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Abstract. This paper is aimed at obtaining some new lower and upper bounds for the functions
cosx , sinx/x , x/coshx , thus establishing inequalities involving circulr, hyperbolic and expo-
nential functions.

1. Introduction

The well-known Jordan’s inequality [1], [6] is stated as follows:

2
π

<
sinx
x

< 1, x ∈ (0,1). (1)

During the past few years the Jordan’s inequality has been in the focus of studies on
the trigonometric and hyperbolic inequalities and many refinements have been proved
[1–3], [5–11].

R. Klén, M. Visuri, and M. Vuorinen [7, Thm. 1.2] have proved the inequality

(
1

coshx

)1/2

<
x

sinhx
<

(
1

coshx

)1/4

, x ∈ (0,1). (2)

This work is motivated by these studies and we aim to improve the bounds given
in the above inequality (2) using exponential functions.
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2. The main results and proofs

The following l’Hôpital’s rule for monotonicity [4, Thm. 1.25] is a standard tool
for the above mentioned study.

LEMMA 1. (The monotone form of l’Hôpital’s rule [4]) Let f ,g : [a,b] → R be
two continuous functions which are differentiable on (a,b) and g′ �= 0 in (a,b). If

f ′/g′ is increasing (or decreasing) on (a,b), then the functions f (x)− f (a)
g(x)−g(a) and f (x)− f (b)

g(x)−g(b)
are also increasing (or decreasing) on (a,b).

If f ′/g′ is strictly monotone, then the monotonicity in the conclusion is also strict.

The main results and their proofs are given as follows.
In [8, Thm. 2], the bounds of cosx by using hyperbolic functions are given as

below:

(
1

coshx

) 1
a

< cosx <
1

coshx
, x ∈

(
0,

π
4

)
and a ≈ 0.811133. (3)

Now we improve the upper bound of cosx by using exponential function.

THEOREM 1. If x ∈ (0,1) then

e−ax2
< cosx < e−x2/2 (4)

where a ≈ 0.615626.

Proof. Let e−ax2
< cosx < e−bx2

, which implies that b < log(cosx)
−x2 < a.

Then

f (x) =
− log(cosx)

x2 =
f1(x)
f2(x)

,

where f1(x) =− log(cosx) , and f2(x) = x2 , with f1(0) = f2(0) = 0. By differentiation
we get

f ′1(x)
f ′2(x)

=
tanx
2x

=
f3(x)
f4(x)

,

where f3(x) = tanx and f4(x) = 2x with f3(0) = f4(0) = 0. Differentiation gives
f ′3(x)
f ′4(x)

= sec2x
2 , which is clearly increasing in (0,1) . By Lemma 1, f (x) is strictly in-

creasing in (0,1) . Clearly, a = f (1−) = − log(cos1) ≈ 0.615626 and b = f (0+) =
1
2 = 0.5 by l’Hôpital’s rule. �

The bounds of sinx
x in [2, Thm. 2.1], by using hyperbolic functions are given by

the following inequality:

1
(coshx)p <

sinx
x

<
1

(coshx)q , where p ≈ 0.49, q =
1
3
≈ 0.3333. (5)
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In [7, Thm.2.4], the bounds of sinx
x by using trigonometric functions are given as fol-

lows:

cos2
( x

2

)
� sinx

x
� cos3

( x
3

)
, x ∈ (−

√
27/5,

√
27/5) (6)

Recently in [9, Thm. 1], Cătălin Barbu and Laurian-Ioan Pişcoran established the
upper bound for sinx

x by using hyperbolic cosine which is given as follows:

sinx
x

<
√

coshx, x ∈ (0,∞). (7)

We improve both the bounds of (5), the lower bound of (6) and the upper bound
of (7) by using exponential functions.

THEOREM 2. If x ∈ (0,1) then

e−ax2
<

sinx
x

< e−x2/6 (8)

where a ≈ 0.172604.

Proof. Let e−ax2
< sinx

x < e−bx2
, which implies that, b < − log(sinx/x)

x2 < a.
Then

f (x) =
− log( sinx

x )
x2 =

f1(x)
f2(x)

where f1(x) =− log
(

sinx
x

)
and f2(x) = x2 , with f1(0+) = f2(0+) = 0. Differentiation

gives us
f ′1(x)
f ′2(x)

=
sinx− xcosx

2x2 sinx
=

f3(x)
f4(x)

where f3(x) = sinx− xcosx and f4(x) = 2x2 sinx , with f3(0) = f4(0) = 0. Again by
differentiation we have

f ′3(x)
f ′4(x)

=
1

2 x
tanx +4

=
1

2 f5(x)
f6(x)

+4

where f5(x) = x and f6(x) = tanx , with f5(0) = f6(0) = 0.

Then we get
f ′5(x)
f ′6(x)

= 1
sec2x

= cos2 x , which is clearly decreasing in (0,1) . By

Lemma 1, f (x) is strictly increasing in (0,1) . Consequently, a = f (1−) =− log(sin1)
≈ 0.172604. and b = f (0+) = 1

6 ≈ 0.166667 by l’Hôpital’s rule. �
Next we improve the bounds of (2) by using exponential functions again.

THEOREM 3. If x ∈ (0,1) then

e−x2/6 <
x

sinhx
< e−bx2

(9)

where b ≈ 0.161439.
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Proof. Let e−ax2
< x

sinhx < e−bx2
, which implies that, b <

− log( x
sinhx )

x2 < a.

Then

f (x) =
− log

(
x

sinhx

)
x2 =

f1(x)
f2(x)

,

where f1(x) = − log
(

x
sinhx

)
and f2(x) = x2 , with f1(0+) = f2(0+) = 0. By differen-

tiation we get

f ′1(x)
f ′2(x)

=
xcoshx− sinhx

2x2 sinhx
=

f3(x)
f4(x)

where f3(x) = xcoshx− sinhx and f4(x) = 2x2 sinhx , with f3(0) = f4(0) = 0. Differ-
entiation gives

f ′3(x)
f ′4(x)

=
1

4+2 x
tanhx

=
1

4+2 f5(x)
f6(x)

where f5(x) = x and f6(x) = tanhx , with f5(0) = f6(0) = 0. Then we get
f ′5(x)
f ′6(x)

=
1

sech2x
= cosh2 x , which is clearly increasing in (0,1) . By Lemma 1, f (x) is de-

creasing in (0,1) . Consequently, a = f (0+) = 1
6 ≈ 0.166667 by l’Hôpital’s rule and

b = − log
( 1

sinh1

) ≈ 0.161439. �
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