INEQUALITIES INVOLVING CIRCULAR, HYPERBOLIC AND EXPONENTIAL FUNCTIONS

YOGESH J. BAGUL

Dedicated to my mothers Vimal and Vandana

(Communicated by E. Neuman)

Abstract. This paper is aimed at obtaining some new lower and upper bounds for the functions $\cos x$, $\sin x/x$, $x/\cosh x$, thus establishing inequalities involving circulr, hyperbolic and exponential functions.

1. Introduction

The well-known Jordan's inequality [1], [6] is stated as follows:

$$\frac{2}{\pi} < \frac{\sin x}{x} < 1, \quad x \in (0,1).$$
(1)

During the past few years the Jordan's inequality has been in the focus of studies on the trigonometric and hyperbolic inequalities and many refinements have been proved [1-3], [5-11].

R. Klén, M. Visuri, and M. Vuorinen [7, Thm. 1.2] have proved the inequality

$$\left(\frac{1}{\cosh x}\right)^{1/2} < \frac{x}{\sinh x} < \left(\frac{1}{\cosh x}\right)^{1/4}, \quad x \in (0,1).$$

$$\tag{2}$$

This work is motivated by these studies and we aim to improve the bounds given in the above inequality (2) using exponential functions.

Mathematics subject classification (2010): 26D05, 26D07.

Keywords and phrases: Jordan's inequality, circular, hyperbolic, exponential, lower-upper bound.

2. The main results and proofs

The following l'Hôpital's rule for monotonicity [4, Thm. 1.25] is a standard tool for the above mentioned study.

LEMMA 1. (The monotone form of l'Hôpital's rule [4]) Let $f,g:[a,b] \to \mathbb{R}$ be two continuous functions which are differentiable on (a,b) and $g' \neq 0$ in (a,b). If f'/g' is increasing (or decreasing) on (a,b), then the functions $\frac{f(x)-f(a)}{g(x)-g(a)}$ and $\frac{f(x)-f(b)}{g(x)-g(b)}$ are also increasing (or decreasing) on (a,b).

If f'/g' is strictly monotone, then the monotonicity in the conclusion is also strict.

The main results and their proofs are given as follows.

In [8, Thm. 2], the bounds of $\cos x$ by using hyperbolic functions are given as below:

$$\left(\frac{1}{\cosh x}\right)^{\frac{1}{a}} < \cos x < \frac{1}{\cosh x}, \quad x \in \left(0, \frac{\pi}{4}\right) \quad \text{and} \quad a \approx 0.811133.$$
(3)

Now we improve the upper bound of $\cos x$ by using exponential function.

THEOREM 1. If $x \in (0,1)$ then

$$e^{-ax^2} < \cos x < e^{-x^2/2} \tag{4}$$

where $a \approx 0.615626$.

Proof. Let $e^{-ax^2} < \cos x < e^{-bx^2}$, which implies that $b < \frac{\log(\cos x)}{-x^2} < a$. Then

$$f(x) = \frac{-\log(\cos x)}{x^2} = \frac{f_1(x)}{f_2(x)},$$

where $f_1(x) = -\log(\cos x)$, and $f_2(x) = x^2$, with $f_1(0) = f_2(0) = 0$. By differentiation we get

$$\frac{f_1'(x)}{f_2'(x)} = \frac{\tan x}{2x} = \frac{f_3(x)}{f_4(x)},$$

where $f_3(x) = \tan x$ and $f_4(x) = 2x$ with $f_3(0) = f_4(0) = 0$. Differentiation gives $\frac{f'_3(x)}{f'_4(x)} = \frac{\sec^2 x}{2}$, which is clearly increasing in (0,1). By Lemma 1, f(x) is strictly increasing in (0,1). Clearly, $a = f(1-) = -\log(\cos 1) \approx 0.615626$ and $b = f(0+) = \frac{1}{2} = 0.5$ by l'Hôpital's rule. \Box

The bounds of $\frac{\sin x}{x}$ in [2, Thm. 2.1], by using hyperbolic functions are given by the following inequality:

$$\frac{1}{(\cosh x)^p} < \frac{\sin x}{x} < \frac{1}{(\cosh x)^q}, \quad \text{where} \quad p \approx 0.49, \quad q = \frac{1}{3} \approx 0.3333.$$
 (5)

In [7, Thm.2.4], the bounds of $\frac{\sin x}{x}$ by using trigonometric functions are given as follows:

$$\cos^2\left(\frac{x}{2}\right) \leqslant \frac{\sin x}{x} \leqslant \cos^3\left(\frac{x}{3}\right), \qquad x \in \left(-\sqrt{27/5}, \sqrt{27/5}\right) \tag{6}$$

Recently in [9, Thm. 1], Cătălin Barbu and Laurian-Ioan Pişcoran established the upper bound for $\frac{\sin x}{x}$ by using hyperbolic cosine which is given as follows:

$$\frac{\sin x}{x} < \sqrt{\cosh x}, \quad x \in (0, \infty).$$
(7)

We improve both the bounds of (5), the lower bound of (6) and the upper bound of (7) by using exponential functions.

THEOREM 2. If $x \in (0,1)$ then

$$e^{-ax^2} < \frac{\sin x}{x} < e^{-x^2/6}$$
(8)

where $a \approx 0.172604$.

Proof. Let $e^{-ax^2} < \frac{\sin x}{x} < e^{-bx^2}$, which implies that, $b < \frac{-\log(\sin x/x)}{x^2} < a$. Then

$$f(x) = \frac{-\log(\frac{\sin x}{x})}{x^2} = \frac{f_1(x)}{f_2(x)}$$

where $f_1(x) = -\log\left(\frac{\sin x}{x}\right)$ and $f_2(x) = x^2$, with $f_1(0+) = f_2(0+) = 0$. Differentiation gives us

$$\frac{f_1'(x)}{f_2'(x)} = \frac{\sin x - x \cos x}{2x^2 \sin x} = \frac{f_3(x)}{f_4(x)}$$

where $f_3(x) = \sin x - x \cos x$ and $f_4(x) = 2x^2 \sin x$, with $f_3(0) = f_4(0) = 0$. Again by differentiation we have

$$\frac{f'_3(x)}{f'_4(x)} = \frac{1}{2\frac{x}{\tan x} + 4} = \frac{1}{2\frac{f_5(x)}{f_6(x)} + 4}$$

where $f_5(x) = x$ and $f_6(x) = \tan x$, with $f_5(0) = f_6(0) = 0$.

Then we get $\frac{f'_5(x)}{f'_6(x)} = \frac{1}{sec^2x} = \cos^2 x$, which is clearly decreasing in (0,1). By Lemma 1, f(x) is strictly increasing in (0,1). Consequently, $a = f(1-) = -\log(\sin 1) \approx 0.172604$. and $b = f(0+) = \frac{1}{6} \approx 0.166667$ by l'Hôpital's rule. \Box

Next we improve the bounds of (2) by using exponential functions again.

THEOREM 3. If $x \in (0,1)$ then

$$e^{-x^2/6} < \frac{x}{\sinh x} < e^{-bx^2}$$
(9)

where $b \approx 0.161439$.

Proof. Let $e^{-ax^2} < \frac{x}{\sinh x} < e^{-bx^2}$, which implies that, $b < \frac{-\log(\frac{x}{\sinh x})}{x^2} < a$. Then

$$f(x) = \frac{-\log\left(\frac{x}{\sinh x}\right)}{x^2} = \frac{f_1(x)}{f_2(x)},$$

where $f_1(x) = -\log(\frac{x}{\sinh x})$ and $f_2(x) = x^2$, with $f_1(0+) = f_2(0+) = 0$. By differentiation we get

$$\frac{f_1'(x)}{f_2'(x)} = \frac{x\cosh x - \sinh x}{2x^2 \sinh x} = \frac{f_3(x)}{f_4(x)}$$

where $f_3(x) = x \cosh x - \sinh x$ and $f_4(x) = 2x^2 \sinh x$, with $f_3(0) = f_4(0) = 0$. Differentiation gives

$$\frac{f_3'(x)}{f_4'(x)} = \frac{1}{4 + 2\frac{x}{\tanh x}} = \frac{1}{4 + 2\frac{f_5(x)}{f_6(x)}}$$

where $f_5(x) = x$ and $f_6(x) = \tanh x$, with $f_5(0) = f_6(0) = 0$. Then we get $\frac{f'_5(x)}{f'_6(x)} = \frac{1}{sech^2x} = \cosh^2 x$, which is clearly increasing in (0,1). By Lemma 1, f(x) is decreasing in (0,1). Consequently, $a = f(0+) = \frac{1}{6} \approx 0.166667$ by l'Hôpital's rule and $b = -\log(\frac{1}{\sinh 1}) \approx 0.161439$. \Box

Acknowledgement. I wish to thank Professor S. K. Panchal, Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (M.S.), India for his valuable guidance and suggestions to carry out the research.

REFERENCES

- [1] D. S. MITRINOVIC, Analytic Inequalities, Springer-Verlag, New York, Berlin 1970.
- [2] EDWARD NEUMAN AND JÓZSEF SÁNDOR, Optimal Inequalities For Hyperbolic And Trigonometric Functions, Bulletin of Mathematical Analysis and Applications, vol. 3, Issue 3(2011), pages 177–181.
- [3] FENG QI, DA-WEI NIU, AND BAI-NI GUO, *Refinements, Generalizations, and Applications of Jor*dan's inequality and related problems, Journal of Inequalities and Applications, vol. 2009, Article ID 271923, 52 pages, 2009.
- [4] G. D. ANDERSON, M. K. VAMANAMURTHY, M. VUORINEN, Conformal Invarients, Inequalities and Quasiconformal maps, John Wiley and Sons, New York, 1997.
- [5] L. ZHU, J. SUN, Six new Redheffer-type inequalities for circular and hyperbolic functions, comput. Math. Appl. 56 (2) (2008), pages 522–529.
- [6] P. S. BULLEN, A Directory of Inequalities, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 97, Addison Wesley Longman Limited, Longman, Harlow 1998.
- [7] R. KLÉN, M. VISURI AND M. VUORINEN, On Jordan Type Inequalities for Hyperbolic Functions, J. Inequal. and Appl. (2010) 14 pp. (2010) Art. ID 362548.
- [8] YUPEI LV, GENDI WANG, YUMIG CHU, A note on Jordan type inequalities for hyperbolic functions, Appl. Math. Lett. 25 (2012) pages 505–508.
- [9] CĂTĂLIN BARBU AND LAURIAN-IOAN PIŞCORAN, Jordan type Inequalities using Monotony of Functions, Journal of Mathematical Inequalities, vol. 8, no. 1 (2014), 83–89.

Anal. Math(2015) 41:3.
[11] ZHEN-HANG YANG, YU-MING CHU, Jordan Type Inequalities for Hyperbolic Functions and Their Applications, Journal of Function Spaces, vol. 2015, Article ID 370979, 4 pages, 2015.

(Received November 16, 2016)

Yogesh J. Bagul Department of Mathematics K. K. M. College Manwath Dist. Parbhani (M. S.) – 431505, India e-mail: yjbagul@gmail.com

Journal of Mathematical Inequalities www.ele-math.com jmi@ele-math.com