INEQUALITIES INVOLVING NORM AND ESSENTIAL NORM OF WEIGHTED COMPOSITION OPERATORS

AJAY K. SHARMA, AMBIKA BHAT, RENU CHUGH AND ELINA SUBHADARSINI

(Communicated by S. Stević)

Abstract. We characterize the boundedness and compactness of the weighted composition operator acting from the weighted Bergman space \(A^p(\sigma) \) to the Zygmund-type space \(Z_\nu \), where \(\sigma \) is an admissible weight and \(\nu \) is a normal weight. Some upper and lower bounds for the norm and essential norm of the operator are also given.

1. Introduction and preliminaries

Let \(\mathbb{D} \) be the open unit disk in the complex plane \(\mathbb{C} \), \(H(\mathbb{D}) \) the space of all holomorphic functions on \(\mathbb{D} \) and \(H^\infty \) the Banach space of bounded analytic functions on \(\mathbb{D} \). Let \(\psi \in H(\mathbb{D}) \) and \(\phi \) be a holomorphic self-map of \(\mathbb{D} \). Then the weighted composition operator \(W_{\psi, \phi} \) is a linear operator on \(H(\mathbb{D}) \) defined by \(W_{\psi, \phi} f = \psi \cdot f \circ \phi \) for \(f \in H(\mathbb{D}) \). It is of interest to provide function-theoretic characterizations involving symbols \(\psi \) and \(\phi \) for the boundedness and compactness of \(W_{\psi, \phi} \) acting between different function spaces. Recently, several authors have studied these type of operators on different spaces of holomorphic functions, see for example, [2]–[34] and the related references therein.

Let \(\sigma : [0, 1) \to [0, \infty) \) be a non-increasing continuous function. We extend it on \(\mathbb{D} \) by \(\sigma(z) = \sigma(|z|), z \in \mathbb{D} \) and call it a weight or a weight function. Throughout this paper, we assume that a weight \(\sigma \) will also satisfy the following properties:

1. \(\sigma(r)(1 - r)^{-1}\gamma \) is non-decreasing for some \(\gamma > 0 \);
2. \(\lim_{r \to 1^-} \sigma(r) = 0 \).

Such a weight function is called an admissible weight. For \(0 < p < \infty \) and \(\sigma \) an admissible weight, we denote by \(A^p(\sigma) \) the weighted Bergman space consisting of holomorphic functions \(f \) on \(\mathbb{D} \) such that

\[
||f||_{A^p(\sigma)}^p = \int_{\mathbb{D}} |f(z)|^p \sigma(z) dA(z) < \infty,
\]

Keywords and phrases: Weighted composition operator, admissible weight, normal weight, weighted Bergman space, Zygmund-type space.
where \(dA(z) = \frac{1}{\pi} dx dy = \frac{1}{\pi} r dr d\theta \) stands for the normalized area measure in \(\mathbb{D} \). Recall that a weight \(v \) is normal if there exist positive numbers \(\eta \) and \(\tau \), \(0 < \eta < \tau \) and \(\delta \in [0, 1) \) such that

\[
\frac{v(r)}{(1-r)^\eta} \text{ is decreasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{v(r)}{(1-r)^\eta} = 0;
\]

\[
\frac{v(r)}{(1-r)^\tau} \text{ is increasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{v(r)}{(1-r)^\tau} = \infty.
\]

It is well known that classical weights \(\sigma_\alpha(z) = (1-|z|^2)^\alpha \), \(\alpha > -1 \) are normal weights.

The following lemma is folklore and can be proved as Lemma 2.1 in [6] or Lemma 1 in [18], we omit the details.

Lemma 1.1. Assume that \(p > 0 \), \(k \in \mathbb{N}_0 \) and \(\sigma \) is an admissible weight. Then, there is a positive constant \(C \) such that

\[
|f^{(k)}(z)| \leq C \frac{\|f\|_{\mathcal{A}^p(\sigma)}}{\sigma^{1/p}(z)(1-|z|^2)^{k+2/p}}
\]

for every \(z \in \mathbb{D} \) and \(f \in \mathcal{A}^p(\sigma) \).

Lemma 1.2. Let \(\gamma > 0 \) and \(\sigma \) be an admissible weight. Then

\[
f_{\gamma, \lambda}(z) = \frac{(1-|\lambda|^2)^{2(1+\gamma)/p}}{\sigma^{1/p}(\lambda)(1-\lambda z)^{2(2+\gamma)/p}} \quad (\lambda \in \mathbb{D})
\]

is in \(\mathcal{A}^p(\sigma) \). Moreover, \(\sup_{\lambda \in \mathbb{D}} \|f_{\gamma, \lambda}\|_{\mathcal{A}^p(\sigma)} \lesssim 1 \).

Proof. Proof is an easy consequence of Lemma 2.4 in [2]. \(\square \)

The next lemma can be found in [13].

Lemma 1.3. Let \(1 < p < \infty \) and \(\sigma \) be an admissible weight. If a bounded sequence \(\{f_k\}_{k \in \mathbb{N}} \) in \(\mathcal{A}^p(\sigma) \) converges to 0 uniformly on compact subsets of \(\mathbb{D} \), then \(\{f_k\}_{k \in \mathbb{N}} \) also converges to 0 weakly in \(\mathcal{A}^p(\sigma) \).

The following functions play an important role in the rest of the paper.

For \(\gamma > 0 \), \(n \in \mathbb{N}_0 \) and \(\lambda \in \mathbb{D} \), consider the family of function.

\[
f_{\gamma, n, \lambda}(z) = \frac{(1-|\lambda|^2)^{2(1+\gamma)/p+n}}{\sigma^{1/p}(\lambda)(1-\lambda z)^{2(2+\gamma)/p+n}}.
\]

(1)

Using Lemma 1.2 it is easy to show that \(f_{\gamma, n, \lambda} \in \mathcal{A}^p(\sigma) \). Moreover,

\[
f_{\gamma, n, \lambda}(\lambda) = \frac{1}{\sigma^{1/p}(\lambda)(1-|\lambda|^2)^{2/p}}.
\]

(2)
Also an easy calculation yields the following equalities:

\[
f'_{γ,n,λ}(z) = \left(\frac{4 + 2γ}{p} + n\right) \frac{1 - |λ|^2}{σ^{1/p}(λ)(1 - |λ|^2)} 2^{(1+γ)/p+n},
\]

\[
f'_{γ,n,λ}(λ) = \left(\frac{4 + 2γ}{p} + n\right) \frac{1 - |λ|^2}{σ^{1/p}(λ)(1 - |λ|^2)} 2^{1+2/p},
\]

\[
f''_{γ,n,λ}(z) = \left(\frac{4 + 2γ}{p} + n\right) \left(\frac{4 + 2γ}{p} + n + 1\right) \frac{1 - |λ|^2}{σ^{1/p}(λ)(1 - |λ|^2)} 2^{(1+γ)/p+n+1},
\]

\[
f''_{γ,n,λ}(λ) = \left(\frac{4 + 2γ}{p} + n\right) \left(\frac{4 + 2γ}{p} + n + 1\right) \frac{1 - |λ|^2}{σ^{1/p}(λ)(1 - |λ|^2)} 2^{1+2/p}.
\]

For a normal weight \(ν\), the Zenrugd-type space \(X_ν\) on \(D\) is the space of all holomorphic functions \(f\) on \(D\) such that

\[
\sup_{z \in D} ν(z)|f''(z)| < \infty.
\]

For \(ν(z) = 1 - |z|^2\) is obtained the (standard) Zygmund space \(X\), which was defined in [5]. The space \(X_ν\) is a Banach space with the norm

\[
\|f\|_{X_ν} = |f(0)| + |f'(0)| + \sup_{z \in D} ν(z)|f''(z)|.
\]

Zygmund-type spaces and operators on them have attracted a considerable attention recently. For some operators from or to the Zygmund-type spaces on the unit disk, see, for example, [3, 4, 5, 9, 7, 8, 12, 23, 27, 32, 34]. Zygmund-type spaces on the unit ball and operators from or to them are studied, for example, in [10, 11, 17, 31, 33], while some results in the setting of the upper half-plane can be found, for example, in [15, 21, 22]. For some generalizations of Zygmund-type spaces and operators on them, see, for example, [21, 20, 24, 25, 22, 26].

In this paper, we characterize the boundedness and compactness of weighted composition operators acting from weighted Bergman spaces \(A^p(σ)\) with admissible weights to Zygmund-type spaces \(X_ν\). We also give some upper and lower bounds for the norm and essential norm of the operators. For some results, in this direction, see, for example, [13, 14, 16, 30] and the references therein.

The next criterion for compactness follows by standard arguments similar to those outlined in the Proposition 3.11 in [1].

Lemma 1.4. Let \(σ\) be an admissible weight, \(ν\) a normal weight and \(W_{ϕ,φ} : A^p(σ) → X_ν\) is bounded. Then \(W_{ϕ,φ} : A^p(σ) → X_ν\) is compact if and only if for any bounded sequence \(\{f_n\}_{n \in ℕ}\) in \(A^p(σ)\) which converges to zero uniformly on compact subsets of \(D\), we have \(\|W_{ϕ,φ}f_n\|_{X_ν} → 0\) as \(n → ∞\).

Throughout this paper constants are denoted by \(C\), they are positive and not necessarily the same at each occurrence. The notations \(A ≲ B\) means that \(A\) is less than or equal to a constant times \(B\) and \(D \gtrsim E\), means that \(D\) is greater than or equal to a constant times \(E\).
2. Boundedness and compactness of $W_{\psi, \phi} : \mathcal{A}^P(\sigma) \to \mathcal{L}_\nu$.

Theorem 2.1. Let $p > 0$, σ an admissible weight, ν a normal weight, $\psi \in H(\mathbb{D})$ and ϕ be a holomorphic self-map of \mathbb{D}. Then $W_{\psi, \phi} : \mathcal{A}^P(\sigma) \to \mathcal{L}_\nu$ is bounded if and only if the following conditions are satisfied:

1. $M_1 = \sup_{z \in \mathbb{D}} \frac{v(z)\psi''(z)}{\sigma^{1/p}(\phi(z))(1 - |\phi(z)|^2)^{-1/2}} < \infty$.

2. $M_2 = \sup_{z \in \mathbb{D}} \frac{v(z)|2\psi'(z)\psi'(z) + \psi(z)\psi''(z)|}{\sigma^{1/p}(\phi(z))(1 - |\phi(z)|^2)^{1/2}} < \infty$.

3. $M_3 = \sup_{z \in \mathbb{D}} \frac{v(z)\psi(z)|\psi'(z)|^2}{\sigma^{1/p}(\phi(z))(1 - |\phi(z)|^2)^{1/2}} < \infty$.

Moreover, the following relation hold

$$M_1 + M_2 + M_3 \lesssim \|W_{\psi, \phi}\|_{\mathcal{A}^P(\sigma) \to \mathcal{L}_\nu} \lesssim \frac{|\psi(0)| + |\psi'(0)|}{\sigma^{1/p}(\phi(0))(1 - |\phi(0)|^2)^{2/2}} + \frac{|\psi(0)\phi'(0)|}{\sigma^{1/p}(\phi(0))(1 - |\phi(0)|^2)^{1/2}} + M_1 + M_2 + M_3.$$ \hfill (5)

Proof. First suppose that $W_{\psi, \phi} : \mathcal{A}^P(\sigma) \to \mathcal{L}_\nu$ is bounded. Then

$$\|W_{\psi, \phi}f\|_{\mathcal{L}_\nu} \leq \|W_{\psi, \phi}\|_{\mathcal{A}^P(\sigma) \to \mathcal{L}_\nu} \|f\|_{\mathcal{A}^P(\sigma)}$$ \hfill (6)

for every $f \in \mathcal{A}^P(\sigma)$. By taking $f(z) = 1$ in (6) we have that

$$\sup_{z \in \mathbb{D}} v(z)|\psi''(z)| \leq \|W_{\psi, \phi}\|_{\mathcal{A}^P(\sigma) \to \mathcal{L}_\nu}.$$ \hfill (7)

Also by taking $f(z) = z$ in (6), using (7) and the fact that $|\phi(z)| < 1$, we see that

$$\sup_{z \in \mathbb{D}} v(z)|2\psi'(z)\psi'(z) + \psi(z)\psi''(z)| \lesssim \|W_{\psi, \phi}\|_{\mathcal{A}^P(\sigma) \to \mathcal{L}_\nu}.$$ \hfill (8)

Again by taking $f(z) = z^2/2$ in (6), using (7), (8) and the fact that $|\phi(z)| < 1$, we have that

$$\sup_{z \in \mathbb{D}} v(z)|\psi(z)||\phi'(z)|^2 \lesssim \|W_{\psi, \phi}\|_{\mathcal{A}^P(\sigma) \to \mathcal{L}_\nu}.$$ \hfill (9)

Next we consider the following family of functions

$$f_{\lambda}(z) = f_{\gamma, 0, \phi(\lambda)}(z) - 2f_{\gamma, 1, \phi(\lambda)}(z) + f_{\gamma, 2, \phi(\lambda)}(z),$$

where $f_{\gamma, i, \phi(\lambda)}$, $i = 0, 1, 2$ are defined in (1). Then

$$f_{\lambda}(z) = \left[1 - \frac{2(1 - |\phi(\lambda)|^2)}{(1 - \phi(\lambda)^2)} + \frac{(1 - |\phi(\lambda)|^2)^2}{(1 - \phi(\lambda)^2)^2}\right]f_{\gamma, 0, \phi(\lambda)}(z) = \tau_{\phi(\lambda)}(z)f_{\gamma, 0, \phi(\lambda)}(z),$$
where
\[\tau_{\phi(\lambda)}(z) = 1 - \frac{2(1 - |\phi(\lambda)|^2)}{(1 - \phi(\lambda)z)} + \frac{(1 - |\phi(\lambda)|^2)^2}{(1 - \phi(\lambda)z)^2}. \]

Then \(\tau_{\phi(\lambda)} \in H^\infty \) as
\[
\sup_{\lambda \in \mathbb{D}} |\tau_{\phi(\lambda)}(z)| \leq \sup_{\lambda \in \mathbb{D}} \left[1 + \frac{2(1 - |\phi(\lambda)|^2)}{(1 - |\phi(\lambda)||z|)} + \frac{(1 - |\phi(z)|^2)^2}{(1 - |\phi(\lambda)||z|)^2} \right] \leq 9.
\]

Therefore, \(f_\lambda \in \mathcal{A}^p(\sigma) \) and \(\sup_{\lambda \in \mathbb{D}} \|f_\lambda\|_{\mathcal{A}^p(\sigma)} \lesssim 1. \) Moreover, using \((2), (3) \) and \((4) \), we have
\[
f_\lambda(\phi(\lambda)) = 0, \quad f_\lambda'(\phi(\lambda)) = 0 \quad \text{and} \quad f_\lambda''(\phi(\lambda)) = \frac{2(\phi(\lambda))^2}{\sigma^{1/p}(\phi(\lambda))(1 - |\phi(\lambda)|^2)^{2+2/p}}.
\]

Thus
\[
\|W_{\psi, \phi}\|_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{Z}_v} \gtrsim \|W_{\psi, \phi} f_\lambda\|_{\mathcal{Z}_v} \\
\geq v(\lambda) |\psi''(\lambda) f_\lambda(\phi(\lambda)) + (2\psi'(\lambda) \phi'(\lambda) + \psi(\lambda) \phi''(\lambda)) f_\lambda'(\phi(\lambda)) + \psi(\lambda) (\phi'(\lambda))^2 f_\lambda''(\phi(\lambda))| \\
\geq 2 \frac{v(\lambda) |\psi(\lambda)||\phi'(\lambda)|^2 |\phi(\lambda)|^2}{\sigma^{1/p}(\phi(\lambda))(1 - |\phi(\lambda)|^2)^{2+2/p}}.
\]

Therefore, we have that
\[
\sup_{\lambda \in \mathbb{D}} \frac{v(\lambda) |\psi(\lambda)||\phi'(\lambda)|^2 |\phi(\lambda)|^2}{\sigma^{1/p}(\phi(\lambda))(1 - |\phi(\lambda)|^2)^{2+2/p}} \lesssim \|W_{\psi, \phi}\|_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{Z}_v}.
\]

Thus for fixed \(\delta \in (0, 1) \), we have that
\[
\sup_{|\phi(\lambda)| > \delta} \frac{v(\lambda) |\psi(\lambda)||\phi'(\lambda)|^2}{\sigma^{1/p}(\phi(\lambda))(1 - |\phi(\lambda)|^2)^{2+2/p}} \lesssim \|W_{\psi, \phi}\|_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{Z}_v}.
\]

Since \(\sigma \) is non-increasing, so by using \((9) \), we have that
\[
\sup_{|\phi(\lambda)| \leq \delta} \frac{v(\lambda) |\psi(\lambda)||\phi'(\lambda)|^2}{\sigma^{1/p}(\phi(\lambda))(1 - |\phi(\lambda)|^2)^{2+2/p}} \leq \frac{1}{\sigma^{1/p}(\delta)(1 - \delta^2)^{2+2/p}} \|W_{\psi, \phi}\|_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{Z}_v}.
\]

Hence from \((11) \) and \((12) \), we have that
\[
\sup_{\lambda \in \mathbb{D}} \frac{v(\lambda) |\psi(\lambda)||\phi'(\lambda)|^2}{\sigma^{1/p}(\phi(\lambda))(1 - |\phi(\lambda)|^2)^{2+2/p}} \lesssim \|W_{\psi, \phi}\|_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{Z}_v}.
\]

Again, let \(\lambda = \phi(\zeta) \) and consider the family of function
\[
g_\lambda(z) = \left(\frac{8 + 4\gamma}{p} + 4 \right) f_{\gamma,0,\lambda}(z) - \left(\frac{16 + 8\gamma}{p} + 6 \right) f_{\gamma,1,\lambda}(z) + \left(\frac{8 + 4\gamma}{p} + 2 \right) f_{\gamma,2,\lambda}(z).
\]
Then
\[
g_\lambda(z) = \left(\frac{8+4\gamma}{p} + 4 \right) - \left(\frac{16+8\gamma}{p} + 6 \right) \frac{1 - |\lambda|^2}{1 - \lambda z} + \left(\frac{8+4\gamma}{p} + 2 \right) \frac{(1 - |\lambda|^2)^2}{(1 - \lambda z)^2} \right] f_{\gamma,0,\lambda}(z)
= \rho_\lambda(z)f_{\gamma,0,\lambda}(z).
\]

Since
\[
\sup_{z \in \mathbb{D}} |\rho_\lambda(z)| = \sup_{z \in \mathbb{D}} \left| \left(\frac{8+4\gamma}{p} + 4 \right) - \left(\frac{16+8\gamma}{p} + 6 \right) \frac{1 - |\lambda|^2}{1 - \lambda z} + \left(\frac{8+4\gamma}{p} + 2 \right) \frac{(1 - |\lambda|^2)^2}{(1 - \lambda z)^2} \right| \leq 36 \left(\frac{2 + \gamma}{p} \right) + 24,
\]
so \(\rho_\lambda \in H^p \). Therefore, we have that \(g_\lambda \in \mathcal{A}^p(\sigma) \) and \(\sup_{\lambda \in \mathbb{D}} \|g_\lambda\|_{\mathcal{A}^p(\sigma)} \lesssim 1 \). Moreover,
\[
g'_\lambda(z) = \left(\frac{8+4\gamma}{p} + 4 \right) f'_{\gamma,0,\lambda}(z) - \left(\frac{16+8\gamma}{p} + 6 \right) f'_{\gamma,1,\lambda}(z) + \left(\frac{8+4\gamma}{p} + 2 \right) f'_{\gamma,2,\lambda}(z)
\]
\[
g''_\lambda(z) = \left(\frac{8+4\gamma}{p} + 4 \right) f''_{\gamma,0,\lambda}(z) - \left(\frac{16+8\gamma}{p} + 6 \right) f''_{\gamma,1,\lambda}(z) + \left(\frac{8+4\gamma}{p} + 2 \right) f''_{\gamma,2,\lambda}(z).
\]
Therefore, by using (2), (3) and (4), we have that
\[
g_\lambda(\lambda) = 0, \ g''_\lambda(\lambda) = 0 \text{ and } g'_\lambda(\lambda) = \frac{-2\lambda}{\sigma^{1/p}(\lambda)(1 - |\phi(\lambda)|^2)^{1+2/p}}
\]
and so
\[
\|W_{\psi,\varphi}\|_{\mathcal{A}^p(\sigma) \rightarrow X_v} \gtrsim \|W_{\psi,\varphi}g_\lambda\|_{X_v} \\
\geq \nu(\xi)|\psi''(\xi)g_\lambda(\phi(\xi)) + 2\psi'(\xi)\phi'(\xi) + \psi(\xi)\phi''(\xi)|g'_\lambda(\phi(\xi)) + \psi(\xi)(\phi'(\xi))^2g''_\lambda(\phi(\xi))| \\
\geq 2 \frac{\nu(\xi)|2\psi'(\xi)\phi'(\xi) + \psi(\xi)\phi''(\xi)|}{\sigma^{1/p}(\phi(\xi))(1 - |\phi(\xi)|^2)^{1+1/p}}|\phi(\xi)|.
\]
Thus we have
\[
\sup_{\xi \in \mathbb{D}} \frac{\nu(\xi)|2\psi'(\xi)\phi'(\xi) + \psi(\xi)\phi''(\xi)|}{\sigma^{1/p}(\phi(\xi))(1 - |\phi(\xi)|^2)^{1+1/p}} \lesssim \|W_{\psi,\varphi}\|_{\mathcal{A}^p(\sigma) \rightarrow X_v}.
\]
Thus there exist some \(\delta_1 \in (0, 1) \), such that
\[
\sup_{|\phi(\xi)| > \delta_1} \frac{\nu(\xi)|2\psi'(\xi)\phi'(\xi) + \psi(\xi)\phi''(\xi)|}{\sigma^{1/p}(\phi(\xi))(1 - |\phi(\xi)|^2)^{1+1/p}} \lesssim \|W_{\psi,\varphi}\|_{\mathcal{A}^p(\sigma) \rightarrow X_v}.
\]
Since \(\sigma \) is monotonically increasing, so by (8), we have that
\[
\sup_{|\varphi(\zeta)| \leq \delta_1} \frac{\nu(\zeta)|2\psi'(\zeta)\varphi'(\zeta) + \psi(\zeta)\varphi''(\zeta)|}{\sigma^{1/p}(\varphi(\zeta))(1 - |\varphi(\zeta)|^2)^{1+1/p}} \leq \frac{1}{\sigma(\delta_1)(1 - \delta_1^2)^{1+2/p}} ||W_{\psi, \varphi}||_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{L}_p}.
\] (15)

Combining (14) and (15) we have that
\[
\sup_{\zeta \in \mathbb{D}} \frac{\nu(\zeta)|2\psi'(\zeta)\varphi'(\zeta) + \psi(\zeta)\varphi''(\zeta)|}{\sigma^{1/p}(\varphi(\zeta))(1 - |\varphi(\zeta)|^2)^{1+1/p}} \lesssim ||W_{\psi, \varphi}||_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{L}_p}.
\] (16)

Again, let \(\lambda = \varphi(\zeta) \) and consider the family of functions
\[
h_\lambda(z) = 2 \left(\frac{2 + \gamma}{p} + 1 \right) \left(\frac{4 + 2\gamma}{p} + 1 \right) f_{\gamma,0,\lambda}(z)
- 8 \left(\frac{2 + \gamma}{p} \right) \left(\frac{2 + \gamma}{p} + 1 \right) f_{\gamma,1,\lambda}(z)
+ 2 \left(\frac{2 + \gamma}{p} \right) \left(\frac{4 + 2\gamma}{p} + 1 \right) f_{\gamma,2,\lambda}(z).
\]

Then
\[
h_\lambda(z) = \left[2 \left(\frac{2 + \gamma}{p} + 1 \right) \left(\frac{4 + 2\gamma}{p} + 1 \right) - 8 \left(\frac{2 + \gamma}{p} \right) \left(\frac{2 + \gamma}{p} + 1 \right) \frac{1 - \lambda}{1 - \lambda z} \right]
+ 2 \left(\frac{2 + \gamma}{p} \right) \left(\frac{4 + 2\gamma}{p} + 1 \right) \frac{1}{(1 - \lambda z)^2} f_{\gamma,0,\lambda}(z)
= g_1(z) f_{\gamma,0,\lambda}(z).
\]

Proceeding as above we can show that \(g_1 \in H^\infty, h_\lambda \in \mathcal{A}^p(\sigma) \) and \(\sup_{\lambda \in \mathbb{D}} ||h_\lambda||_{\mathcal{A}^p(\sigma)} \lesssim 1 \) and
\[
h'_\lambda(\lambda) = 0, h''_\lambda(\lambda) = 0 \quad \text{and} \quad h_\lambda(\lambda) = \frac{2}{\sigma^{1/p}(\lambda)(1 - |\lambda|^2)^{2/p}}.
\]

Therefore,
\[
||W_{\psi, \varphi}||_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{L}_p} \gtrsim ||W_{\psi, \varphi}h_\lambda||_{\mathcal{L}_p} \geq \frac{\nu(\zeta)|\psi''(\zeta)|}{\sigma^{1/p}(\varphi(\zeta))(1 - |\varphi(\zeta)|^2)^{2/p}}.
\]

Taking the supermum over \(\zeta \in \mathbb{D} \), we have that
\[
\sup_{\zeta \in \mathbb{D}} \frac{\nu(\zeta)|\psi''(\zeta)|}{\sigma^{1/p}(\varphi(\zeta))(1 - |\varphi(\zeta)|^2)^{2/p}} \lesssim ||W_{\psi, \varphi}||_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{L}_p}.
\] (17)

From (13), (16) and (17) we have that
\[
M_1 + M_2 + M_3 \lesssim ||W_{\psi, \varphi}||_{\mathcal{A}^p(\sigma) \rightarrow \mathcal{L}_p}.
\] (18)
Conversely, suppose that the conditions (1)–(3) hold. Then
\[
\nu(z)|(W_{\psi,\varphi}f)''(z)| = \nu(z)|\psi''(z)f(\varphi(z)) + (2\psi'(z)\varphi'(z)
+ \psi(z)\varphi''(z))f'(\varphi(z)) + \psi(z)(\varphi'(z))^2f''(\varphi(z))|
\leq \left(\frac{\nu(z)|\psi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2/p}} + \frac{\nu(z)|2\psi'(z)\varphi'(z) + \psi(z)\varphi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{1+2/p}} + \frac{\nu(z)|\psi(z)|\varphi'(z)^2}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2+2/p}} \right) \|f\|_{A^p(\sigma)}.
\]
Taking the supremum over \(z \in \mathbb{D}\), we get
\[
\sup_{z \in \mathbb{D}} \nu(z)|(W_{\psi,\varphi}f)''(z)| \lesssim (M_1 + M_2 + M_3)\|f\|_{A^p(\sigma)}.
\]
Further, we have
\[
\|W_{\psi,\varphi}\|_{A^p(\sigma) \to L^\nu} \lesssim M_1 + M_2 + M_3, \tag{19}
\]
\[
\|W_{\psi,\varphi}f(0)\| = |\psi(0)||f(\varphi(0))| \lesssim \frac{|\psi(0)||f|_{A^p(\sigma)}}{\sigma^{1/p}(\varphi(0))(1 - |\varphi(0)|^2)^{2/p}} \tag{20}
\]
and
\[
|(W_{\psi,\varphi}f)'(0)| = |\psi'(0)f(\varphi(0)) + \psi(0)\varphi'(0)f'(\varphi(0))|
\leq \left(\frac{|\psi'(0)|}{\sigma^{1/p}(\varphi(0))(1 - |\varphi(0)|^2)^{2/p}} + \frac{|\psi(0)\varphi'(0)|}{\sigma^{1/p}(\varphi(0))(1 - |\varphi(0)|^2)^{1+2/p}} \right) \|f\|_{A^p(\sigma)}. \tag{21}
\]
Combining (19), (20) and (21), we have that
\[
\|W_{\psi,\varphi}\|_{A^p(\sigma) \to L^\nu} \lesssim \frac{|\psi(0)| + |\psi'(0)|}{\sigma^{1/p}(\varphi(0))(1 - |\varphi(0)|^2)^{2/p}}
+ \frac{|\psi(0)\varphi'(0)|}{\sigma^{1/p}(\varphi(0))(1 - |\varphi(0)|^2)^{1+2/p}} + M_1 + M_2 + M_3. \tag{22}
\]
From (18) and (22), (6) holds. \(\square\)

Theorem 2.2. Let \(p > 0\), \(\sigma\) an admissible weight, \(\nu\) a normal weight, \(\psi \in H(\mathbb{D})\) and \(\varphi\) be a holomorphic self map of \(\mathbb{D}\) such that \(||\varphi||_{\infty} < 1\). Let \(W_{\psi,\varphi} : A^p(\sigma) \to L^\nu\) is bounded. Then following conditions are equivalent:

1. \(W_{\psi,\varphi} : A^p(\sigma) \to L^\nu\) is bounded.

2. \(W_{\psi,\varphi} : A^p(\sigma) \to L^\nu\) is compact.

3. \(N_1 = \sup_{z \in \mathbb{D}} \nu(z)|\psi''(z)| < \infty,\)
\(N_2 = \sup_{z \in \mathbb{D}} \nu(z)|2\psi'(z)\varphi'(z) + \psi(z)\varphi''(z)| < \infty,\)
\(N_3 = \sup_{z \in \mathbb{D}} \nu(z)|\psi(z)||\varphi'(z)|^2 < \infty.\)
Proof. (2) ⇒ (1) is trivially true. To complete the theorem we only need to prove that (1) ⇒ (3) and (3) ⇒ (2).

(1) ⇒ (3) By taking \(f(z) = 1, f(z) = z \) and \(f(z) = z^2 / 2 \), respectively in \(\| W_{\psi, \phi} f \|_{\mathcal{A}^\sigma} \leqslant \| W_{\psi, \phi} \| \| f \|_{\mathcal{A}^\sigma} \). We see that all the conditions in (3) hold.

(3) ⇒ (2). Suppose that conditions in (3) hold. Let \(\{ f_j \} \) be a bounded sequence in \(\mathcal{A}^p(\sigma) \) such that \(\sup_j \| f_j \|_{\mathcal{A}^\sigma} \leqslant M \) and \(f_j \to 0 \) uniformly on compact subsets of \(\mathbb{D} \). From this and by the Cauchy inequality we have that \(f_j' \to 0 \) and \(f_j'' \to 0 \) uniformly on compact subsets of \(\mathbb{D} \). Thus for fixed \(z \in \mathbb{D} \), we have that

\[
|v(z)(W_{\psi, \phi} f_j)''(z)| \leqslant v(z)|\psi''(z)||f_j'(\phi(z))| + v(z)|2\psi'(z)\phi'(z) + \psi(z)\phi''(z)||f_j'(\phi(z))|
\]

\[
+ v(z)|\psi'(z)||\phi'(z)|^2|f_j''(\phi(z))|
\]

\[
\leqslant v(z)|\psi''(z)| \max_{|\xi| \leqslant \| \phi \|_\infty} |f_j(\xi)| + v(z)|2\psi'(z)\phi'(z) + \psi(z)|\phi'(z)|^2 \max_{|\xi| \leqslant \| \phi \|_\infty} |f_j''(\xi)|.
\]

Thus

\[
\sup_{z \in \mathbb{D}} v(z)(W_{\psi, \phi} f_j)''(z) \leqslant N_1 \max_{|\xi| \leqslant \| \phi \|_\infty} |f_j(\xi)| + N_2 \max_{|\xi| \leqslant \| \phi \|_\infty} |f_j'(\xi)|
\]

\[
+ N_3 \max_{|\xi| \leqslant \| \phi \|_\infty} |f_j''(\xi)| \to 0 \text{ as } j \to \infty
\]

and so \(\lim_{j \to \infty} \sup_{z \in \mathbb{D}} v(z)(W_{\psi, \phi} f_j)''(z) = 0 \). Moreover, \(|\psi(0)||f_j(\phi(0))| \to 0 \) and \(|\psi'(0)f_j(\phi(0)) + \psi(0)\phi'(0)f_j(\phi(0))| \to 0 \) as \(j \to \infty \). Thus

\[
\lim_{j \to \infty} \| W_{\psi, \phi} f_j \|_{\mathcal{Z}_v} = 0.
\]

Hence by Lemma 1.4, \(W_{\psi, \phi} : \mathcal{A}^p(\sigma) \to \mathcal{Z}_v \) is compact. \(\square \)

3. Essential norm of \(W_{\psi, \phi} : \mathcal{A}^p(\sigma) \to \mathcal{Z}_v \).

In this section, we give some upper and lower bounds for the essential norm of the operators.

Recall that if \(X \) and \(Y \) are two Banach spaces, then the essential norm \(\| T \|_{e, X \to Y} \) of a bounded linear operator \(T : X \to Y \) is defined as

\[
\| T \|_{e, X \to Y} = \inf\{ \| T - K \| : K \text{ is compact from } X \text{ to } Y \},
\]

where \(\| T \| \) denote the usual operator norm. Clearly \(T \) is compact if and only if \(\| T \|_{e, X \to Y} = 0 \).

Theorem 3.1. Let \(p > 1, \sigma \) an admissible weight, \(v \) a normal weight, \(\psi \in H(\mathbb{D}) \) and \(\phi \) be a holomorphic self map of \(\mathbb{D} \) such that \(\| \phi \|_\infty = 1 \). Let \(W_{\psi, \phi} : \mathcal{A}^p(\sigma) \to \mathcal{Z}_v \). Then...
\(\mathcal{A}^p(\sigma) \to \mathcal{L}_v \) is bounded. Then
\[
\| W_{\psi, \varphi} \|_{c, \mathcal{A}^p(\sigma) \to \mathcal{L}_v} \geq \limsup_{r \to 1} \frac{v(z) |\psi''(z)|}{r^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2/p}} + \limsup_{r \to 1} \frac{v(z)|2\psi'(z)\psi(z) + \psi(z)\varphi''(z)|}{r^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{1+2/p}} + \limsup_{r \to 1} \frac{v(z)|\psi(z)||\varphi'(z)|^2}{r^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2+2/p}}.
\]

Proof. Lower Bound. Let \(\{z_j\} \) be a sequence in \(\mathbb{D} \) such that \(|\varphi(z_j)| \to 1 \) as \(j \to \infty \). Consider the functions \(f_j, g_j \) and \(h_j \) defined, respectively as
\[
\begin{align*}
 f_j(z) &= f_{\gamma,0,\varphi(z_j)}(z) - 2f_{\gamma,1,\varphi(z_j)}(z) + f_{\gamma,2,\varphi(z_j)}(z), \\
 g_j(z) &= \left(\frac{8 + 4\gamma}{p} + 4\right)f_{\gamma,0,\varphi(z_j)}(z) - \left(\frac{16 + 8\gamma}{p} + 6\right)f_{\gamma,1,\varphi(z_j)}(z) + \left(\frac{8 + 4\gamma}{p} + 2\right)f_{\gamma,2,\varphi(z_j)}(z), \\
 h_j(z) &= 2\left(\frac{2 + \gamma}{p} + 1\right)\left(\frac{4 + 2\gamma}{p} + 1\right)f_{\gamma,0,\varphi(z_j)}(z) - 8\left(\frac{2 + \gamma}{p} + 1\right)f_{\gamma,1,\varphi(z_j)}(z) + 2\left(\frac{2 + \gamma}{p} + 1\right)f_{\gamma,2,\varphi(z_j)}(z),
\end{align*}
\]
where \(f_{\gamma,0,\varphi(z_j)} \), \(f_{\gamma,1,\varphi(z_j)} \), and \(f_{\gamma,2,\varphi(z_j)} \) are defined as in (1). As in Theorem 2.1, we have that \(\{f_j\}, \{g_j\} \) and \(\{h_j\} \) are bounded in \(\mathcal{A}^p(\sigma) \) and \(\sup_j \|K_j\| \leq M \), where \(K_j = f_j \) or \(g_j \) or \(h_j \). Moreover \(K_j \to 0 \) as \(j \to \infty \) uniformly on compact subsets of \(\mathbb{D} \). Let \(K : \mathcal{A}^p(\sigma) \to \mathcal{L}_v \) is compact. Then by Lemma 1.3, \(\|Kf_j\|_{\mathcal{L}_v} \to 0 \) as \(j \to \infty \). As in Theorem 2.1,
\[
f_j(\varphi(z_j)) = 0, f_j'(\varphi(z_j)) = 0 \text{ and } f_j''(\varphi(z_j)) = \frac{2(\varphi(z_j))^2}{\sigma^{1/p}(\varphi(z_j))(1 - |\varphi(z_j)|^2)^{2+2/p}}.
\]

Therefore,
\[
\begin{align*}
 \| W_{\psi, \varphi} \|_{c, \mathcal{A}^p(\sigma) \to \mathcal{L}_v} &\geq \limsup_{j \to \infty} \| W_{\psi, \varphi} f_j - Kf_j \|_{\mathcal{L}_v} \\
 &\geq \limsup_{j \to \infty} \| W_{\psi, \varphi} f_j \|_{\mathcal{L}_v} - \limsup_{j \to \infty} \|Kf_j\|_{\mathcal{L}_v} \\
 &\geq \limsup_{j \to \infty} \frac{v(z)|\psi(z)||\varphi'(z)|^2}{\sigma^{1/p}(\varphi(z_j))(1 - |\varphi(z_j)|^2)^{2+2/p}}.
\end{align*}
\]

(23)

Proceeding as in Theorem 2.1, we have that
\[
g_j(\varphi(z_j)) = 0, g_j''(\varphi(z_j)) = 0 \text{ and } g_j'(\varphi(z_j)) = -\frac{2\varphi(z_j)}{\sigma^{1/p}(\varphi(z_j))(1 - |\varphi(z_j)|^2)^{1+2/p}}.
\]
and so
\[\|W_{\psi,\varphi}\|_{e,\mathcal{A}^p(\sigma) \to \mathcal{X}_v} \geq C \limsup_{j \to \infty} \|W_{\psi,\varphi} g_j - Kg_j\|_{\mathcal{X}_v} \geq C \limsup_{j \to \infty} \|W_{\psi,\varphi} g_j\|_{\mathcal{X}_v} - \limsup_{j \to \infty} \|Kg_j\|_{\mathcal{X}_v} \geq C \limsup_{j \to \infty} \frac{v(z)|\psi'(z_j)\psi'(z_j) + \psi(z_j)\psi''(z_j)|}{\sigma^{1/p}(\varphi(z_j))(1 - |\varphi(z_j)|^2)^{1+2/p}}.\]

(24)

Once again as in Theorem 2.1, we have that
\[h_j'(\varphi(z_j)) = 0, \quad h_j''(\varphi(z_j)) = 0 \quad \text{and} \quad h_j(\varphi(z_j)) = \frac{2}{\sigma^{1/p}(\varphi(z_j))(1 - |\varphi(z_j)|^2)^{2/p}}.\]

Therefore,
\[\|W_{\psi,\varphi}\|_{e,\mathcal{A}^p(\sigma) \to \mathcal{X}_v} \geq C \limsup_{j \to \infty} \|W_{\psi,\varphi} h_j - Kh_j\|_{\mathcal{X}_v} \geq C \limsup_{j \to \infty} \|W_{\psi,\varphi} h_j\|_{\mathcal{X}_v} - \limsup_{j \to \infty} \|Kh_j\|_{\mathcal{X}_v} \geq C \limsup_{j \to \infty} \frac{v(z)|\psi(z_j)\varphi'(z_j)|^2}{\sigma^{1/p}(\varphi(z_j))(1 - |\varphi(z_j)|^2)^{2/p}}.\]

(25)

Combining (23), (24) and (25), we get
\[\|W_{\psi,\varphi}\|_{e,\mathcal{A}^p(\sigma) \to \mathcal{X}_v} \geq \limsup_{|\varphi(z)| \to 1} \frac{v(z)|\psi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2/p}} + \limsup_{|\varphi(z)| \to 1} \frac{v(z)|2\psi'(z)\varphi'(z) + \psi(z)\psi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{1+2/p}} + \limsup_{|\varphi(z)| \to 1} \frac{v(z)|\psi(z)|\varphi'(z)|^2}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2+2/p}}.\]

(26)

Upper Bound. Let \(\varphi_k(z) = \frac{k}{k+1}z\). Then \(\|\varphi_k\|_\infty < 1\). Let
\[L_k f(z) = C_{\varphi_k} f(z) = f\left(\frac{k}{k+1}z\right).\]

Then by Corollary 4 in [13], we have that \(L_k : \mathcal{A}^p(\sigma) \to \mathcal{A}^p(\sigma)\) is compact. Since \(W_{\psi,\varphi} : \mathcal{A}^p(\sigma) \to \mathcal{X}_v\) is bounded, so \(W_{\psi,\varphi} L_k : \mathcal{A}^p(\sigma) \to \mathcal{X}_v\) is compact. Thus
\[\|W_{\psi,\varphi}\| \leq \|W_{\psi,\varphi} - W_{\psi,\varphi} L_k\| \leq \sup_{\|f\|_{\mathcal{A}^p(\sigma)} \leq 1} \|W_{\psi,\varphi} f - W_{\psi,\varphi} f\|_{\mathcal{X}_v} \leq \sup_{\|f\|_{\mathcal{A}^p(\sigma)} \leq 1} \left[|W_{\psi,\varphi} f(0)| + |W_{\psi,\varphi} f(0)|' + \sup_{z \in \mathbb{D}} v(z)|W_{\psi,\varphi} f''(z)|\right].\]

(27)
where I is the identity operator on $\mathbb{A}^p(\sigma)$. For any $r \in (0, 1)$, we can write
\[
\sup_{z \in D} |W_{\psi, \varphi}(I - L_k)f''(z)| = \sup_{|\varphi(z)| \leq r} |W_{\psi, \varphi}(I - L_k)f''(z)| \\
+ \sup_{|\varphi(z)| > r} |W_{\psi, \varphi}(I - L_k)f''(z)|. \tag{28}
\]

Now
\[
|W_{\psi, \varphi}(I - L_k)f''(z)| = \left| \psi''(z) \left\{ f(\varphi(z)) - f\left(\frac{k}{k+1} \varphi(z) \right) \right\} + (2 \psi'(z) \varphi'(z) + \psi(z) \varphi''(z)) \left\{ f'(\varphi(z)) - \frac{k}{k+1} f'\left(\frac{k}{k+1} \varphi(z) \right) \right\} + \psi(z) \varphi'(z)^2 \left\{ f''(\varphi(z)) - \frac{k^2}{(k+1)^2} f''\left(\frac{k}{k+1} \varphi(z) \right) \right\} \right|. \tag{29}
\]

Let $|\varphi(z)| \leq r$ and $w = \varphi(z)$. Denote the straight line segment from $kw/(k+1)$ to w by $[kw/(k+1), w]$. Then $[kw/(k+1), w] \subset D(0, r)$, where $D(0, r) = \{ z : |z| \leq r \}$. Thus for $i \in \{ 0, 1, 2 \}$, by Lemma 1.1 and the fact that σ is non-increasing, we have that
\[
\left| f^{(i)}(w) - f^{(i)}\left(\frac{k}{k+1} w \right) \right| = \left| \int_{[kw/(k+1), w]} f^{(i+1)}(\zeta) d\zeta \right| \\
\leq \frac{|w|}{k+1} \sup_{\zeta \in D(0, r)} |f^{(i+1)}(\zeta)| \\
\leq \frac{|w|}{k+1} \sup_{\zeta \in D(0, r)} \frac{\| f \|_{\mathbb{A}^p(\sigma)} \sigma^{1/p(\zeta)} (1 - |\zeta|^2)^{i+1+1/2}}{\sigma^{1/p(\zeta)} (1 - r^2)^{i+1+1/2/p}} \tag{30}
\]

Using Lemma 1.1, (29) and (30), we have that
\[
\sup_{\| f \|_{\mathbb{A}^p(\sigma)} \leq 1} \sup_{|\varphi(z)| \leq r} |W_{\psi, \varphi}(I - L_k)f''(z)| \rightarrow 0 \text{ as } k \rightarrow \infty. \tag{31}
\]

Using (30) with $i = 0$, we have that
\[
|W_{\psi, \varphi}(I - L_k)f(0)| = \left| \psi(0)f(\varphi(0)) - \psi(0)f\left(\frac{k}{k+1} \varphi(0) \right) \right| \\
\leq \frac{|\psi(0)\varphi(0)|}{k+1} \frac{\| f \|_{\mathbb{A}^p(\sigma)} \sigma^{1/p(r)} (1 - r^2)^{i+1+1/2}}{\sigma^{1/p(r)} (1 - r^2)^{i+1+1/2/p}}. \tag{32}
\]

On the other hand, by Lemma 1.1 and (30) with $i = 0$ and $i = 1$, we have that
\[
\left| (W_{\psi, \varphi}(I - L_k)f)'(0) \right| \\
\leq |\psi'(0)| \left| f(\varphi(0)) - f\left(\frac{k}{k+1} \varphi(0) \right) \right| + |\psi(0)\varphi'(0)| \left| f'(\varphi(0)) - \frac{k}{k+1} f'\left(\frac{k}{k+1} \varphi(0) \right) \right|.\]
\[\leq |\psi'(0)| f(\phi(0)) - f\left(\frac{k}{k+1} \phi(0)\right) + \frac{|\psi(0)\phi'(0)|}{k+1} |f'(\phi(0))| \\
+ |\psi(0)\phi'(0)| \frac{k}{k+1} \left| f'(\phi(0)) - f'\left(\frac{k}{k+1} \phi(0)\right) \right| \]

\[\lambda \left(\frac{|\psi'(0)|}{k+1} \right) \frac{1}{\sigma^{1/p}(r) \left(1 - r^2\right)^{1+2/p}} + \frac{|\psi(0)\phi'(0)|}{k+1} \frac{1}{\sigma^{1/p}(r) \left(1 - r^2\right)^{1+2/p}} \|f\|_{\mathcal{A}^p(\sigma)}. \]

(33)

Combining (32) and (33), we have that

\[\sup_{\|f\|_{\mathcal{A}^p(\sigma)} \leq 1} \left[|W_{\psi, \phi}(I - L_k)f(0)| + |(W_{\psi, \phi}(I - L_k)f)'(0)| \right] \to 0 \]

(34)
as \(k \to \infty \). The second term in the right hand side of (28) is dominated by

\[\sup_{|\phi(z)| > r} \nu(z) |\psi''(z)| \left\{ |f(\phi(z))| + \left| f\left(\frac{k}{k+1} \phi(z)\right)\right| \right\} \]

\[+ \sup_{|\phi(z)| > r} \nu(z) \left| 2\psi'(z)\phi'(z) + \psi(z)\phi''(z) \right| \left\{ |f'(\phi(z))| + \frac{k}{k+1} \left| f'\left(\frac{k}{k+1} \phi(z)\right)\right| \right\} \]

\[+ \sup_{|\phi(z)| > r} \nu(z) |\psi(z)(\phi'(z))^2| \left\{ |f''(\phi(z))| + \frac{k^2}{(k+1)^2} \left| f''\left(\frac{k}{k+1} \phi(z)\right)\right| \right\}, \]

which is further dominated by a constant multiple of

\[\sup_{|\phi(z)| > r} \nu(z) |\psi''(z)| \left\{ \frac{\|f\|_{\mathcal{A}^p(\sigma)}}{\sigma^{1/p}(\phi(z)) \left(1 - |\phi(z)|^2\right)^{2/p}} + \frac{\|f\|_{\mathcal{A}^p(\sigma)}}{\sigma^{1/p}(\phi(z)) \left(1 - \frac{k^2}{(k+1)^2} |\phi(z)|^2\right)^{2/p}} \right\} \]

\[+ \sup_{|\phi(z)| > r} \nu(z) \left| 2\psi'(z)\phi'(z) + \psi(z)\phi''(z) \right| \left\{ \frac{\|f\|_{\mathcal{A}^p(\sigma)}}{\sigma^{1/p}(\phi(z)) \left(1 - |\phi(z)|^2\right)^{1+2/p}} \right\} \]

\[+ \frac{k}{k+1} \frac{\|f\|_{\mathcal{A}^p(\sigma)}}{\sigma^{1/p}(\phi(z)) \left(1 - \frac{k^2}{(k+1)^2} |\phi(z)|^2\right)^{1+2/p}} \}

\[+ \sup_{|\phi(z)| > r} \nu(z) |\psi(z)(\phi'(z))^2| \left\{ \frac{\|f\|_{\mathcal{A}^p(\sigma)}}{\sigma^{1/p}(\phi(z)) \left(1 - |\phi(z)|^2\right)^{2+2/p}} \right\} \]

\[+ \frac{k^2}{(k+1)^2} \frac{\|f\|_{\mathcal{A}^p(\sigma)}}{\sigma^{1/p}(\phi(z)) \left(1 - \frac{k^2}{(k+1)^2} |\phi(z)|^2\right)^{2+2/p}} \}, \]

(35)

Letting \(k \to \infty \) in (35), we get

\[\limsup_{k \to \infty} \sup_{\|f\|_{\mathcal{A}^p(\sigma)} \leq 1} \sup_{|\phi(z)| > r} \nu(z) |W_{\psi, \phi}(I - L_k)f''(z)| \]

\[\lesssim \sup_{|\phi(z)| > r} \frac{\nu(z) |\psi''(z)|}{\sigma^{1/p}(\phi(z)) \left(1 - |\phi(z)|^2\right)^{2/p}} \]
Finally, letting $r \to 1$, then we get

$$\|W_{\psi, \varphi}\|_{e, \mathcal{A}^P(\sigma) \to \mathcal{Z}_V} \lesssim \limsup_{|\varphi(z)| \to 1} \frac{v(z)|\psi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2/p}} + \limsup_{|\varphi(z)| \to 1} \frac{v(z)|2\psi'(z)\varphi'(z) + \psi(z)\varphi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{1+2/p}} + \limsup_{|\varphi(z)| \to 1} \frac{v(z)|\varphi'(z)|^2}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2+2/p}}. \quad (37)$$

Combining (26) and (37), we get the desired result. \[\square\]

Corollary 3.2. Let $p > 1$, σ an admissible weight, v a normal weight, $\psi \in H(D)$ and φ be a holomorphic self map of D, such that $\|\varphi\|_\infty = 1$. Let $W_{\psi, \varphi}: \mathcal{A}^P(\sigma) \to \mathcal{Z}_V$ is bounded. Then $W_{\psi, \varphi}: \mathcal{A}^P(\sigma) \to \mathcal{Z}_V$ is compact if and only if the following conditions are satisfied

1. \[\limsup_{|\varphi(z)| \to 1} \frac{v(z)|\psi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2/p}} = 0.\]

2. \[\limsup_{|\varphi(z)| \to 1} \frac{v(z)|2\psi'(z)\varphi'(z) + \psi(z)\varphi''(z)|}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{1+2/p}} = 0.\]

3. \[\limsup_{|\varphi(z)| \to 1} \frac{v(z)|\varphi'(z)|^2}{\sigma^{1/p}(\varphi(z))(1 - |\varphi(z)|^2)^{2+2/p}} = 0.\]

Acknowledgements. The authors would like to thank anonymous referees for rectifying the proof of Theorem 3.1 and for providing valuable suggestions for the improvement of this paper. The second author is thankful to UGC(India) for Dr. D. S. Kothari Post Doctoral Fellowship (No. F. 4-2/2006(BSR)/MA/13-14/0031).
REFERENCES

(Received February 25, 2016)

Ajay K. Sharma
Department of Mathematics
Shri Mata Vaishno Devi University
Kakryal, Katra-182320, J&K, India
e-mail: aksju_76@yahoo.com

Ambika Bhat
Department of Mathematics
Maharshi Dayanand University
Rohtak-124001, Haryana
e-mail: ambikabhat.20@gmail.com

Renu Chugh
Department of Mathematics
Maharshi Dayanand University
Rohtak-124001, Haryana
e-mail: chughrenu@yahoo.com

Elina Subhadarsini
Department of Mathematics
Shri Mata Vaishno Devi University
Kakryal, Katra-182320, J&K, India
e-mail: elinamaths@gmail.com