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Abstract. The Bernstein inequality is an exponential probability inequality for a sequence of
bounded independent random variables. In this paper, we prove a Bernstein type inequality for
unbounded negatively orthant dependent (NOD) random variables. As some applications, we
obtain the convergence rates of the law of the iterated logarithm and law of the single logarithm
for identically distributed NOD random variables. We also obtain a strong law for weighted sums
of NOD random variables.

1. Introduction

Let {Xn,n � 1} be a sequence of random variables defined on a probability space
(Ω,F ,P) and set Sn = X1 + · · ·+Xn,n � 1. The exponential inequality for the partial
sums ∑n

i=1(Xi − EXi) is very useful in many probabilistic derivations. In particular,
it provides a measure of convergence rate for the strong law of large numbers. There
exist several versions available in the literature for independent random variables with
assumptions of uniform boundedness or some, quite relaxed, control on their moments.

The following exponential inequality is well known as the Bernstein inequality. Its
proof can be found in the literature, see for example Proposition 2.1 in Roussas [15].

THEOREM 1.1. Let X1, · · · ,Xn be independent random variables such that
P(|Xi| � M) = 1 for 1 � i � n, where M is a positive constant. Set Sn = ∑n

i=1 Xi

and v2 = ∑n
i=1 EX2

i . Then, for any ε > 0,

P(Sn−ESn > ε) � exp

{
− ε2

2
(
v2 + Mε

3

)
}

, (1.1)

P(|Sn−ESn| > ε) � 2exp

{
− ε2

2
(
v2 + Mε

3

)
}

. (1.2)

The inequality (1.1) of Theorem 1.1 follows from the following three inequalities:

P(Sn−ESn > ε) � exp(−tε)E exp(t(Sn−ESn)) for any t > 0, (1.3)
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E exp(t(Sn−ESn)) �
n

∏
i=1

E exp(t(Xi −EXi)) for any t > 0, (1.4)

inf
t>0

exp(−tε)
n

∏
i=1

E exp(t(Xi −EXi)) < exp

{
− ε2

2
(
v2 + Mε

3

)
}

. (1.5)

The inequality (1.3) holds by the Markov inequality, (1.4) holds by independence con-
dition, and (1.5) can be proved by expanding exp(tXi) according to Taylor’s formula.
The independence condition is not used in (1.3) and (1.5). Since the inequality (1.1)
also holds for {−Xi,1 � i � n}, (1.2) holds.

In recent years, exponential inequalities, including the Bernstein inequality, for
dependent random variables were obtained by many authors.

The concept of negatively associated random variables was introduced by Alam
and Saxena [1] and carefully studied by Joag-Dev and Proschan [9]. A finite family of
random variables {Xi,1 � i � n} is said to be negatively associated if for every pair of
disjoint subsets A and B of {1,2, · · · ,n},

Cov( f1(Xi, i ∈ A), f2(Xj, j ∈ B)) � 0

whenever f1 and f2 are coordinatewise increasing (or coordinatewise decreasing) and
the covariance exists. An infinite family of random variables is negatively associated if
every finite subfamily is negatively associated.

Yang [25] obtained a Bernstein type inequality for bounded negatively associated
random variables. Christofides and Hadjikyriakou [3], Jabbari et al. [7], and Roussas
[15] obtained exponential inequalities for bounded negatively associated random vari-
ables. Kim and Kim [10], Nooghabi and Azarnoosh [14], Shao [16], Sung [18], Xing
[22], Xing and Yang [23], and Xing et al. [24] obtained exponential inequalities for
unbounded negatively associated random variables.

The concept of negatively orthant dependent (NOD) random variables was intro-
duced by Lehmann [12] as follows. A finite family of random variables {X1, . . . ,Xn} is
said to be NOD if the following two inequalities hold:

P(X1 � x1, · · · ,Xn � xn) �
n

∏
i=1

P(Xi � xi)

and

P(X1 > x1, · · · ,Xn > xn) �
n

∏
i=1

P(Xi > xi)

for all real numbers x1, · · · ,xn . An infinite family of random variables is NOD if every
finite subfamily is NOD.

Note that negative association implies NOD, but the converse does not hold. The
exponential inequalities for NOD are less studied than those for negative association.
Sung [19] and Wang et al. [21] proved exponential inequalities for identically dis-
tributed NOD random variables with the finite Laplace transforms.
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In this paper, we prove a Bernstein type inequality for unbounded NOD random
variables. As some applications, we obtain the convergence rates of the law of the iter-
ated logarithm and law of the single logarithm for identically distributed NOD random
variables. We also obtain a strong law for weighted sums of NOD random variables.

Throughout this paper, the symbol C denotes a positive constant which is not
necessarily the same one in each appearance and I(A) denotes the indicator function of
the event A. It proves convenient to define logx = max{1, lnx}, where lnx denotes the
natural logarithm.

2. A Bernstein type inequality

We will prove a Bernstein type inequality for unbounded NOD random variables.
To do this, the following lemmas are needed. The following lemma shows that Theorem
1.1 also holds for NOD random variables.

LEMMA 2.1. Let X1, · · · ,Xn be a sequence of NOD random variables such that
P(|Xi| � M) = 1 for 1 � i � n, where M is a positive constant. Set Sn = ∑n

i=1 Xi and
v2 = ∑n

i=1 EX2
i . Then, for any ε > 0, (1.1) and (1.2) hold.

Proof. Since (1.4) is well known (see, for example, Taylor et al. [20]), (1.1) also
holds for NOD random variables. If {Xi,1 � i � n} is a sequence of NOD random
variables, then {−Xi,1 � i � n} is still a sequence of NOD and so (1.1) also holds for
{−Xi,1 � i � n}. Thus, (1.2) also holds for NOD. �

LEMMA 2.2. Let X1, · · · ,Xn be a sequence of NOD random variables such that
P(|Xi| � M) = 1 for 1 � i � n, where M is a positive constant. Set Sn = ∑n

i=1 Xi and
v2 = ∑n

i=1 EX2
i . Then, for any ε > 0 and γ > 0,

P(Sn−ESn > ε) � exp

{
− ε2

(2+ γ)v2

}
+ exp

{
− ε

DγM

}
,

P(|Sn−ESn| > ε) � 2exp

{
− ε2

(2+ γ)v2

}
+2exp

{
− ε

DγM

}
,

where Dγ = 2
3 (1+2/γ).

Proof. Observe that for any ε > 0 and γ > 0,

2

(
v2 +

Mε
3

)
�
{

(2+ γ)v2, if 3γv2 � 2Mε,(
1+ 2

γ

)
2Mε

3 , if 3γv2 < 2Mε.

Hence the result follows from Lemma 2.1. �

The following theorem is a Bernstein type inequality for unbounded NOD random
variables.
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THEOREM 2.1. Let X1, · · · ,Xn be NOD random variables such that for some s �
2, E|Xi|s < ∞,1 � i � n. Set Sn = ∑n

i=1 Xi and v2 = ∑n
i=1 EX2

i . Then, for any ε > 0
and δ > 0,

P(|Sn−ESn| > ε) � 2exp

{
− ε2

(2+ δ )v2

}
+C

n

∑
i=1

E|Xi|s/εs,

where C is a positive constant depending only on δ and s.

Proof. The proof is similar to that of Theorem 3.1 in Einmahl and Li [5]. For any
y > 0, set

β (y) =
n

∑
i=1

E|Xi|s/ys.

Assume first that β (y) < 1. For fixed γ > 0 and all 1 � i � n, we let

Yi = XiI(|Xi| � ργy)+ ργyI(Xi > ργy)−ργyI(Xi < −ργy),
Zi(1) = (Xi−ργy)I(ργy < Xi � γy), Zi(2) = (Xi + ργy)I(−γy � Xi < −ργy),
Ui = (Xi −ργy)I(Xi > γy)+ (Xi + ργy)I(Xi < −γy),

where ρ = min{1,1/(γDγ log(1/β (y)))} and Dγ = 2
3 (1+2/γ) . Then {Yi,1 � i � n}

is still a sequence of NOD random variables, max1�i�n |Yi|� ργy, and ∑n
i=1 EY 2

i � v2.
By Lemma 2.2, noting ρ � 1/(γDγ log(1/β (y))), we have

P

(∣∣∣∣∣
n

∑
i=1

(Yi −EYi)

∣∣∣∣∣> y

)
� 2exp

(
− y2

(2+ γ)v2

)
+2exp

(
− y

Dγργy

)

� 2exp

(
− y2

(2+ γ)v2

)
+2β (y). (2.1)

Since 0 � Zi(1) � γy, |∑n
i=1 Zi(1)| = ∑n

i=1 Zi(1) > 2γy implies that there exist at
least two indices i such that Zi(1) �= 0. In this case, ρ < 1 (otherwise, Zi(1) = 0 for
1 � i � n), namely, ρ = 1/(γDγ log(1/β (y))) and γDγ log(1/β (y)) > 1. It follows by
the definition of NOD that

P

(∣∣∣∣∣
n

∑
i=1

Zi(1)

∣∣∣∣∣> 2γy

)
� ∑

1�i1<i2�n

P(Zi1(1) �= 0,Zi2(1) �= 0)

� ∑
1�i1<i2�n

P(Xi1 > ργy,Xi2 > ργy)

� ∑
1�i1<i2�n

P(Xi1 > ργy)P(Xi2 > ργy)

�
(

n

∑
i=1

P(|Xi| > ργy

)2

�
(

∑n
i=1 E|Xi|s
(ργy)s

)2

= D2s
γ β 2(y)(log(1/β (y)))2s � KsD

2s
γ β (y), (2.2)
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where Ks is a positive constant such that (logx)2s � Ksx for all x � 1.
Similarly,

P

(∣∣∣∣∣
n

∑
i=1

Zi(2)

∣∣∣∣∣> 2γy

)
� KsD

2s
γ β (y). (2.3)

By the Markov inequality,

P

(∣∣∣∣∣
n

∑
i=1

Ui

∣∣∣∣∣> 0

)
�

n

∑
i=1

P(|Xi| > γy)

� (γy)−s
n

∑
i=1

E|Xi|s = γ−sβ (y). (2.4)

Combining (2.1)–(2.4), we see that if β (y) < 1, then

P

(∣∣∣∣∣
n

∑
i=1

(Xi−EYi)

∣∣∣∣∣> y+4γy

)

� P

(∣∣∣∣∣
n

∑
i=1

(Yi −EYi)

∣∣∣∣∣> y

)
+P

(∣∣∣∣∣
n

∑
i=1

Zi(1)

∣∣∣∣∣> 2γy

)

+P

(∣∣∣∣∣
n

∑
i=1

Zi(2)

∣∣∣∣∣> 2γy

)
+P

(∣∣∣∣∣
n

∑
i=1

Ui

∣∣∣∣∣> 0

)

� 2exp

(
− y2

(2+ γ)v2

)
+Cγ,sβ (y), (2.5)

where Cγ,s = 2+2KsD2s
γ + γ−s.

If β (y)/(γsρ s−1) � 1, then∣∣∣∣∣
n

∑
i=1

(Xi −EXi)

∣∣∣∣∣�
∣∣∣∣∣

n

∑
i=1

(Xi −EYi)

∣∣∣∣∣+
∣∣∣∣∣

n

∑
i=1

(EZi(1)+EZi(2)+EUi)

∣∣∣∣∣
�
∣∣∣∣∣

n

∑
i=1

(Xi −EYi)

∣∣∣∣∣+
n

∑
i=1

E|Xi|I(|Xi| > ργy)

�
∣∣∣∣∣

n

∑
i=1

(Xi −EYi)

∣∣∣∣∣+ 1
(ργy)s−1

n

∑
i=1

E|Xi|s

�
∣∣∣∣∣

n

∑
i=1

(Xi −EYi)

∣∣∣∣∣+ γy.

If ρ < 1, then

β (y)
γsρ s−1 � β (y)

γsρ s = Ds
γβ (y)(log(1/β (y)))s � Ds

γβ (y)(Ks/β (y))1/2 �
(
Cγ,sβ (y)

)1/2
.
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If ρ = 1, then
β (y)

γsρ s−1 =
β (y)

γs � Cγ,sβ (y).

Thus we have that if Cγ,sβ (y) � 1, then β (y)/(γsρ s−1) � 1 and hence

∣∣∣∣∣
n

∑
i=1

(Xi −EXi)

∣∣∣∣∣�
∣∣∣∣∣

n

∑
i=1

(Xi −EYi)

∣∣∣∣∣+ γy,

which implies by (2.5), noting β (y) < 1 (since Cγ,s > 2), that

P

(∣∣∣∣∣
n

∑
i=1

(Xi −EXi)

∣∣∣∣∣> y+5γy

)
� 2exp

(
− y2

(2+ γ)v2

)
+Cγ,sβ (y). (2.6)

The above inequality is trivial if Cγ,sβ (y) > 1 and therefore (2.6) holds for all y > 0
and γ > 0.

Finally, for any ε > 0 and δ > 0, we can take y > 0 and γ > 0 such that y(1+
5γ) = ε and (2+ γ)(1+5γ)2 = 2+ δ . Note that γ depends only on δ . Then

P

(∣∣∣∣∣
n

∑
i=1

(Xi −EXi)

∣∣∣∣∣> ε

)
� 2exp

(
− ε2

(2+ δ )v2

)
+Cγ,s(1+5γ)s

n

∑
i=1

E|Xi|s/εs.

Setting C = Cγ,s(1+5γ)s, we obtain the result. �

3. Convergence rates of LIL and LSL

As some applications of Theorem 2.1, we can obtain the convergence rates of the
law of the iterated logarithm (LIL) and law of the single logarithm (LSL) for identically
distributed NOD random variables.

THEOREM 3.1. Let {X ,Xn,n � 1} be a sequence of identically distributed NOD
random variables. Set Sn = ∑n

i=1 Xi for n � 1. If EX = 0 and EX2 < ∞, then for any
ε >

√
2EX2,

∞

∑
n=1

n−1P
(
|Sn| > ε

√
n loglogn

)
< ∞. (3.1)

Proof. For 1 � i � n , n � 1, let

Xni = −√
nI(Xi < −√

n)+XiI(|Xi| �
√

n)+
√

nI(Xi >
√

n).

Then {Xni,1 � i � n} is a sequence of NOD random variables. Set Snk = ∑k
i=1 Xni for

1 � k � n and n � 1. For ε >
√

2EX2, let ε = ε1 +ε2, where ε1 >
√

2EX2 and ε2 > 0.
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In view of EX = 0 and EX2 < ∞, we obtain

|ESnn|√
n loglogn

=
|∑n

i=1 E(Xi −Xni)|√
n loglogn

� ∑n
i=1 E|Xi|I(|Xi| > √

n)√
n loglogn

� EX2I(|X | > √
n)√

loglogn
→ 0.

It follows that

∞

∑
n=1

n−1P
(
|Sn| > ε

√
n loglogn

)

�
∞

∑
n=1

n−1P
(
|Snn| > ε

√
n loglogn

)
+

∞

∑
n=1

n−1P

(
max
1�i�n

|Xi| >
√

n

)

� C
∞

∑
n=1

n−1P
(
|Snn−ESnn| > ε1

√
n loglogn

)
+

∞

∑
n=1

P
(|X | > √

n
)

:= CI1 + I2.

For I1, we will use Theorem 2.1. Since ε1 >
√

2EX2, we can take δ > 0 sufficiently
small such that t = ε2

1/((2+ δ )EX2) > 1. By Theorem 2.1,

I1 � 2
∞

∑
n=1

n−1 exp

(
− ε2

1 n loglogn

(2+ δ )∑n
i=1 EX2

ni

)
+C

∞

∑
n=1

n−1
n

∑
i=1

E|Xni|6
(n loglogn)3

� 2
∞

∑
n=1

n−1 exp

(
− ε2

1 log logn
(2+ δ )EX2

)
+C

∞

∑
n=1

E|X |6I(|X | � √
n)

n3 +CI2

� 2
∞

∑
n=1

(n logt n)−1 +C
∞

∑
n=1

E|X |6I(|X | � √
n)

n3 +CI2.

The last inequality holds by the fact that exp(−t loglogn) � (logn)−t , since logx =
max{1, lnx}. The convergence of the last series is equivalent to EX2 < ∞. It is also
true that I2 < ∞ is equivalent to EX2 < ∞. Hence the result is proved. �

REMARK 3.1. For a sequence of i.i.d. random variables {X ,Xn,n � 1} with
EX = 0 and EX2 < ∞, Davis [4] proved that (3.1) holds for all ε >

√
2EX2, and

∞

∑
n=1

n−1P(|Sn| > ε
√

n loglogn) = ∞

for all 0 < ε <
√

2EX2 . Gut [6] proved the converse part, i.e., if (3.1) holds for some
ε > 0, then EX = 0 and EX2 < ∞ .
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THEOREM 3.2. Let {X ,Xn,n � 1} be a sequence of identically distributed NOD
random variables. Set Sn = ∑n

i=1 Xi for n � 1. If EX = 0 and E[|X |2/(log |X |)]r+1 < ∞
for some r > 0 , then for any ε >

√
2rEX2,

∞

∑
n=1

nr−1P
(
|Sn| > ε

√
n logn

)
< ∞. (3.2)

Proof. For 1 � i � n , n � 1, let

Xni =−
√

n lognI(Xi <−
√

n logn)+XiI(|Xi|�
√

n logn)+
√

n lognI(Xi >
√

n logn).

Then {Xni,1 � i � n} is a sequence of NOD random variables. Set Snk = ∑k
i=1 Xni for

1 � k � n and n � 1. For ε >
√

2rEX2, let ε = ε1 + ε2, where ε1 >
√

2rEX2 and
ε2 > 0. In view of EX = 0 and EX2 < ∞, we obtain

|ESnn|√
n logn

=
|∑n

i=1 E(Xi −Xni)|√
n logn

� ∑n
i=1 E|Xi|I(|Xi| >

√
n logn)√

n logn

� EX2I(|X | > √
n logn)

logn
→ 0.

It follows that
∞

∑
n=1

nr−1P
(
|Sn| > ε

√
n logn

)

�
∞

∑
n=1

nr−1P
(
|Snn| > ε

√
n logn

)
+

∞

∑
n=1

nr−1
n

∑
i=1

P
(
|Xi| >

√
n logn

)

� C
∞

∑
n=1

nr−1P
(
|Snn−ESnn| > ε1

√
n logn

)
+

∞

∑
n=1

nrP
(
|X | >

√
n logn

)
:= CJ1 + J2.

For J1, we will use Theorem 2.1. Since ε1 >
√

2rEX2, we can take δ > 0 sufficiently
small such that t = ε2

1 /((2+ δ )EX2) > r. Taking s > 2(r + 1) , we have by Theorem
2.1 that

J1 � 2
∞

∑
n=1

nr−1 exp

(
− ε2

1 n logn

(2+ δ )∑n
i=1 EX2

ni

)
+C

∞

∑
n=1

nr−1
n

∑
i=1

E|Xni|s
(n logn)s/2

� 2
∞

∑
n=1

nr−1 exp

(
− ε2

1 logn
(2+ δ )EX2

)
+C

∞

∑
n=1

E|X |sI(|X | � √
n logn)

ns/2−r(logn)s/2
+CJ2

� 2
∞

∑
n=1

nr−t−1 +C
∞

∑
n=1

E|X |sI(|X | � √
n logn)

ns/2−r(logn)s/2
+CJ2.

The convergence of the last series is equivalent to E[|X |2/(log |X |)]r+1 < ∞. It is
also true that J2 < ∞ is equivalent to E[|X |2/(log |X |)]r+1 < ∞. Hence the result is
proved. �
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REMARK 3.2. When r = 1, Wang et al. [21] proved that (3.2) holds for ε =
3
√

2αeEX2 under the stronger moment condition E exp(α|X |) < ∞ for some α > 1.
Sung [19] improved the result of Wang et al. [21] by showing that α > 1 can be weaken
to α > 1/9. Hence Theorem 3.2 improves the results of Wang et al. [21] and Sung [19].

REMARK 3.3. For a sequence of i.i.d. random variables {X ,Xn,n � 1} with
EX = 0 and E[|X |2/(log |X |)]r+1 < ∞, Lai [11] proved that (3.2) holds for any ε >√

2rEX2, and Chen et al. [2] pointed out that

∞

∑
n=1

nr−1P
(
|Sn| > ε

√
n logn

)
= ∞ if 0 < ε <

√
2rEX2.

Lai [11] also proved that if (3.2) holds for some ε > 0, then E[|X |2/(log |X |)]r+1 < ∞
and EX = 0.

4. A strong law for weighted sums

Many useful linear statistics, including the least squares estimators, nonparametric
regression function estimators and jackknife estimators, are of the form of the weighted
sums. In this section, we establish a strong law for weighted sums of NOD random
variables by using Theorem 2.1.

THEOREM 4.1. Let 0 < α < 1/2 , g(x) be a positive increasing and regularly
varying function at infinity with index α , i.e., for all λ > 0 ,

lim
x→∞

g(λx)
g(x)

= λ α ,

and let h(x) be the inverse function of g(x) . Let {X ,Xn,n � 1} be a sequence of
identically distributed NOD random variables with EX = 0 and Eh(|X |)< ∞ . Suppose
that {ani,1 � i � n,n � 1} is an array of non-negative constants such that

max
1�i�n

|ani| � Kg−1(n) (4.1)

for some constant K > 0 and

limsup
n→∞

logn
n

∑
i=1

a2
ni = ρ (4.2)

for some constant 0 � ρ < ∞ . Then

limsup
n→∞

|
n

∑
i=1

aniXi| �
√

2ρEX2 a.s. (4.3)

Proof. Let γ > 0 be given. For 1 � i � n , n � 1, let

Xni(1) = −n−ΔI(aniXi < −n−Δ)+aniXiI(|aniXi| � n−Δ)+n−ΔI(aniXi > n−Δ),
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Xni(2) = (aniXi +n−Δ)I(−γ/N � aniXi < −n−Δ),

Xni(3) = (aniXi −n−Δ)I(n−Δ < aniXi � γ/N),

Xni(4) = (aniXi +n−Δ)I(aniXi < −γ/N)+ (aniXi−n−Δ)I(aniXi > γ/N),

where Δ > 0 and integer N will be specified below. Then {Xni( j),1 � i � n}, j = 1,4,
are all sequences of NOD random variables. Let

Tn( j) =
n

∑
i=1

Xni( j), j = 1, · · · ,4.

Since γ > 0 is arbitrary, to prove (4.3), it is enough to show that

limsup
n→∞

|Tn(1)−ETn(1)| �
√

2ρEX2 a.s., (4.4)

ETn(1) → 0, (4.5)

limsup
n→∞

|Tn(2)| � γ a.s., (4.6)

limsup
n→∞

|Tn(3)| � γ a.s., (4.7)

Tn(4) → 0 a.s. (4.8)

We will use Theorem 2.1. For any ε >
√

2ρEX2, we can take δ > 0 sufficiently
small such that ε2/((2+ δ )EX2) > ρ . Let δ ′ > 1 be sufficiently close to 1 such that
ε2/(δ ′(2+ δ )EX2) > ρ . By (4.2), logn∑n

i=1 a2
ni � ε2/(δ ′(2+ δ )EX2) for all n large

enough. Then, we have by Theorem 2.1 that for any s � 2,

∞

∑
n=1

P(|Tn(1)−ETn(1)| > ε)

� 2
∞

∑
n=1

exp

{
− ε2

(2+ δ )∑n
i=1 E|Xni(1)|2

}
+C

∞

∑
n=1

n

∑
i=1

E|Xni(1)|s

� 2
∞

∑
n=1

exp

{
− ε2

(2+ δ )EX2 ∑n
i=1 a2

ni

}
+C

∞

∑
n=1

n1−sΔ

� C
∞

∑
n=1

exp
{−δ ′ logn

}
+C

∞

∑
n=1

n1−sΔ � C
∞

∑
n=1

n−δ ′
+C

∞

∑
n=1

n1−sΔ.

If we take s > max{2,2/Δ}, then the last series converges. Hence, (4.4) holds by the
Borel-Cantelli lemma.

Taking r ∈ (2,1/α), we get by EX = 0, (4.1) and (4.2) that

|ETn(1)| �
n

∑
i=1

E|aniXi|I(|aniXi| > n−Δ) � n(r−1)Δ
n

∑
i=1

E|aniXi|rI(|aniXi| > n−Δ)

� E|X |rn(r−1)Δ
n

∑
i=1

|ani|r � Kr−2E|X |rn(r−1)Δ(g(n))−(r−2)
n

∑
i=1

a2
ni

� Cn(r−1)Δ(g(n))−(r−2).
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We take Δ > 0 such that 0 < Δ < α(r−2)/(r−1). Then the function x(r−1)Δ(g(x))−(r−2)

corresponding to n(r−1)Δ(g(n))−(r−2) is regularly varying at infinity with index (r−
1)Δ−α(r−2) < 0. Since the index is negative, we have that n(r−1)Δ(g(n))−(r−2) → 0
(see, for example, Lemma 2.3 in Zhou [26]). Hence (4.5) holds.

The proofs of (4.6) and (4.7) are similar, and so we only prove (4.7). To prove
(4.7), by the Borel-Cantelli lemma, it is enough to show that

∞

∑
n=1

P(|Tn(3)| > γ) < ∞.

Since Xni(3)= (aniXi−n−Δ)I(n−Δ < aniXi � γ/N) , |Tn(3)|= |∑n
i=1 Xni(3)|> γ implies

that there must exist at least N indices i such that Xni(3) �= 0. Hence, we have by
Bonferroni’s inequality (see, for example, Lemma 4.1.2 in Stout [17]), the definition of
NOD, and Markov’s inequality that

P(|Tn(3)| > γ) � P(there exist at least N indices i such that Xni(3) �= 0)

� ∑
1�i1<···<iN�n

P(Xni1(3) �= 0, · · · ,XniN (3) �= 0)

� ∑
1�i1<···<iN�n

P
(
ani1Xi1 > n−Δ, · · · ,aniNXiN > n−Δ

)

� ∑
1�i1<···<iN�n

N

∏
j=1

P
(
ani jXi j > n−Δ

)
�
(

n

∑
i=1

P
(
|aniXi| > n−Δ

))N

�
(

nrΔ
n

∑
i=1

|ani|rE|X |r
)N

� CnrΔN(g(n))−N(r−2),

where r ∈ (2,1/α) . Then

∞

∑
n=1

P(|Tn(3)| > γ) � C
∞

∑
n=1

nrΔN [g(n)]−N(r−2).

We now choose Δ sufficiently small and N sufficiently large such that N[α(r− 2)−
rΔ] > 1. Then the function xrΔN [g(x)]−N(r−2) corresponding to the summands of the
last series is regularly varying at infinity with index −N[α(r− 2)− rΔ] < −1. Since
the index is less than −1, the last series converges (see, for example, Lemma 2.4 in
Zhou [26]), and hence the first series also converges.

Finally, we show that (4.8) holds. By Eh(|X |) < ∞ ,

∞

∑
k=1

P(|X | > (γ/NK)g(k)) < ∞,

which implies that the series ∑∞
i=1 |Xi|I(|Xi|> (γ/NK)g(i)) converges a.s. by the Borel-

Cantelli lemma. Note that, by (4.1),

|Xni(4)| � |aniXi|I(|aniXi| > γ/N) � Kg−1(n)|Xi|I(|Xi| > (γ/NK)g(n)).
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Hence

|Tn(4)| � Kg−1(n)
n

∑
i=1

|Xi|I(|Xi| > (γ/NK)g(n))

� Kg−1(n)
n

∑
i=1

|Xi|I(|Xi| > (γ/NK)g(i))

� Kg−1(n)
∞

∑
i=1

|Xi|I(|Xi| > (γ/NK)g(i)) → 0 a.s.

as n → ∞, i.e., (4.8) holds. �

REMARK 4.1. The non-negative condition on the weights {ani,1 � i � n,n � 1}
ensures that {aniXi,1 � i � n} is a sequence of NOD random variables. If the non-
negative condition is deleted, we can apply Theorem 4.1 to the weights {a+

ni,1 � i �
n,n � 1} and {a−ni,1 � i � n,n � 1}, respectively, and hence (4.3) can be replaced by

limsup
n→∞

|
n

∑
i=1

aniXi| � 2
√

2ρEX2 a.s.

Although the upper bound has increased by a factor of 2, it remains the same when
ρ = 0.

REMARK 4.2. When g(x) = xα and ρ = 0, Li et al. [13] proved Theorem 4.1 for
i.i.d. random variables under the stronger condition ∑n

i=1 a2
ni = O(n−δ ), δ > 0, than

(4.2). Jing and Liang [8] extended the result of Li et al. [13] to negatively associated
random variables under condition (4.2) instead of ∑n

i=1 a2
ni = O(n−δ ). Recently, Chen

et al. [2] proved Theorem 4.1 for i.i.d. random variables without the non-negative
condition on the weights. Hence, Theorem 4.1 extends and improves the corresponding
results of Chen et al. [2], Li et al. [13], and Jing and Liang [8].

Acknowledgements. The authors would like to thank the referee for the helpful
comments. The research of Pingyan Chen is supported by the National Natural Science
Foundation of China (No. 11271161). The research of Soo Hak Sung is supported by
Basic Science Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (2014R1A1A2058041).

RE F ER EN C ES

[1] K. ALAM, K. M. L. SAXENA, Positive dependence in multivariate distributions, Commun. Statist.
Theor. Meth. 10 (1981), 1183–1196.

[2] P. CHEN, X. MA, S. H. SUNG, On complete convergence and strong law for weighted sums of i.i.d.
random variables, Abst. Appl. Anal. 2014 (2014), Article ID 251435, 1–7.

[3] T. C. CHRISTOFIDES, M. HADJIKYRIAKOU, Exponential inequalities for N -demimartingales and
negatively associated random variables, Statist. Probab. Lett. 79 (2009), 2060–2065.

[4] J. A. DAVIS, Convergence rates for the law of the iterated logarithm, Ann. Math. Statist. 39 (1968),
1479–1485.



A BERNSTEIN TYPE INEQUALITY FOR NOD 467

[5] U. EINMAHL, D. LI, Characterization of LIL behavior in Banach space, Trans. Amer. Math. Soc. 360
(2008), 6677–6693.

[6] A. GUT, Convergence rates for probabilities of moderate deviations for sums of random variables
with multidimensional indices, Ann. Probab. 8 (1980), 298–313.

[7] H. JABBARI, M. JABBARI, H. A. AZARNOOSH, An exponential inequality for negatively associated
random variables, Electron. J. Stat. 3 (2009), 165–175.

[8] B. Y. JING, H. Y. LIANG, Strong limit theorems for weighted sums of negatively associated random
variables, J. Theor. Probab. 21 (2008), 890–909.

[9] K. JOAG-DEV, F. PROSCHAN, Negative association of random variables with applications, Ann.
Statist. 11 (1983), 286–295.

[10] T. S. KIM, H. C. KIM, On the exponential inequality for negative dependent sequence, Commun.
Korean Math. Soc. 22 (2007), 315–321.

[11] T. L. LAI, Limit theorems for delayed sums, Ann. Probab. 2 (1974), 432–440.
[12] E. L. LEHMANN, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137–1153.
[13] D. LI, M. B. RAO, T. JIANG, X. WANG, Complete convergence and almost sure convergence of

weighted sums of random variables, J. Theor. Probab. 8 (1995), 49–76.
[14] H. J. NOOGHABI, H. A. AZARNOOSH, Exponential inequality for negatively associated random

variables, Stat. Papers 50 (2009), 419–428.
[15] G. G. ROUSSAS, Exponential probability inequalities with some applications, IMS Lecture Notes –

Monograph Series, vol. 30 (1996), 303–319.
[16] Q. M. SHAO, A comparison theorem on moment inequalities between negatively associated and inde-

pendent random variables, J. Theoret. Probab. 13 (2000), 343–356.
[17] W. F. STOUT, Almost Sure Convergence, Academic Press, New York (1974).
[18] S. H. SUNG, An exponential inequality for negatively associated random variables, J. Ineq. Appl.

2009 (2009), Article ID 649427, 1–7.
[19] S. H. SUNG, On the exponential inequalities for negatively dependent random variables, J. Math.

Anal. Appl. 381 (2011), 538–545.
[20] R. L. TAYLOR, R. F. PATTERSON, A. BOZORGNIA, A strong law of large numbers for arrays of

rowwise negatively dependent random variables, Stoch. Anal. Appl. 20 (2002), 643–656.
[21] X. WANG, S. HU, A. SHEN, W. YANG, An exponential inequality for a NOD sequence and a strong

law of large numbers, Appl. Math. Lett. 24 (2011), 219–223.
[22] G. XING, On the exponential inequalities for strictly stationary and negatively associated random

variables, J. Statist. Plan. Infer. 139 (2009), 3453–3460.
[23] G. XING, S. YANG, An exponential inequality for strictly stationary and negatively associated random

variables, Commun. Ststist. Theor. Meth. 39 (2010), 340–349.
[24] G. XING, S. YANG, A. LIU, X. WANG, A remark on the exponential inequality for negatively asso-

ciated random variables, J. Korean Statist. Soc. 38 (2009), 53–57.
[25] S. YANG, Uniformly asymptotic normality of the regression weighted estimator for negatively associ-

ated samples, Statist. Probab. Lett. 62 (2003), 101–110.
[26] X. ZHOU, Complete moment convergence of moving average processes under ϕ -mixing assumptions,

Statist. Probab. Lett. 80 (2010), 285–292.

(Received May 29, 2016) Pingyan Chen
Department of Mathematics

Jinan University
Guangzhou, 510630, P. R. China
e-mail: tchenpy@jnu.edu.cn

Soo Hak Sung
Department of Applied Mathematics

Pai Chai University
Daejeon, 35345, South Korea
e-mail: sungsh@pcu.ac.kr

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


