REMARK ON THE PAPER OF K. MURALI AND K. M. NAGARAJA

ALFRED WITKOWSKI

(Communicated by J. Pečarić)

Abstract. We show that the result of K. Murali and K. M. Nagaraja is not correct.

In the paper [1] the authors consider the function defined for \(a, b > 0, \ p, q \in \mathbb{R}, \ r + s = 1, \ r, s > 0 \) by the formula

\[
N_{p,q}(a,b;r,s) = \left(\frac{p^2}{q^2} \left(\frac{ra^p + sb^p}{ra^q + sb^q} \right) \left(\frac{a^q - b^q}{a^p - b^p} \right) \right)^{\frac{1}{q-p}}.
\]

(1)

(this formula can be extended by continuity to an analytic function in variables \(p, q, a, b \)). The authors call \(N_{p,q} \) a mean and claim the following

CLAIM. ([1] Theorem 3.1) For fixed \((p,q) \in \mathbb{R} \times \mathbb{R}\) and \(r = s \)

1. Stolarsky’s extended type means \(N_{p,q}(a,b;r,s) \) are Schur convex with respect to \((a,b)\) if \(p + q + 3 \leq 0 \).

2. Stolarsky’s extended type means \(N_{p,q}(a,b;r,s) \) are Schur concave with respect to \((a,b)\) if \(p + q + 3 \geq 0 \).

These statement cannot be left without comment.

Firstly, it is not true that \(N_{p,q}(a,b;r,s) \) are means. It is known that in case \(p + q > 0 \) the Stolarsky means satisfy

\[
\left(\frac{p}{q} \left(\frac{a^q - b^q}{a^p - b^p} \right) \right)^{\frac{1}{q-p}} > \sqrt{ab}
\]

Suppose \(a > b \). Taking \(s \) close to 1 we can make \(\frac{ra^p + sb^p}{ra^q + sb^q} \) as close to \(b^{p-q} \) as we wish. For such \(s \) one has \(N_{p,q}(a,b;r,s) > a \).

Secondly, the statements 1. and 2. are not true.

Keywords and phrases: mean, Schur convexity.
Note that
\[N_{p,q}(a,b;\frac{1}{2},\frac{1}{2}) = \frac{E_{p,q}^2(a,b)}{G_{p,q}(a,b)}, \]
where
\[E_{p,q} = \left(\frac{p}{q} \left(\frac{a^q-b^q}{a^p-b^p} \right) \right)^{\frac{1}{q-p}}, \quad G_{p,q} = \left(\frac{a^q+b^q}{a^p+b^p} \right)^{\frac{1}{q-p}} \]
are respectively the Stolarsky and Gini means. Note also that for positive \(p, q \) holds
\[\lim_{a \to 0} E_{p,q}(a,1) = \left(\frac{p}{q} \right)^{\frac{1}{q-p}} > 0, \quad \text{and} \quad \lim_{a \to 0} G_{p,q}(a,1) = 1 \]
and they both satisfy the reciprocity identity
\[E_{-p,-q}(a,b) = \frac{ab}{E_{p,q}(a,b)}, \quad G_{-p,-q}(a,b) = \frac{ab}{G_{p,q}(a,b)}. \]
Therefore for negative \(p, q \) we have
\[N_{p,q}(a,1) = \frac{E_{p,q}^2(a,1)}{G_{p,q}(a,1)} = a \frac{G_{-p,-q}(a,1)}{E_{-p,-q}(a,1)} \to 0 \quad \text{as} \quad a \to 0. \]

For small \(a \) we have \((\frac{1+a}{2}, \frac{1+a}{2}) \prec (1,a)\) and \(N_{p,q}(\frac{1+a}{2}, \frac{1+a}{2}) > N_{p,q}(1,a)\), so \(N_{p,q}\) cannot be Schur convex for negative \(p, q \), so the claim 1. cannot be true.

Consider now \(q > p > 0 \) and suppose that \(N_{p,q} \) is Schur concave. Then, since for small \(a \) \((\frac{1+a}{2}, \frac{1+a}{2}) \prec (1,a)\) we should have \(\frac{1+a}{2} = N_{p,q}(\frac{1+a}{2}, \frac{1+a}{2}) \geq N_{p,q}(1,a)\). Denote \(\delta = q - p \) and take the limit as \(a \to 0 \).
\[
\frac{1}{2} \geq \left(\frac{p}{p+\delta} \right)^{2/\delta} \iff 2^{p/\delta} \leq \left(1 + \frac{\delta}{p} \right)^{\frac{2}{\delta}}
\]
and this is impossible for large \(p \), since the right-hand side is bounded by \(e \). Therefore the claim 2. cannot be true either.

It is easy to find out why the author’s reasoning failed: they conclude that the function \(g_{p,q}(t) \) defined in [1, Lemma 3.1] is positive (negative) for all \(t > 0 \) from the fact that it is such for \(t = 0 \) (cf. [1, Lemma 3.3]).

And one more remark concerning the final conclusion: the authors write, that for \(r \neq s \) Schur convexity of \(N_{p,q} \) is an open problem. Since \((a,b) \prec (b,a) \prec (a,b)\), Schur convexity/concavity implies symmetry, and since \(N_{p,q} \) lack this property, they cannot be Schur convex/concave. This simple argument can be found e.g. in the classical book on majorization [2, p. 54].
REFERENCES

(Received May 27, 2016)

Alfred Witkowski
Institute of Mathematics and Physics
UTP University of Science and Technology
al. prof. Kaliskiego 7, 85-796 Bydgoszcz, Poland

e-mail: alfred.witkowski@utp.edu.pl