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ON THE ENERGY OF BICYCLIC SIGNED DIGRAPHS

MEHTAB KHAN AND RASHID FAROOQ

(Communicated by J. Pečarić)

Abstract. Among unicyclic digraphs and signed digraphs with fixed number of vertices, the
digraphs and signed digraphs with minimal and maximal energy are already determined. In this
paper we address the problem of finding bicyclic signed digraphs with extremal energy. We
obtain minimal and maximal energy among all those n -vertex bicyclic signed digraphs which
contain vertex-disjoint signed directed cycles, n � 4 .

1. Introduction

A signed digraph (henceforth, sidigraph) is a pair S = (D,ω) , where D = (V ,A )
is the underlying digraph and ω : A → {−1,1} is the signing function. That is, each
arc of D is assigned a +1 or a −1 sign. An arc with a +1 (respectively, a −1) sign
is called a positive (respectively, a negative) arc. Generally, an arc with a +1 or a −1
sign is called a signed arc. If the direction of arcs of the underlying digraph D are
removed then S = (D,ω) is called a signed graph (or sigraph).

An arc of S from u to v is denoted by uv . A directed path Pn of length n− 1,
n � 2, is a sidigraph on n vertices v1,v2, . . . ,vn with n− 1 signed arcs vivi+1 , i =
1,2, . . . ,n− 1. A directed cycle of length n , n � 2, is a sidigraph having vertices
v1,v2, . . . ,vn and signed arcs vivi+1 , i = 1,2, . . . ,n− 1 and vnv1 . The sign of a sidi-
graph is defined as the product of signs of its arcs. A sidigraph is positive (respectively,
negative) if its sign is positive (respectively, negative). A sidigraph is all-positive (re-
spectively, all-negative) if all its arcs are positive (respectively, negative). A sidigraph
is said to be cycle-balanced if each of its directed cycle is positive, otherwise non cycle-
balanced. Throughout the paper, we will call cycle-balanced directed cycle a positive
cycle and non cycle-balanced directed cycle a negative cycle. A positive cycle and a
negative cycle, each of length n , is denoted by C+

n and C−
n , respectively. Henceforth,

the notation Cn is used for a signed directed cycle which may be positive or negative.
A digraph which contains a unique directed cycle and its underlying graph is connected
is called a unicyclic digraph. A digraph which contains exactly two directed cycles and
its underlying graph is connected is called a bicyclic digraph. A digraph is strongly
connected if for each pair u,v of vertices, there is a directed path from u to v and one
from v to u . A sidigraph S = (D,ω) is unicyclic (bicyclic) if D is unicyclic (bicyclic).
A sidigraph S = (D,ω) is strongly connected if D is strongly connected.
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The adjacency matrix of a sidigraph S whose vertices are v1,v2, . . . ,vn is the n×n
matrix A(S) = (ai j) , where

ai j =
{

ω(viv j) if there is an arc from vi to v j

0 otherwise.
(1)

The characteristic polynomial det(xI −A(S)) of A(S) is called the characteristic
polynomial of the sidigraph S . The eigenvalues of A(S) are called the eigenvalues of S .
We observe that A(S) is not necessarily a symmetric matrix. Thus, the eigenvalues of
S are not necessarily real. The spectrum spec(S) of S is the multiset of the eigenvalues
of S .

The energy of a graph is the sum of the absolute values of its eigenvalues. Energy
of a simple graph was introduced by Gutman [3]. Since then, the graph energy has
stimulated extensive research due to its close links to Chemistry. Several extensions of
the energy of graph have been studied in the literature.

Peña and Rada [6] extended the notion of energy to digraphs. Since the adjacency
matrix of a digraph is not necessarily symmetric, its eigenvalues may be complex. The
energy of a digraph is the sum of the absolute values of the real parts of its eigenvalues.
The authors find the unicyclic digraphs which have minimal and maximal energy among
all n -vertex unicyclic digraphs, n � 2.

Germina et al. [2] introduced the notion of energy in signed graphs. They defined
the energy of a signed graphs to be the sum of absolute values of its eigenvalues.

Very recently, Pirzada and Bhat [7] extended the concept of energy to sidigraphs.
The definition of the energy of a sidigraph is similar to the definition of the energy
of a digraph. The authors compute formulae for energy of signed directed cycles and
prove that the energy of negative directed cyles increases monotonically with respect
to their length. Khan et al. [4] study the problem of finding digraphs with minimal
and maximal energy among n -vertex bicyclic digraphs, n � 4. Monsalve and Rada [5]
study a general class of bicyclic digraphs and find the maximal value of the energy in
this class.

Motivated by Pirzada and Bhat [7] and Khan et al. [4], we consider the problem of
finding bycyclic sidigraphs with minimal and maximal energy among n -vertex bicyclic
sidigraphs, n � 4. We find bicyclic sidigraphs which has minimal and maximal en-
ergy among n -vertex bicyclic sidigraphs which contain vertex-disjoint signed directed
cycles, n � 4.

This paper is structured as follows. In Section 2, we give some known results. Our
main work appears in Section 3. We introduce a class of n -vertex bicyclic sidigraphs,
n � 4, and find sidigraphs with minimal and maximal energy in this class.

2. Known results

This section deals with some known results.
Let z1,z2, . . . ,zn be the eigenvalues of an n -vertex sidigraph S . Then the energy

of S is defined by:

E(S) =
n

∑
k=1

∣∣Re(zk)
∣∣,
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where Re(zk) denotes the real part of zk .
Following result gives the spectral criterion for cycle-balanced sidigraphs.

THEOREM 1. (Acharya [1]) A sidigraph S = (D,ω) is cycle-balanced if and only
if S and D are cospectral.

Obviously, a digraph can be regarded as all-positive sidigraph. By Theorem 1, a
directed cycle and a positive directed cycle are cospectral. Thus, a directed cycle can
be regarded as a positive directed cycle.

Let C+
n be a directed cycle of length n . Then Peña and Rada [6] show that

spec(C+
n ) =

{
exp

2kπι̇
n

| k = 0,1, . . . ,n−1
}
,

where ι̇ =
√−1. Therefore the energy of C+

n is given by

E(C+
n ) =

n−1

∑
k=0

∣∣∣cos
2kπ
n

∣∣∣.
One can easily observe that

E(C+
k ) = 2 for k = 2,3,4. (2)

Similarly, let C−
n be a negative directed cycle of length n . Then Pirzada and Bhat [7]

show that

spec(C−
n ) =

{
exp

(2k+1)πι̇
n

| k = 0,1, . . . ,n−1
}
.

Therefore the energy of C−
n is given by

E(C−
n ) =

n−1

∑
k=0

∣∣∣cos
(2k+1)π

n

∣∣∣. (3)

It can easily be seen that

E(C−
2 ) = 0, E(C−

3 ) = 2 and E(C−
4 ) = 2

√
2. (4)

Next theorem gives minimal and maximal energy among n -vertex unicyclic di-
graphs, n � 2.

THEOREM 2. (Peña and Rada [6]) Among all n-vertex unicyclic digraphs, the min-
imal energy is attained in digraphs which contain a cycle of length 2, 3 or 4. The
maximal energy is attained in the cycle C+

n of length n.

From the proof of Theorem 2, we derive the following inequalities:

E(C+
r ) > 2 for r � 5 (5)

E(C+
r1) � E(C+

r2) for r1 � r2 � 5. (6)
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The inequality in (6) is strict if r1 > r2 .
Let C+

n and C−
n be positive and negative directed cycles, respectively, where n �

2. Then we have the following formulae [7].

E(C+
n ) =

⎧⎪⎪⎨
⎪⎪⎩

2cot π
n if n ≡ 0(mod4)

2csc π
n if n ≡ 2(mod4)

csc π
2n if n ≡ 1(mod2),

(7)

E(C−
n ) =

⎧⎪⎪⎨
⎪⎪⎩

2csc π
n if n ≡ 0(mod4)

2cot π
n if n ≡ 2(mod4)

csc π
2n if n ≡ 1(mod2).

(8)

Following theorem gives minimal and maximal energy among n -vertex non cycle-
balanced unicyclic sidigraphs.

THEOREM 3. (Pirzada and Bhat [7]) Energy of negative cycles increases mono-
tonically with respect to the length. Furthermore, minimal energy is attained in C−

2 .
Moreover, among all n-vertex non cycle-balanced unicyclic sidigraphs, C−

n has the
maximal energy.

Next theorem gives few characteristics of positive and negative directed cycles.

THEOREM 4. (Pirzada and Bhat [7]) Energy of the positive and negative cycles
satisfies the following:

(i) E(C+
n ) = E(C−

n ) if n ≡ 1(mod2) .

(ii) For positive even integer n, E(C+
n ) < E(C−

n ) if and only if n ≡ 0(mod4) .

(iii) For positive even integer n, E(C+
n ) > E(C−

n ) if and only if n ≡ 2(mod4) .

Following theorem gives the energy of a sidigraph with k strong components.

THEOREM 5. (Pirzada and Bhat [7]) Let S be an n-vertex sidigraph and S1,S2, . . . ,

Sk be its strong components. Then E(S) =
k
∑
i=1

E(Si).

Next lemma is important in proving many results.

LEMMA 1. (Khan et al. [4]) Let x,a,b be real numbers such that x � a > 0 and
b > 0 . Then

2xπ
bx2−π2 � 2aπ

ba2−π2 . (9)

Lemmas 2−4 give upper bounds on the sum of energies of two positive vertex-
disjoint directed cycles.
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LEMMA 2. (Khan et al. [4]) If n ≡ 0(mod 4) , m,n−m � 2 then the following
holds for vertex-disjoint cycles:

E(C+
n−m)+E(C+

m ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n
π if m ≡ 0(mod4)

2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 2(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

LEMMA 3. (Khan et al. [4]) If n ≡ 2(mod 4) , m,n−m � 2 then the following
holds for vertex-disjoint cycles:

E(C+
n−m)+E(C+

m ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n
π + 2(n−m)π

6(n−m)2−π2 if m ≡ 0(mod4)
2n
π + 2mπ

6m2−π2 if m ≡ 2(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

LEMMA 4. (Khan et al. [4]) If n ≡ 1(mod 2) , m,n−m � 2 then the following
holds for vertex-disjoint cycles:

E(C+
n−m)+E(C+

m )�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

2n
π + 2(n−m)π

24(n−m)2−π2 if m ≡ 0(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 +
2mπ

6m2−π2 if m ≡ 2(mod4)
2n
π + 2mπ

24m2−π2 if m ≡ 1(mod2) and n−m ≡ 0(mod4)

2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2) and n−m ≡ 2(mod4).

Next lemma gives lower bound for the sum of energies of two vertex-disjoint pos-
itive directed cycles.

LEMMA 5. (Khan et al. [4]) Let C+
n−2 and C+

2 be two vertex-disjoint cycles, n �
4 . Then we have the following inequalities:

E(C+
n−2)+E(C+

2 ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n
π − 4

π − π2

3(n−2)2 +2 if n ≡ 0(mod4)
2n
π − 4

π − π
n−2 +2 if n ≡ 2(mod4)

2n
π − 4

π − π2

12(n−2)2 +2 if n ≡ 1(mod2).

For any real number x , with 0 < x � π
2 , the following inequalities hold:

sinx � x, sinx � x− x3

3!
, cosx � 1− x2

2
(10)

cotx � 1
x
, cotx � 1

x
− x

2
if x �= 0. (11)
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3. Bicyclic sidigraphs

We consider a set Sn consisting of n -vertex bicyclic sidigraphs such that the
cycles are vertex-disjoint, where n � 4. Let S ∈ Sn be a sidigraph with two signed
directed cycles Cr1 and Cr2 of length r1 and r2 , respectively, where 2 � r1,r2 � n−2.
Then Theorem 5 gives

E(S) = E(Cr1)+E(Cr2).

Thus, to find sidigraphs in Sn with minimal and maximal energy, it is enough to find
lower and upper bounds on the sum of energies of vertex-disjoint signed directed cycles.

Next lemma gives lower bound for the sum of energies of two vertex-disjoint pos-
itive directed and negative directed cycles.

LEMMA 6. Let C−
n−2 and C+

2 be two vertex-disjoint cycles, n � 4 . Then we have
the following inequalities:

E(C−
n−2)+E(C+

2 ) �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2n
π − 4

π − π
(n−2) +2 if n ≡ 0(mod4)

2n
π − 4

π − π2

3(n−2)2 +2 if n ≡ 2(mod4)

2n
π − 4

π − π2

12(n−2)2 +2 if n ≡ 1(mod2).

Proof. We know that E(C+
2 ) = 2. If n ≡ 0(mod4) then (8) and (11) yield

E(C−
n−2)+E(C+

2 ) = 2

(
cot

π
n−2

+1

)

� 2

(
n−2

π
− π

2(n−2)
+1

)

=
2n
π

− 4
π
− π

(n−2)
+2.

Next, we consider the case when n ≡ 2(mod4) . From (8) and (10), we get

E(C−
n−2)+E(C+

2 ) = 2

(
csc

π
n−2

+1

)

= 2

(
1+ sin π

n−2

sin π
n−2

)

� 2

⎛
⎝1+ π

n−2 − π3

6(n−2)3
π

n−2

⎞
⎠

=
2n
π

− 4
π
− π2

3(n−2)2 +2.
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Finally, we consider the case when n ≡ 1(mod2) . In this case, (8) and (10) give

E(C−
n−2)+E(C+

2 ) = csc
π

2(n−2)
+2

=

(
1+2sin π

2(n−2)

sin π
2(n−2)

)

�
1+2

(
π

2(n−2) − π3

48(n−2)3

)
π

2(n−2)

=
2(n−2)

π
− π2

12(n−2)2 +2.

This completes the proof. �

LEMMA 7. Let n and m be positive integers such that n � 4 . If m ∈ {2,3} or
n−m∈ {2,3} then the following inequalities hold true for vertex-disjoint cycles.

(1) If n ≡ 0(mod4) then

E(C+
n−2)+E(C+

2 ) � E(Cn−m)+E(Cm).

(2) If n ≡ 2(mod4) then

E(C−
n−2)+E(C+

2 ) � E(Cn−m)+E(Cm).

(3) If n ≡ 1(mod2) then

E(Cn−2)+E(C+
2 ) � E(Cn−m)+E(Cm).

Proof. (1). If m ∈ {2,3} then by (2) and (4), we get

E(C+
2 ) � E(Cm). (12)

By Theorem 4 and (6), we have

E(C+
n−2) � E(Cn−m). (13)

By combining inequalities (12) and (13), we get

E(C+
n−2)+E(C+

2 ) � E(Cn−m)+E(Cm).

If n−m ∈ {2,3} then above inequality can be obtained analogously.
(2) and (3) can be proved in a similar fashion. �
Lemmas 8–10 give different upper bounds for the sum of energies of vertex-

disjoint directed cycles of lengths n−m,m � 2.
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LEMMA 8. If n ≡ 0(mod4) and m,n−m � 2 then the following hold for vertex-
disjoint cycles:

(1)

E(C+
n−m)+E(C+

m) �

⎧⎪⎨
⎪⎩

2n
π if m ≡ 0(mod4)
2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 2(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

(2)

E(C−
n−m)+E(C+

m) �

⎧⎪⎪⎨
⎪⎪⎩

2n
π + 2(n−m)π

6(n−m)2−π2 if m ≡ 0(mod4)
2n
π + 2mπ

6m2−π2 if m ≡ 2(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

(3)

E(C+
n−m)+E(C−

m) �

⎧⎪⎪⎨
⎪⎪⎩

2n
π + 2mπ

6m2−π2 if m ≡ 0(mod4)
2n
π + 2(n−m)π

6(n−m)2−π2 if m ≡ 2(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

(4)

E(C−
n−m)+E(C−

m) �

⎧⎪⎨
⎪⎩

2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 0(mod4)

2n
π if m ≡ 2(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

Proof. (1). The proof follows from Lemma 2.
(2). We first consider the case when m ≡ 0(mod4) . In this case, n−m≡ 0(mod

4) . By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m ) = 2

(
csc

π
n−m

+ cot
π
m

)

� 2

⎛
⎝ 1(

π
n−m − π3

6(n−m)3

) +
m
π

⎞
⎠

=
2n
π

+
2(n−m)π

6(n−m)2−π2 .

Secondly, we consider the case when m ≡ 2(mod4) . In this case n−m ≡ 2(mod4) .
By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m ) = 2

(
cot

π
n−m

+ csc
π
m

)

� 2

(
n−m

π
+

1
π
m − π3

6m3

)

=
2n
π

+
2mπ

6m2−π2 .
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Finally, we take m ≡ 1(mod2) . Then n−m≡ 1(mod2) . By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m ) = csc
π

2(n−m)
+ csc

π
2m

� 1

( π
2(n−m) )(1− π2

24(n−m)2 )
+

1

( π
2m)(1− π2

24m2 )

=
2n
π

+2

(
(n−m)π

24(n−m)2−π2 +
mπ

24m2−π2

)
.

Analogously, one can prove (3) and (4). �

LEMMA 9. If n ≡ 2(mod4) and m,n−m � 2 then the following hold for vertex-
disjoint cycles:

(1)

E(C+
n−m)+E(C+

m) �

⎧⎪⎪⎨
⎪⎪⎩

2n
π + 2(n−m)π

6(n−m)2−π2 if m ≡ 0(mod4)
2n
π + 2mπ

6m2−π2 if m ≡ 2(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

(2)

E(C−
n−m)+E(C+

m) �

⎧⎪⎨
⎪⎩

2n
π if m ≡ 0(mod4)
2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 2(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

(3)

(3) E(C+
n−m)+E(C−

m ) �

⎧⎪⎨
⎪⎩

2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 0(mod4)

2n
π if m ≡ 2(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

(4)

E(C−
n−m)+E(C−

m) �

⎧⎪⎪⎨
⎪⎪⎩

2n
π + 2mπ

6m2−π2 if m ≡ 0(mod4)
2n
π + 2(n−m)π

6(n−m)2−π2 if m ≡ 2(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2).

Proof. (1). The proof follows from Lemma 3.
(2). Let m ≡ 0(mod4) . Then n−m≡ 2(mod4) . By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m ) = 2

(
cot

π
n−m

+ cot
π
m

)

� 2

(
n−m

π
+

m
π

)

=
2n
π

.



854 M. KHAN AND R. FAROOQ

Next, we take m ≡ 2(mod4) . Then n−m≡ 0(mod4) . By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m ) = 2

(
csc

π
n−m

+ csc
π
m

)

� 2

⎛
⎝ 1

( π
n−m)(1− π2

6(n−m)2 )
+

1

( π
m )(1− π2

6m2 )

⎞
⎠

=
2n
π

+2

(
(n−m)π

6(n−m)2−π2 +
mπ

6m2−π2

)
.

Finally, let m ≡ 1(mod2) . Then n−m≡ 1(mod2) . By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m ) = csc
π

2(n−m)
+ csc

π
2m

� 1

( π
2(n−m) )(1− π2

24(n−m)2 )
+

1

( π
2m)(1− π2

24m2 )

=
2n
π

+2

(
(n−m)π

24(n−m)2−π2 +
mπ

24m2−π2

)
.

(3) and (4) can be proved in a similar fashion. �

LEMMA 10. If n≡ 1( mod 2) and m,n−m � 2 then the following hold for vertex-
disjoint cycles:

(1)

E(C+
n−m)+E(C+

m )�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
π + 2(n−m)π

24(n−m)2−π2 if m ≡ 0(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 2(mod4)

2n
π + 2mπ

24m2−π2 if m ≡ 1(mod2) and n−m ≡ 0(mod4)
2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2) and n−m ≡ 2(mod4).

(2)

E(C−
n−m)+E(C+

m )�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
π + 2(n−m)π

24(n−m)2−π2 if m ≡ 0(mod4)
2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 2(mod4)

2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2) and n−m ≡ 0(mod4)

2n
π + 2mπ

24m2−π2 if m ≡ 1(mod2) and n−m ≡ 2(mod4).

(3)

E(C+
n−m)+E(C−

m )�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 0(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 if m ≡ 2(mod4)
2n
π + 2mπ

24m2−π2 if m ≡ 1(mod2) and n−m ≡ 0(mod4)
2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2) and n−m ≡ 2(mod4).
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(4)

E(C−
n−m)+E(C−

m )�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2n
π + 2(n−m)π

24(n−m)2−π2 + 2mπ
6m2−π2 if m ≡ 0(mod4)

2n
π + 2(n−m)π

24(n−m)2−π2 if m ≡ 2(mod4)
2n
π + 2(n−m)π

6(n−m)2−π2 + 2mπ
24m2−π2 if m ≡ 1(mod2) and n−m ≡ 0(mod4)

2n
π + 2mπ

24m2−π2 if m ≡ 1(mod2) and n−m ≡ 2(mod4).

Proof. (1). It follows from Lemma 4.
(2). Let m ≡ 0(mod4) . Then n−m≡ 1(mod2) . By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m) = csc
π

2(n−m)
+2cot

π
m

�
(

1
π

2(n−m) (1− π2

24(n−m)2 )

)
+2
(m

π

)

=
2n
π

+
2(n−m)π

24(n−m)2−π2 .

Next, we consider the case when m ≡ 2(mod4) . Then n−m ≡ 1(mod2) . By (7), (8)
and (10), we get

E(C−
n−m)+E(C+

m ) = csc
π

2(n−m)
+2csc

π
m

�
(

1
π

2(n−m) (1− π2

24(n−m)2 )

)
+2

(
1

π
m(1− π2

6m2 )

)

=
2n
π

+
2(n−m)π

24(n−m)2−π2 +
2mπ

6m2−π2 .

Next, we let m ≡ 1(mod2) and n−m≡ 0(mod4) . By (7), (8) and (10), we get

E(C−
n−m)+E(C+

m ) = 2csc
π

n−m
+ csc

π
2m

� 2

(
1

π
n−m(1− π2

6(n−m)2 )

)
+

1
π
2m(1− π2

24m2 )

=
2n
π

+
2(n−m)π

6(n−m)2−π2 +
2mπ

24m2−π2 .

Finally, we let m ≡ 1(mod2) and n−m≡ 2(mod4) . By (7) and (10), we get

E(C−
n−m)+E(C+

m ) = 2cot
π

n−m
+ csc

π
2m

� 2

(
n−m

π

)
+

1
π
2m(1− π2

24m2 )

=
2n
π

+
2mπ

24m2−π2 .
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One can prove (3) and (4) analogously. �
By using Lemmas 6−10, we prove next result for vertex-disjoint cycles.

LEMMA 11. For m,n−m � 4 , the following hold for vertex-disjoint cycles.

(1) If n ≡ 0(mod4) then

E(C+
n−2)+E(C+

2 ) � E(Cn−m)+E(Cm). (14)

(2) If n ≡ 2(mod4) then

E(C−
n−2)+E(C+

2 ) � E(Cn−m)+E(Cm). (15)

(3) If n ≡ 1(mod2) then

E(Cn−2)+E(C+
2 ) � E(Cn−m)+E(Cm). (16)

Proof. (1). Let n ≡ 0(mod4) . In this case, n−2 � 6. This together with Lemma
5 gives

E(C+
n−2)+E(C+

2 ) � 2n
π

+2− 4
π
− π2

3(n−2)2

� 2n
π

+2− 4
π
− π2

3(6)2

� 2n
π

+0.62. (17)

On the other hand, let m ≡ 0(mod4) . Then m,n−m � 4. Lemma 8 implies

E(C+
n−m)+E(C+

m) � 2n
π

. (18)

Furthermore, applying Lemma 1 and Lemma 8, we get

E(C−
n−m)+E(C+

m ) � 2n
π

+
2(n−m)π

6(n−m)2−π2

� 2n
π

+
8π

6(4)2−π2 (19)

� 2n
π

+0.30.

Similarly, we obtain

E(C+
n−m)+E(C−

m ) � 2n
π

+0.30, (20)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.59. (21)
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Then the required inequality (14) follows from (17) and (18)− (21).
If m ≡ 2(mod4) then m,n−m � 6. By Lemma 1 and Lemma 2, we have

E(C+
n−m)+E(C+

m) � 2n
π

+
2mπ

6m2−π2 +
2(n−m)π

6(n−m)2−π2

� 2n
π

+
12π

63−π2 +
12π

63−π2 (22)

� 2n
π

+0.37.

Similarly, Lemma 1 and Lemma 8 imply

E(C−
n−m)+E(C+

m ) � 2n
π

+0.19, (23)

E(C+
n−m)+E(C−

m ) � 2n
π

+0.19, (24)

E(C−
n−m)+E(C−

m ) � 2n
π

. (25)

The required inequality (14) follows from (17) and (22)− (25).
If m ≡ 1(mod2) then m � 5 and n−m � 7. Lemma 1 and Lemma 2 imply

E(C+
n−m)+E(C+

m ) � 2n
π

+
2(n−m)π

24(n−m)2−π2 +
2mπ

24m2−π2

� 2n
π

+
14π

24(7)2−π2 +
10π

24(5)2−π2 (26)

� 2n
π

+0.10.

Analogously, Lemma 1 and Lemma 8 give

E(C−
n−m)+E(C+

m) � 2n
π

+0.10, (27)

E(C+
n−m)+E(C−

m) � 2n
π

+0.10, (28)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.10. (29)

The required inequality (14) follows from (17) and (26)− (29).
(2). Let n ≡ 2(mod4) . In this case, n−2 � 8. This together with Lemma 6 gives

E(C−
n−2)+E(C+

2 ) � 2n
π

− 4
π

+2− π2

3(n−2)2

� 2n
π

− 4
π

+2− π2

3(8)2 (30)

� 2n
π

+0.66.
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On the other hand, if m ≡ 0(mod4) then n−m � 6. Lemma 1 and Lemma 9 imply

E(C+
n−m)+E(C+

m ) � 2n
π

+
2(n−m)π

6(n−m)2−π2

� 2n
π

+
12π

(6)3−π2 (31)

� 2n
π

+0.19.

Similarly, by Lemma 1 and Lemma 9 we get the following inequalities:

E(C−
n−m)+E(C+

m ) � 2n
π

, (32)

E(C+
n−m)+E(C−

m ) � 2n
π

+0.37, (33)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.30. (34)

The required inequality (15) follows from (30) and (31)− (34).
If m ≡ 2(mod4) then n−m � 4 and m � 6. Lemma 1 and Lemma 9 give

E(C+
n−m)+E(C+

m ) � 2n
π

+
2mπ

6m2−π2

� 2n
π

+
12π

(6)3−π2 (35)

� 2n
π

+0.19.

Analogously, one can obtain the following inequalities by using Lemma 1 and Lemma
9:

E(C−
n−m)+E(C+

m ) � 2n
π

+0.48, (36)

E(C+
n−m)+E(C−

m ) � 2n
π

, (37)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.30. (38)

The required inequality (15) follows from (30) and (35)− (38).
If m ≡ 1(mod2) then m,n−m � 5. By Lemma 1 and Lemma 9, we obtain

E(C+
n−m)+E(C+

m ) � 2n
π

+
2mπ

24m2−π2 +
2(n−m)π

24(n−m)2−π2

� 2n
π

+
10π

24(5)2−π2 +
10π

24(5)2−π2 (39)

� 2n
π

+0.11.
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Since m and n−m both are odd, by Theorem 4 and (39), we obtain

E(C−
n−m)+E(C+

m) = E(C+
n−m)+E(C−

m )
= E(C−

n−m)+E(C−
m ) (40)

� 2n
π

+0.11.

Inequalities (30), (39) and (40) give (15).
(3). If n ≡ 1(mod2) then n−2 � 7. By Theorem 4 and Lemma 6, we obtain

E(Cn−2)+E(C+
2 ) = E(C−

n−2)+E(C+
2 )

� 2n
π

− 4
π

+2− π2

12(n−2)2 (41)

� 2n
π

+0.70.

On the other hand, if m ≡ 0(mod4) then n−m � 5. Lemma 1 and Lemma 10 give

E(C+
n−m)+E(C+

m ) � 2n
π

+
2(n−m)π

24(n−m)2−π2

� 2n
π

+
2(5)π

24(5)2−π2 (42)

� 2n
π

+0.054.

Similarly, we can show the following inequalities:

E(C−
n−m)+E(C+

m ) � 2n
π

+0.054, (43)

E(C+
n−m)+E(C−

m ) � 2n
π

+0.35, (44)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.35. (45)

Inequality (16) follows from (41) and (42)− (45).
If m ≡ 2(mod4) then m � 6 and n−m � 5. From Lemma 1 and Lemma 10, we

obtain

E(C+
n−m)+E(C+

m) � 2n
π

+
2mπ

6m2−π2 +
2(n−m)π

24(n−m)2−π2

� 2n
π

+
12π

(6)3−π2 +
10π

24(5)2−π2 (46)

� 2n
π

+0.24.
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Similarly, we can show the following inequalities:

E(C−
n−m)+E(C+

m ) � 2n
π

+0.24, (47)

E(C+
n−m)+E(C−

m ) � 2n
π

+0.054, (48)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.054. (49)

Inequality (16) follow from (41) and (46)− (49).
If m ≡ 1(mod2) and n−m ≡ 0(mod4) then m � 5 and n−m � 4. Lemma 1

and Lemma 10 imply

E(C+
n−m)+E(C+

m ) � 2n
π

+
2mπ

24m2−π2

� 2n
π

+
10π

24(5)2−π2 (50)

� 2n
π

+0.054.

Similarly, we can show the following inequalities:

E(C−
n−m)+E(C+

m ) � 2n
π

+0.35, (51)

E(C+
n−m)+E(C−

m ) � 2n
π

+0.054, (52)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.35. (53)

Inequality (16) follows from (41) and (50)− (53).
If m ≡ 1(mod2) and n−m ≡ 2(mod4) then m � 5 and n−m � 6. Lemma 1

and Lemma 10 give

E(C+
n−m)+E(C+

m) � 2n
π

+
2mπ

24m2−π2 +
2(n−m)π

6(n−m)2−π2

� 2n
π

+
10π

24(5)2−π2 +
12π

(6)3−π2 (54)

� 2n
π

+0.24.

Similarly, we can show the following inequalities:

E(C−
n−m)+E(C+

m ) � 2n
π

+0.054, (55)

E(C+
n−m)+E(C−

m ) � 2n
π

+0.24, (56)

E(C−
n−m)+E(C−

m ) � 2n
π

+0.054. (57)
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Inequality (16) follows from (41) and (54)− (57). �
Combining Lemma 7 and Lemma 11, we have the following theorem.

THEOREM 6. For m,n−m � 2 , the following hold for vertex-disjoint cycles:

(1) If n ≡ 0(mod4) then

E(C+
n−2)+E(C+

2 ) � E(Cn−m)+E(Cm). (58)

(2) If n ≡ 2(mod4) then

E(C−
n−2)+E(C+

2 ) � E(Cn−m)+E(Cm). (59)

(3) If n ≡ 1(mod2) then

E(Cn−2)+E(C+
2 ) � E(Cn−m)+E(Cm). (60)

The following theorem gives the sidigraphs in Sn with minimal and maximal
energy.

THEOREM 7. Let S ∈ Sn with signed directed cycles Cr1 and Cr2 , where 2 �
r1,r2 � n−2 .

(1) S has minimal energy when Cr1 = Cr2 = C−
2 .

(2) If n ≡ 0(mod4) then S has maximal energy when Cr1 = C+
n−2 and Cr2 = C+

2 .

(3) If n ≡ 2(mod4) then S has maximal energy when Cr1 = C−
n−2 and Cr2 = C+

2 .

(4) If n ≡ 1(mod2) then S has maximal energy when Cr1 = Cn−2 and Cr2 = C+
2 .

Proof. Let S ∈ Sn with signed directed cycles Cr1 and Cr2 , where 2 � r1,r2 �
n−2. From Theorem 5, it follows that

E(S) = E(Cr1)+E(Cr2). (61)

(1). As E(C−
2 ) = 0, it is easily seen from (61) that S has minimal energy when

Cr1 = Cr2 = C−
2 .

(2). If n ≡ 0(mod4) then let Cr1 = C+
n−2 and Cr2 = C+

2 . We take any sidigraph
H ∈ Sn with signed directed cycles Cs1 and Cs2 , where 2 � s1,s2 � n−2. From (61)
and Theorem 6 (1), it holds that

E(S) = E(C+
n−2)+E(C+

2 )

� E(Cn−s1)+E(Cs1).
(62)

Since n− s1 � s2 , we get from (6) and Theorem 3 that E(Cn−s1) � E(Cs2) . Thus

E(Cn−s1)+E(Cs1) � E(Cs2)+E(Cs1)
= E(H).

(63)

Inequalities (62) and (63) show that E(S)� E(H) . Thus S has the maximal energy
among all sidigraphs of Sn .

(3) and (4) can be proved analogously. �
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4. Conclusion

This paper focuses on a class Sn of those n -vertex bicyclic sidigraphs which
contain vertex-disjoint directed cycles, n � 4. We obtained sidigraphs in Sn which
have minimal and maximal energy. It will be worthwhile to consider a more general
class of bicyclic sidigraphs and to find sidigraphs in this class with extremal energy. We
leave this problem to future work.
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