THEOREM 4.1. Let G be a 2 -edge-connected simple graph with n � 3 vertices.
If

M1(G) � 2m(3n2−10n+15)
3(n−1)

(3)

or

M2(G) � n
2

(
n2− 14

3
n+9

)3
2

, (4)

then G is supereulerian.

Proof. Since G is a 2-edge-connected simple graph with n � 3 vertices,

(1) If M1(G) � 2m(3n2−10n+15)
3(n−1) , then by Lemma 2.1, we have

m

(
2m

n−1
+n−2

)
� 2m(3n2−10n+15)

3(n−1)
,

which implies that

m � n(3n−11)
6

+4.

Then the result holds from Lemma 4.2.

(2) If M2(G) � n
2

(
n2− 14

3 n+9
)3

2 , then by Lemma 2.2, we have

n
2

(2m−n+1)
3
2 � n

2

(
n2− 14

3
n+9

) 3
2

,

by the properties of the power function, we conclude that

m � n(3n−11)
6

+4.

Then the result holds from Lemma 4.2. �

Similarly, we have

THEOREM 4.2. Let G be a 3 -edge-connected simple graph with n � 5 vertices
and m edges. If n is large and

M1(G) � m(6n2−23n+6)
3(n−1)

or

M2(G) � n
2

(
n2− 17

3
n+1

)3
2

,

then either G is a supereulerian graph, or G has the Pertesen graph as its reduction.
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THEOREM 4.3. Let G be a 2 -edge-connected simple graph with n � 3 vertices.
If

M1(G) � 64(n−3)2

9n
(5)

or

M2(G) � 256(n−3)3

27n2 , (6)

then G is supereulerian.

Proof. Since G be a 2-edge-connected simple graph with n � 3 vertices.

If M1(G) � 64(n−3)2
9n , then by Lemma 2.3, we have

64(n−3)2

9n
�

4
((n

2

)−m
)2

n
,

which implies that

m � n(3n−11)
6

+4.

Then the result holds from Lemma 4.2.
If M2(G) � 256(n−3)3

27n2 , then by Lemma 2.3, we have

256(n−3)3

27n2 �
4
((n

2

)−m
)3

n2

which implies that

m � n(3n−11)
6

+4.

Then the result holds from Lemma 4.2. �

Similar to the proof of Theorem 4.3

THEOREM 4.4. Let G be a 3 -edge-connected simple graph with n � 5 vertices
and m edges. If

M1(G) � 121n
9

or M2(G) � 1331n
54

,

then either G is a supereulerian graph, or G has the Pertesen graph as its reduction.

5. Existence of a dominating circuit or spanning circuit

LEMMA 5.1. [3] Let G be a 2 -edge-connected simple graph with n � 3 vertices,
and G �∼= K1,n−1 . If dG(u)+dG(v) � 2n+1

3 for every pair of nonadjacent vertices u and
v, then G contains a dominating circuit.

Similar to the proof of Lemma 4.2, we have
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LEMMA 5.2. Let G be a 2 -edge-connected simple graph with n � 3 vertices and
m edges, and G �∼= K1,n−1 . If

m � 3n2−11n+20
6

,

then G contains a dominating circuit.

LEMMA 5.3. [3] Let G be a 2 -edge-connected simple graph with n � 3 vertices.
If dG(u)+ dG(v) � 2n+3

3 for every nonadjacent vertices u and v, then G contains an
spanning circuit.

Similar to the proof of Lemma 4.2, we have

LEMMA 5.4. Let G be a 2 -edge-connected simple graph with n � 3 vertices. If

m � (3n−2)(n−3)
6

+3,

then G contains an spanning circuit.

LEMMA 5.5. [3] Let G be a connected simple graph with n � 6 vertices and
δ (G) � 2 . If dG(u)+ dG(v) � n− 1 for every nonadjacent vertices u and v, then G
contains an spanning circuit.

Similar to the proof of Lemma 4.2, we have

LEMMA 5.6. Let G be a connected simple graph with n � 6 vertices, m edges
and δ (G) � 2 . If

m � 1
2
(n−2)(n−1)+1,

then G contains an spanning circuit.

LEMMA 5.7. [3] Let G be a hamilton graph with n � 3 vertices. If dG(u) +
dG(v) � n

2 for every adjacent vertices u and v, then L(G) is pancyclic.

Similar to the proof of Lemma 4.2, we have

LEMMA 5.8. Let G be a simple connected graph with n � 3 vertices. If

m � (n−2)2

2
,

then L(G) is pancyclic.

Similar to the proof of Theorems 4.1 and 4.3, we obtain theorems following:
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THEOREM 5.1. Let G be a simple 2 -edge-connected graph with n � 3 vertices
and m edges, and G �∼= K1,n−1 . If

M1(G) � m

(
2n+

4
n−1

− 14
3

)

or

M2(G) �
√

3n
18

(
3n2−14n+23

)3
2 ,

then G contains a dominating circuit.

THEOREM 5.2. Let G be a simple 2 -edge-connected graph with n � 3 vertices
and m edges. If

M1(G) � m
3(n−1)

(6n2−20n+30)

or

M2(G) � n
2

(
n2− 14

3
n+17

)3
2

,

then G contains an spanning circuit.

THEOREM 5.3. Let G be a connected simple graph with n � 6 and δ (G) � 2 . If

M1(G) � 4(n−2)2

n
or M2(G) � 4(n−2)3

n2 ,

then G contains a spanning circuit.

THEOREM 5.4. Let G be a hamilton graph with n � 3 vertices, and G the com-
plement of G. If

M1(G) � (3n−4)2

n
or M2(G) � (3n−4)3

2n2 ,

then L(G) is pancyclic.

6. Existence of Hamiltonian paths and cycles

LEMMA 6.1. [28] Let G be a simple graph with n vertices. If

dG(u)+dG(v) � n−1

for every nonadjacent vertices u and v, then G contains a Hamiltonian path.

LEMMA 6.2. [17] Let G be a graph with n vertices and m edges. If

m �
(

n−1
2

)
, (7)

then G contains a Hamiltonian path unless G = Kn−1 + v. If the equality (7) is strict,
then G contains a Hamiltonian cycle unless G = Kn−1 + e.
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THEOREM 6.1. Let G be a graph with n vertices and m edges. If

(a) M1(G) � 2(n−2),or (8)

(b) M2(G) � n
2
(n2−4n+3)

3
2 , (9)

then G contains a Hamiltonian path unless G = Kn−1 + v. If the equalities (i) or (ii)
is strict, then G contains a Hamiltonian cycle unless G = Kn−1 + e.

Proof. (a) By Lemma 2.1,

M1(G) � m

(
2m

n−1
+n−2

)
,

together with (8), implies that

m

(
2m

n−1
+n−2

)
� 2m(n−2).

Hence, we obtain

m �
(

n−1
2

)

with strict inequality if (8) is strict. Then the theorem holds.
(b) By Lemma 2.2,

M1(G) � n
2

(2m−n+1)
3
2 ,

together with (9), implies that

n
2

(2m−n+1)
3
2 � n

2
(n2−4n+3)

3
2 .

Hence, we obtain

m �
(

n−1
2

)

with strict inequality if (9) is strict. Then the theorem holds. �
From the proof of Theorem 3 in [17], we have

THEOREM 6.2. Let G be a graph with n vertices and G the complement of G. If

M1(G) � n(n−1),

then G contains a Hamiltonian path unless G = Kn−1 + v.
If

M1(G) � n(n−2),

then G contains a Hamiltonian cycle unless G = Kn−1 + e.

Similar to the proof of Theorems 4.3, we have
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THEOREM 6.3. Let G be a connected simple graph with n vertices and m edges,
and G the complement of G. If

M2(G) � (n−1)3

n2 , (10)

then G contains a Hamiltonian path.
If

M2(G) � (n−2)3

n2 , (11)

then G contains a Hamiltonian cycle unless G = Kn−1 + e.
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