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ON THE RESTRICTED SUMMABILITY OF THE
MULTI-DIMENSIONAL VILENKIN-CESARO MEANS

ISTVAN BLAHOTA AND KAROLY NAGY

(Communicated by J. Pecaric)

Abstract. The properties of the maximal operator of the (C,o)-means (& = (0,...,0y)) of
the multi-dimensional Vilenkin-Fourier series are discussed, where the set of indices is inside a
cone-like set. Weisz proved that the maximal operator is bounded from martingale Hardy space
H} to the space L, for po < p (po =max{1/(1+04);k =1,...,d}) [21]. The next question
arise. Is the boundary point po essential or not? In the present paper we show that the maximal
operator Gg " is not bounded from the Hardy space H},’U to the space Ly, .

1. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis (for more details
see [1, 16]).

Let us denote the set of positive integers by N., N:= N, U{0}. Let m :=
(mg,my,...) be a sequence of the positive integers not less than 2. Denote by Z,, :=
{0,1,...,m, — 1} the additive group of integers modulo m;,,. Define the group G, as
the complete direct product of the groups Z,,, with the product of the discrete topolo-
gies of Z,,, °s.

In this paper we discuss bounded Vilenkin groups, i.e. the case when sup, m,, < oo.

The direct product u of the measures

pn ({J}) = 1/mu, (j € Zn,)

is a Haar measure on G,, with i (G,,) = 1. The elements of G,, are represented by
sequences
X = (X0, X1, s Xny )5 (Xn € Zy,) -

It is easy to give a base for the neighbourhood of G, :
I() (x) = Gm,

Li(x):={y€Gn|yo=x0,---sYn-1=%n-1}, (xE Gp,neN).
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Let us denote I, :=I,,(0), for n € N. For a set S C G,,, we use the standard notation
S:=G,\S.

If we define the so-called generalized number system based on m in the following
way:

My :=1, M,y :=m,M,, (neN),

then every n € N can be uniquely expressed as n =Y nMy, where ny € Z,, (k€ N)
and only a finite number of n; ‘s differ from zero. The order |n| of a positive natural
number 7 is defined by |n| := max{i € N:n; #0}.

Next, we introduce on G, an orthonormal system which is called the Vilenkin sys-
tem. At first we define the complex-valued function ry (x) : G,, — C, the generalized
Rademacher functions, by

ri (x) := exp (2muxg/my), (2 =—1, x € Gy, kEN).

The Vilenkin system v := (y, : n € N) is defined on G, as:

Yu(x) == ﬁrzk (x), (neN).
k=0

Specifically, we call this system the Walsh-Paley system, when m = 2.
The Vilenkin systems are orthonormal and complete in L, (G,,) (see [26]).
Let 0<a <1 and

A% (j—Hx) _ (et D(a+2)...(a+))
h J J!

, JeN, a#—1,-2,...).

It is known that

n
A%~ % AT —AY =AY Y AT =AL (1)
k=0

(see Zygmund [27, page 42.]). The one-dimensional Dirichlet kernels and Cesaro ker-
nels are defined by

n—1 n
1
Dp:i=Y W, KI(x):=— 3 A%/ Dy(x),
k=0 A k=0
It is known [25], that
[IKG@laue) < (Ve @)
GVU

Choosing o = 1 we defined the nth Fejér kernel, as special case. It is well-known that
the M, th Dirichlet kernels have a closed form (see e.g. [16])

0, if x & I,
Dy (x) =
M, (%) {M,,, if x € I,.
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For one-dimensional Walsh-Fourier series Fine [3] showed that the (C, o) means
0% f of an integrable function f converge almost everywhere to f as n — oo. The
maximal operator o f := sup, |0%f] (0 < ov < 1) was investigated by Weisz [22].
He proved that the maximal operator o is bounded from the Hardy space H,, to the
space L, when p > 1/(1+4 a). In the endpoint p = 1/(1+ o) Goginava constructed a
counterexample martingale which shows that the assumption p > 1/(1+ o) is essential
[8]. Similar result for (C,1) means on bounded Vilenkin groups are due to Simon [17].
Namely the maximal operator of Fejér means is bounded from the Hardy space H; to
the space L;. Recently, new aspects of the maximal operator of Vilenkin-Fejér means
are showed by Persson and Tephnadze [14, 15].

Let us set G := G,, x ... x G,,, where the same Vilenkin group G,, appears d
times in the direct product. The Kronecker product (q/n ine€N¢ ) of d Vilenkin system
is said to be the d-dimensional (or multi-dimensional) Vilenkin system. That is,

W (%) 1= W, (1) .y (xd> ,

where x:= (x',....x) € G}, and n:= (n,...,nq).
If €L (GY), then the number f(n) := [ fW, (n€N?) is said to be the
Gd

nth (d -dimensional) Vilenkin-Fourier coefficient 0%1 f. We can extend this definition to
martingales in the usual way (see Weisz [19, 20]).
The d-dimensional Fourier partial sums are the following:

Zwaz

= ld =0
where x:= (x1,...,x4) and n:= (ny,...,ny).
The d-dimensional (C, ) (o= (04,...,0y)) or Cesaro means of a martingale is
defined by

Orf0) = Z 5 HA“'*Sk (%),

H nt kl kd 0i=
where k:= (ki,...,k;). It is known that

Ky (x) = K (xl)...K,de(xd), (x:= ' xh), ni=(ny,... ng)).

For x = (x',x?,...,x%) € G¢ and n = (ny,n,...,ng) € N the d-dimensional rectan-
gles are defined by 1,(x) := 1, (x') x ... x I,,(x?) For n € N¥ the o -algebra generated
by the rectangles {I,(x),x € G%} is denoted by .7, .

Suppose that for all j =2,...,d the functions y;j: [1,e0) — [1,e0) are strictly
monotone increasing continuous functions with properties lim..y; = o and ¥;(1) = 1
(j=2,...,d). Moreover, suppose that there exist ,c i.1,Cj2 > 1 such that the inequal-
ity

¢ ¥5(x) < 75(Cx) < ¢jnv;(x) 3)
holds for each x > 1. In this case the functions y; are called CRF (cone-like restriction
functions). Let ¥ := (7»,...,%) and B; > 1 be fixed (j =2,...,d). Weisz investigated
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the maximal operator of the multi-dimensional (C, &) means and the convergence over
a cone-like set L (with respect to the first dimension), where

={neN": B y(m) <nj < Byyi(m), j=2,...,d}.

If each y; is the identical function then we get a cone. The cone-like sets were intro-
duced by Gét in dimension two [5]. The condition (3) on the function ¥ is natural,
because Gat [5] proved that to each cone-like set with respect to the first dimension
there exists a larger cone-like set with respect to the second dimension and reversely, if
and only if the inequality (3) holds.

Weisz defined a new type martingale Hardy space depending on the function y
(see [21]). For a given ny € N set nj := [y;(My,)| (j =2,...,d), that is, n; is the
order of ¥;(My,) (this means that M,; < ¥;(Mn,) < My 41 for j=2,...,d). Let
i := (n1,...,nq). Since, the functions y; are increasing, ' the sequence (nh n; € N)
is increasing, too. It is given a class of one-parameter martingales f = (f5,, n1 € N)
with respect to the o -algebras (Fp, n; € N). The maximal function of a martingale
f is defined by f* := sup |f5,|. For 0 < p < o the martingale Hardy space H}(G%)

nieN

consists of all martingales for which HfHH,Z = [|f*[, < eo, where .||, is the usual
L, norm. It is known (see [20]) that H},’ ~ L, for 1 < p < e, where ~ denotes the
equivalence of a norm and a space.

If fe Li(G%), then it is easy to show that the sequence (SMn17-~-7Mnd (f) ;1 =
(n1,...,n4), n1 € N) is a one-parameter martingale with respect to the o -algebras
(Fay, n1 € N). In this case the maximal function can also be given by

/ fu)dp(u
’11
for x € G4,.

We define the maximal operator GLa Y

oy " f(x) = sup|o; f(x)].

nel

fT(x) = sup ———=

nleNll nl n1eN

For double Walsh-Fourier series, Moricz, Schipp and Wade [10] proved that o, f
converge to f a.e. in the Pringsheim sense (that is, no restriction on the indices other
than min(n;,n,) — o) for all functions f € Llog™ L. In the paper [4] Gét proved that
the theorem of Méricz, Schipp and Wade can not be sharpened.

The convergence almost everywhere of double Walsh-Fejér means o, f of inte-
grable functions, where the set of indices is inside a positive cone around the identical
function, that is B! <y /na < B is provided with some fixed parameter 3 > 1, was
proved by Gat [6] and Weisz [23]. Analogical results for Vilenkin-Fejér means are pre-
sented by Gat and Blahota [2], for multidimensional Vilenkin-Cesaro means by Weisz
[24].

A common generalization of results of Mdricz, Schipp, Wade [10] and G4t [6],
Weisz [23] for cone-like set was given by the second author and Gét in [7]. That is,
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a necessary and sufficient condition for cone-like sets in order to preserve the conver-
gence property, was given. Recently, the properties of the maximal operator of the
(C, ) means of a multi-dimensional Vilenkin-Fourier series provided that the supre-
mum in the maximal operator is taken over a cone-like set, was discussed by Weisz
[21]. Namely, it was proved that the maximal operator is bounded from H, 2,/ to L, for
po < p < oo (with po :=max{1/(1+ 04);i =1,...,d}) and is of weak type (1,1).
Consequently, the (C, o) means of multi-dimensional Vilenkin-Fourier series of an in-
tegrable function f converge almost everywhere to f. Weak type (1, 1) inequality are
showed for more general systems by the second author [12, 13], but only in dimen-
sion 2.

At the endpoint p = pg, we show that the maximal operator af‘ ™ is not bounded
from the Hardy space H}, to the space L,,. That is, we construct a counterexample
martingale in the Hardy space H, ,7,/0 which shows that the boundary point py is essential
for the boundedness of the maximal operator o, .

We mention that in dimension 2 and for Fejér means a counterexample martingale
is presented by the second author [11], earlier. Unfortunately, that counterexample
martingale and method do not work for the maximal operator of (C, o) means (0 <
ap,...,0y < 1). This fact motivated us to search a suitable martingale and method for
the original question.

2. Auxiliary propositions and main results

THEOREM W. (Weisz [21]) Let v be CRF. The maximal operator Gg’* is bounded
from the Hardy space HZ; to the space L, for po < p <1 (po:=max{l/(1+0;);i =
1,....d}).

Our main theorem shows that the boundary point p is essential.

THEOREM 1. Let Y be CRF and 0 < o1 < 0, ...,0y < 1. The maximal operator
Gg ™ is not bounded from the Hardy space HZ,/O to the space Ly, (where py:=1/(1+

061)).

To prove our theorem we need the following Lemma.

LEMMA 1. Let ne N and 0 < ax < 1. Then

n

oo 1/(o+1) >
Lwﬁaﬁﬂﬂﬁ) an () > elo) o

We note that analogical result for Walsh system was proved by Goginava in [8]. In this
paper we follow his method. But, we write only a few lines about the proof (for more
details see [8]).

Proof. Using equality

[ DD (x) = mini. )
Gm
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and (1) we obtain

2

o—

du(x) =

Mz
™M=

A% 1Ag‘,:}. min(i, f)

Il
—_

1

J

Il
Mz

A;’;}A ]+22A;’;}A i 4)
i=1j=i+1

—

j=
a)N2O¢+1 .

A’—‘

WV
o

1

Let us denote

i—1
EN,- = {x cGy: |K;\);i(x)| < CQ(OC)]V,‘}, QN,- = FN,\ U ENJ-;
j=1

where N; := % ,i=1,2

yeees [@} , n>2 and cy(o) is some positive constant
(depends only on o) discussed later. We note that the sets Qy, and QNj are disjoint
sets for different i and j.

Inequalities (4) and (2) imply

ar(@NP < [ (g K ()P au )

— [ K D2 au + [ (A% 1K ) Pdu(
Ey,

< ea(@)AGN: [ A% K ()| ap ()
Ey,

+ [ ARG ) DDA K () dpa )
EN-

i

< exf@)es(NF +ea(@NF [ (AR K ()M ap ().

Ex,
Now, we define c;(ar) := 20613((0‘02)7 then we obtain
[ @R IKE DY Vg () > es(0) > 0. )

En.

i

From the definition of the set Ey, follows

clai(En) < [ 1KG@)Idu) < K < colo0),

Ev,



ON THE RESTRICTED SUMMABILITY OF . . . 1003

(see also (2)), so

(6)

Inequalities (5) and (6) yield

i-1
/ (AR IKS (D" Vdp(x) = es(er) — es(@)N: Y, u(En;) = co(ar),
Oy, =1

if n is big enough. (For more details see [8].) This inequality implies

[n/logyn]

o 1/(o+1) o 1/(o+1)
B, ANV > 3 lg@mmmmn) i (x)

Gm
[n/logzn
> / (AR 1K (D dpa ()

n

> co(0t)

log,n’
This completes the proof of Lemma 1. [

In unrestricted case for double (C, ) means of Walsh-Fourier series Goginava
constructed a two-dimensional counterexample martingale at the endpoint pgy [9]. Un-
fortunately, his martingale is not suitable in our problem, but his method gave us some
idea to solve our original problem.

Now, we prove our main Theorem.

Proof of Theorem 1. Let us define a martingale in H,ZO

fﬁ(x) = (DM)11+1( DMnl H an 71 _x/

Now, we show that, it is a one-parameter martingale, where n,,...,n; is defined to
np, earlier. Now, we calculate the kth Fourier coefficients and the jth partial sums
S;(far;x) of the Fourier series of fi;.

~ 1, ifki=My,....My,41—1,andk; = n,lforallj— ..,d,
0, otherwise,
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and

S;(farx)
Ji—l d
= Z fﬂ(vaanfla' nd 1 WV HW
v=0 =2
(D, (x") = Dag, XN T g, () iF j1 = My, + 1., My 1 — 1, and
Ji>My, foralll=2,....d,

=9 far(x) if ji1 > My, 41 and j; > M, (7
foralll=2,...,d,
0 otherwise.

We immediately have that

fir(x) = SH%ISMn7I,....Mn1d ()| = far(x)]-

Moreover,
1-1
el = 1l < M7 < (8)

That is, f7r € H, IZO. We can write the nth Dirichlet kernel with respect to the Vilenkin
system in the following form:

Dy (x) = Dy, (x) + rjn (x) D, (x) 9

Letus set Ly := My, +N where 0 <N < M,, and LY := [y;(My, +N)] for j=2,...,d,
(where [x] denotes the integer part of x). In this case LV := (LY,... L)) € L. Now,
we calculate 6% v At

By equahty (7), (9) and (1) we may write that

|opn frr (%)
1 LT
= 0.A% |2, 2 HALN kSk (firsx)
J=1 Ly o=
1 a

y o 2 HALN kHWM"z ")(Dy, (x") — D, (x1))

j=1 Lj ky Mnl“"lkd ng— 1+li=

1 L’zvfM,,z,lLd—M,ld,l d LY My,

i—1 o —1 1
= —0 A% AT} Dy, (x
Hd Aa/ 2 2 H Lﬁv— nifl_ki 2 Lllv_Mnl_kl kl( )

Jj=1 LN ky=1 kg=1 i=2 k1=1
J
N N
1 Lz *an—lLd*Mnd 1 d

o;—1 o o 1
= —Hd A% kZ kZ HA l My, ki AL’I{’—M,,IKUI\ILM,;I ()
i=1 N =1 =1
J Lj 2 d




ON THE RESTRICTED SUMMABILITY OF . . . 1005

Since, it is easily seen that

L =My,
i—1 I
A% ciA%
kzl LY =My, =k = LY
=
for i=2,...,d, we have that
c(a)

o fir ()| > G AR |KY' ()]

o
My,
Moreover, we have that

o, _
o " far(x) = iggl@?‘fw@)l > B lopy far(x)]

c(a) oy | -0 (1
= Mr(lxll lgr)\f/lil])‘(/[nlAN }KN ()C )|

By inequality (8) and Lemma 1 we obtain that

e { 1/po
||GL fl”PO > (/Gd max |o-£‘Nfﬂ(x)|Pod”(x)>

||fﬁHH;’O - Mifl/ﬁo LSN<My,

C(a)Mr(,xll / o o . . 1/po
ey ATVIK! Pog
My} Gmlg}/lgﬁnl( N KN (D Pedp

n 1+o0y
c(a)( 1) — o0 asn| — oo,

logn

This completes the proof of our Theorem. [J
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