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EXTENSION OF DETERMINANTAL INEQUALITIES

OF POSITIVE DEFINITE MATRICES

XIAOHUI FU, YANG LIU AND SHUNQIN LIU

(Communicated by J. Pečarić)

Abstract. In this short note, we extend some known determinantal inequalities of positive defi-
nite matrices to a larger class of matrices, namely, matrices whose numerical range is contained
in a sector.

1. Introduction

Let Mn(C) denote the set of n× n complex matrices. For A ∈ Mn(C) , the con-
jugate transpose of A is denoted by A∗ , and recall the Cartesian decomposition ([8, p.
6]) A = RA+ iIA , where RA = 1

2 (A+A∗) and IA = 1
2i (A−A∗). For two Hermitian

matrices A,B∈Mn(C) , A≺B (A� B) means that B−A is positive definite (semidefi-
nite). In particular, a positive definite (positive semidefinite) matrix A can be expressed
as A � 0 (A � 0) . We also consider A ∈ Mn(C) to be partitioned as

A =
[

A11 A12

A21 A22

]
, (1.1)

where diagonal blocks are square matrices. diag(D1, . . . ,Dk) denotes the block diag-
onal matrix whose diagonal blocks are D1, . . . ,Dk . In (1.1), if A11 is nonsingular, the
Schur complement of A11 in A is defined by A/A11 = A22−A21A

−1
11 A12 .

The numerical range of A ∈ Mn(C) is defined by

W (A) = {x∗Ax|x ∈ C
n,x∗x = 1}.

For α ∈ [0, π
2 ), let Sα be the sector in the complex plane given by

Sα = {z ∈ C|Rz > 0, |Iz| � (Rz) tanα} = {reiθ |r > 0, |θ | � α}.

Clearly, if A is positive definite, W (A) ⊂ S0 .
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For fundamentals of numerical range, the readers can refer to [9, 10]. As 0 /∈ Sα ,
if W (A) ⊂ Sα , A is necessarily nonsingular.

Based on a recent result of Lin [3], Choi [1] proved the following determinantal
inequality for positive definite matrices.

THEOREM 1.1. [1] Let Ai, i = 1, . . . ,m, be positive definite matrices whose di-

agonal blocks are n j -square matrices A( j)
i for j = 1, . . . ,k. Then

det(
m

∑
i=1

A−1
i ) � det(

m

∑
i=1

(A(1)
i )−1) · · ·det(

m

∑
i=1

(A(k)
i )−1). (1.2)

In [7], Haynsworth gave the result for the Schur complement of 2× 2 block ma-
trices.

THEOREM 1.2. [7] Suppose A,B ∈ Mn(C) are Hermitian matrices, partitioned
as in (1.1), A = (Ai j) , B = (Bi j) , i, j = 1,2, where A11 and B11 are square of order
m. If A � 0 , B � 0 , A11 � 0 , B11 � 0, then

det((A+B)/(A11 +B11)) � detA/detA11 +detB/detB11. (1.3)

This result (1.3) has been extended in [4]. In this paper, we extend the results (1.2)
and (1.3) to the case of matrices whose numerical ranges are contained in a sector.

2. Main results

The following lemmas are useful for proving the above theorems.

LEMMA 2.1. [2, p. 68] Let A ∈ Mn(C) . If RA is positive definite, then

det(RA) � |det(A)|. (2.1)

LEMMA 2.2. [5, 6] Let A∈Mn(C) with W (A)⊂ Sα . Then A can be decomposed
as A = XZX∗ for some invertible matrix X ∈ Mn(C) and Z = diag(eiθ1 , . . . ,eiθn) with
|θ j| � α for all j .

LEMMA 2.3. [4, Lemma 2.6] Let A ∈ Mn(C) with W (A) ⊂ Sα . Then

secn(α)det(RA) � |det(A)|. (2.2)

Proof. By Lemma 2.2, we have A = XZX∗ for some invertible matrix X ∈Mn(C)
and Z = diag(eiθ1 , . . . ,eiθn) with |θ j| � α for all j . Thus, |det(A)| = |det(XZX∗)|.
After dividing by |detX |2 , the inequality holds: |detA|/|detX |2 = |detZ| = 1. Fur-
thermore, secn α det(RZ) � 1. Therefore, secn α det(RZ) � |detA|/|detX |2 . �
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LEMMA 2.4. [4, Lemma 2.4] Let A ∈ Mn(C) with RA positive definite. Then

(RA)−1 � R(A−1). (2.3)

Now we present some generalizations of Theorem 1.1 and Theorem 1.2. First
of all, Theorem 1.1 is extended to the class of matrices whose numerical ranges are
contained in a sector as follows:

THEOREM 2.5. Let Ai, i = 1, . . . ,m, be a sequence of n× n matrices whose di-

agonal blocks are n j -square matrices A( j)
i for j = 1, . . . ,k. Assume that W (Ai) ⊂ Sα ,

i = 1, . . . ,m, α ∈ [0, π
2 ) . Then

|det(
m

∑
i=1

A−1
i )| � cos3n(α)|det(

m

∑
i=1

(A(1)
i )−1)| · · · |det(

m

∑
i=1

(A(k)
i )−1)|. (2.4)

Proof. Compute

|det(
m

∑
i=1

A−1
i )| � det(R(

m

∑
i=1

A−1
i )) = det(R(A−1

1 + · · ·+A−1
m )) (by (2.1))

= detR((X−1
1 )∗Z−1

1 X−1
1 + · · ·+(X−1

m )∗Z−1
m X−1

m ) (by Lemma 2.2)

= det((X−1
1 )∗R(Z−1

1 )X−1
1 + · · ·+(X−1

m )∗R(Z−1
m )X−1

m )

� det(cos2(α)(X−1
1 )∗(RZ1)−1X−1

1 + · · ·+ cos2(α)(X−1
m )∗(RZm)−1X−1

m )

(by R(Z−1) � cos2(α)(RZ)−1)

= cos2n(α)det((X−1
1 )∗(RZ1)−1X−1

1 + · · ·+(X−1
m )∗(RZm)−1X−1

m )

= cos2n(α)det((X1RZ1X
∗
1 )−1 + · · ·+(XmRZmX∗

m)−1)

� cos2n(α)det(
m

∑
i=1

(RA(1)
i )−1) · · ·det(

m

∑
i=1

(RA(k)
i )−1) (by (1.2))

� cos2n(α)det(
m

∑
i=1

R((A(1)
i )−1)) · · ·det(

m

∑
i=1

R((A(k)
i )−1)) (by (2.3))

� cos3n(α)|det(
m

∑
i=1

(A(1)
i )−1)| · · · |det(

m

∑
i=1

(A(k)
i )−1)|, (by (2.2))

where Xi (i = 1, . . . ,m) and Zi (i = 1, . . . ,m) correspond to the invertible matrices and
diagonal matrices in Lemma 2.2, respectively. �

REMARK 2. When α = 0, our Theorem 2.5 reduces to Theorem 1.1.

Next, Theorem 1.2 is extended to the class of matrices whose numerical ranges are
contained in a sector as follows.
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THEOREM 2.6. Let A =
(

A11 A12

A21 A22

)
,B =

(
B11 B12

B21 B22

)
∈ Mn(C) with A11,B11 ∈

Mm(C) and W (A),W (B) ⊂ Sα , α ∈ [0, π
2 ), then

|det(A+B)|
|det(A11 +B11)| � cos3(n−m) α

( |detA|
|detA11| +

|detB|
|detB11|

)
. (2.5)

Proof. Compute

|det(A+B)|
|det(A11 +B11)| � detR(A+B)

|det(A11 +B11)| (by (2.1))

� cos2(n−m) α det(R(A/A11)+R(B/B11)) (by [4, Theorem 3.1])

� cos2(n−m) α(det(R(A/A11))+det(R(B/B11)))

� cos3(n−m) α (|det(A/A11)|+ |det(B/B11)|) . (by (2.2)) �

REMARK 3. When α = 0, our Theorem 2.6 reduces to Haynsworth’s result (The-

orem 1.2). In Theorem 2.6, if A =
(

A11 A12

A21 A22

)
∈ Mk+1(C) with A11 ∈ Mk(C) , then

sec3 α
∣∣∣∣det(Ak+1 +Bk+1)

det(Ak +Bk)

∣∣∣∣ �
∣∣∣∣detAk+1

detAk

∣∣∣∣+
∣∣∣∣detBk+1

detBk

∣∣∣∣ ,
which is the result in [4, (4.1)]. Thus, our result is a generalization of (4.1) in [4].
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