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INEQUALITY ON THE TRIANGLE
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(Communicated by A. Horwitz)

Abstract. We study the functional forms of the most important inequalities concerning convex
functions on the triangle. Our intension is to construct the functional form which implies the
integral and discrete form of the Jensen inequality, the Fejér, and so the Hermite-Hadamard
inequality. To reach this goal, we combine features of positive linear functionals and convex
functions.

1. Introduction

1.1. Objectives

The first objective of the article is to promote the inequality for convex functions
on the triangle that contains the Jensen, Fejér and Hermite-Hadamard inequality. The
second objective is to refine the resulting inequality.

As is known, one proven way to achieve the first objective is to include positive
linear functionals. The significant results concerning the application of positive func-
tionals to convex analysis were obtained by Jessen (see [7] and [8]) for one variable
convex functions, and McShane (see [14]) for multivariate convex functions.

The article also has a slightly wider scope, because the methods applied to the
triangle can be transferred to higher dimensions.

1.2. Convex functions on the triangle

The basic structure which is used in the article is a real linear space S . Let us
remind the initial notions of convexity upgrading the signification of the space S .

A set C ⊆ S is said to be convex if the inclusion

αx+ βy ∈C (1)

holds for all points x,y ∈C and all coefficients α,β ∈ [0,1] satisfying α +β = 1. The
sum αx+ βy with the above coefficients is called convex combination.
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A function f : C → R is said to be convex if the inequality

f (αx+ βy) � α f (x)+ β f (y) (2)

holds for all convex combinations αx+ βy of points x,y ∈C .
The triangle with vertices a,b,c ∈ R

2 that do not belong to the same line is used
permanently throughout the article. It will be marked by � or abc , and its interior
will be marked by �o . Each point x ∈ � can be represented by the unique trinomial
convex combination

x = αxa+ βxb+ γxc. (3)

The coefficients can be expressed by the ratio of areas

αx =
ar(xbc)
ar(abc)

, βx =
ar(xac)
ar(abc)

, γx =
ar(xab)
ar(abc)

, (4)

and thus by the ratio of determinants

αx =

∣∣∣∣∣∣
x1 x21
b1b21
c1 c21

∣∣∣∣∣∣∣∣∣∣∣∣
a1a21
b1b21
c1 c21

∣∣∣∣∣∣
, βx = −

∣∣∣∣∣∣
x1 x21
a1a21
c1 c21

∣∣∣∣∣∣∣∣∣∣∣∣
a1a21
b1b21
c1 c21

∣∣∣∣∣∣
, γx =

∣∣∣∣∣∣
x1 x21
a1a21
b1b21

∣∣∣∣∣∣∣∣∣∣∣∣
a1a21
b1b21
c1 c21

∣∣∣∣∣∣
. (5)

Let f : � → R be a convex function. The secant plane of f passes through the
respective graph points of a , b and c , and its equation is

f sec
abc(x) =

ar(xbc)
ar(abc)

f (a)+
ar(xac)
ar(abc)

f (b)+
ar(xab)
ar(abc)

f (c). (6)

Let d ∈ �o be a point of the triangle interior. The support planes of f at d pass
through the respective graph point of d , and their equations depend on the pairs of
slope coefficients κ1 ∈ [ f ′1(d−), f ′1(d+)] and κ2 ∈ [ f ′2(d−), f ′2(d+)] . For the specified
pair of coefficients κ1 and κ2 , the corresponding equation is

f sup
d (x1,x2) = κ1(x1−d1)+ κ2(x2−d2)+ f (d1,d2). (7)

The support-secant plane inequality

f sup
d (x) � f (x) � f sec

abc(x) (8)

holds for every x ∈� .

1.3. Positive functionals on the space of functions

Let S be a nonempty set, and let F = F(S) be a subspace of the linear space of all
real functions on the domain S . We assume that the space F contains the unit function
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u defined by u(s) = 1 for every s ∈ S . Then the space F contains every real constant
κ within the meaning of κ = κu , and F contains every composite function f (g1,g2)
of an affine function f : R

2 → R and a pair of functions g1,g2 ∈ F . Specifically, using
the equation f (x1,x2) = κ1x1 + κ2x2 + κ3 , we have the composition

f (g1,g2) = κ1g1 + κ2g2 + κ3u (9)

which belongs to the space F .
We will use linear functionals on the space of real functions. Let L = L(F(S)) be

the space of all linear functionals on the space F(S) . A functional L ∈ L is said to be
positive (nonnegative) if the inequality L(g) � 0 holds for every nonnegative function
g∈F . If g1,g2 ∈F are functions such that g1(s) � g2(s) for every s∈ S , then a positive
functional L satisfies the inequality

L(g1) � L(g2). (10)

A functional L ∈ L is said to be unital (normalized) if L(u) = 1. Such functional has
the property L(κu) = κ for every real constant κ .

For more details on positive linear functionals and related topics, we recommend
an interesting book of functional analysis in [1].

2. Main results

We start with two initial lemmas as a basis for our research.
The first lemma provides a basic inclusion relating to the image of a pair of func-

tions g1,g2 ∈ F and a positive unital functional L ∈ L . The proof of lemma includes a
convex analytics through the application of convex combinations.

LEMMA 1. Let g1,g2 ∈ F be functions such that (g1(s),g2(s)) ∈ � for every
point s ∈ S .

Then each positive unital functional L ∈ L satisfies the inclusion

(L(g1),L(g2)) ∈�. (11)

Proof. Taking a point s in S , we get the plane point (g1(s),g2(s)) in � , and its
unique convex combination

(g1(s),g2(s)) = α(s)(a1,a2)+ β (s)(b1,b2)+ γ(s)(c1,c2). (12)

Using equations in (5), we can determine functions α , β and γ showing that they
belong to F . For example, we have α(s) = α1g1(s)+ α2g2(s)+ α3 . Since the func-
tional L is positive, the numbers L(α) , L(β ) and L(γ) are nonnegative, and since
α(s)+ β (s)+ γ(s) = u(s) , it follows that L(α)+L(β )+L(γ) = 1.

Acting with the functional L to each coordinate of equation in (12), we obtain the
convex combination

(L(g1),L(g2)) = L(α)(a1,a2)+L(β )(b1,b2)+L(γ)(c1,c2) (13)
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ensuring that the point (L(g1),L(g2)) belongs to the triangle � . �
Using hyperplanes, McShane proved that the inclusion in (11) generally applies

to closed convex sets in R
n . That part of his work (see [14]) he called the geometric

formulation of Jensen’s inequality.
The second lemma provides a basic equality relating to the composition of an

affine function and a unital functional.

LEMMA 2. Let g1,g2 ∈ F be functions, and let L ∈ L be a unital functional.
Then each affine function f : R

2 → R satisfies the equality

f
(
L(g1),L(g2)

)
= L
(
f (g1,g2)

)
. (14)

Proof. Using the affine equation f (x1,x2) = κ1x1 + κ2x2 + κ3 , and applying the
unital property of L , we obtain

f
(
L(g1),L(g2)

)
= κ1L(g1)+ κ2L(g2)+ κ3

= L(κ1g1 + κ2g2 + κ3u)

= L
(
f (g1,g2)

) (15)

proving the equality in formula (14). �
In further consideration, we include continuous convex functions.

THEOREM 1. Let g1,g2 ∈ F be functions such that (g1(s),g2(s)) ∈ � for every
s ∈ S . Let L ∈ L be a positive unital functional, and let l = (L(g1),L(g2)) .

Then each continuous convex function f :�→R such that f (g1,g2)∈ F satisfies
the double inequality

f (l) � L
(
f (g1,g2)

)
� f sec

� (l). (16)

Proof. The point l belongs to the triangle � by Lemma 1. We sketch the proof
in two steps depending on the position of l .

If l belongs to the interior �o , we take any support plane of f at l . Acting
with the positive functional L to the support-secant inequality in formula (8) with x =
(g1(s),g2(s)) , we obtain

L
(
f sup
l (g1,g2)

)
� L
(
f (g1,g2)

)
� L
(
f sec
� (g1,g2)

)
.

By applying Lemma 2 to affine functions f sup
l and f sec

� , and writing the point
(L(g1),L(g2)) as l , the above inequality takes the form

f sup
l (l) � L

(
f (g1,g2)

)
� f sec

� (l), (17)

where the first term
f sup
l (l) = f (l).
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If l belongs to the boundary ∂� , we rely on the continuity of f using a support
plane at a point of the interior �0 that is close enough to l . Given ε > 0, we can find
d ∈�0 so that

f (l)− ε < f sup
d (l).

Combining the above inequality, and the inequality in formula (17) with the support
plane at d , we obtain

f (l)− ε < L
(
f (g1,g2)

)
� f sec

� (l).

The inequality in formula (16) follows by sending ε to zero. �

Formula (16) can be expressed in the form that includes the convex combination
of the triangle vertices a , b and c . The respective form of Theorem 1 is as follows.

COROLLARY 1. Let g1,g2 ∈F be functions such that (g1(s),g2(s))∈� for every
s ∈ S . Let L ∈ L be a positive unital functional, and let

l = (L(g1),L(g2)) = αla+ βlb+ γlc. (18)

Then each continuous convex function f :�→R such that f (g1,g2)∈ F satisfies
the double inequality

f (αla+ βlb+ γlc) � L
(
f (g1,g2)

)
� αl f (a)+ βl f (b)+ γl f (c). (19)

Proof. As regards the last terms of formulae (16) and (19), the equality

f sec
� (l) = αl f

sec
� (a)+ βl f

sec
� (b)+ γl f

sec
� (c) = αl f (a)+ βl f (b)+ γl f (c)

holds because of the affinity of f sec
� , and its coincidence with f at vertices. �

We want to refine the inequality in formula (16). In addition to the secant plane
relating to � , we will use three more secant planes. These planes will be specified by
a point d belonging to the interior �o .

LEMMA 3. Let d ∈ �o be an interior point, and let �1 = dbc, �2 = dac and
�3 = dab be subtriangles.

Then each convex function f : �→ R satisfies the secant planes inequality

min
{

f sec
�1

(x), f sec
�2

(x), f sec
�3

(x)
}

� f (x) � max
{

f sec
�1

(x), f sec
�2

(x), f sec
�3

(x)
}

(20)

for every x ∈� .

Proof. The cases x ∈�1 , x ∈�2 and x ∈�3 should be considered. �

Let �i be triangles as in the previous lemma, and let g1,g2 ∈ F be functions
such that (g1(si),g2(si)) ∈ �i for some triplet of points s1,s2,s3 ∈ S . Using these
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assumptions, we can find a triplet of positive unital functionals L1,L2,L3 ∈ L meeting
the inclusions

(Li(g1),Li(g2)) ∈�i. (21)

For example, each of functionals Li may be taken as the evaluation at the given point
si defined by Li(g) = g(si) for every g ∈ F .

The following refining theorem uses functionals Li that satisfy the inclusions in
formula (21).

THEOREM 2. Let d ∈�o , and let �1 = dbc, �2 = dac, �3 = dab. Let g1,g2 ∈
F be functions such that (g1(s),g2(s)) ∈� for every s ∈ S , and let Li ∈ L be positive
unital functionals such that li = (Li(g1),Li(g2)) ∈ �i . Let L = ∑3

i=1 λiLi be a convex
combination of functionals Li , and let l = (L(g1),L(g2)) .

Then each continuous convex function f :�→R such that f (g1,g2)∈ F satisfies
the series of inequalities

f (l) �
3

∑
i=1

λi f (li) � L
(
f (g1,g2)

)
�

3

∑
i=1

λi f
sec
�i

(li) � f sec
� (l).

(22)

Proof. Applying the discrete form of Jensen’s inequality (see [5]) to the convex
combination l = ∑3

i=1 λili , we get

f (l) �
3

∑
i=1

λi f (li). (23)

Applying the left-hand side of formula (16) to each Li , we obtain

3

∑
i=1

λi f (li) �
3

∑
i=1

λiLi
(
f (g1,g2)

)
= L
(
f (g1,g2)

)
. (24)

Acting with Li to the right-hand side of the secant planes inequality in formula (20)
with x = (g1(s),g2(s)) , and using the assumption that li belongs to �i , we find

Li
(
f (g1,g2)

)
� Li

(
f sec
�i

(g1,g2)
)

= f sec
�i

(li).

Multiplications by λi and summation yield

3

∑
i=1

λiLi
(
f (g1,g2)

)
�

3

∑
i=1

λi f
sec
�i

(li) � f sec
� (l) (25)

because
3

∑
i=1

λi f
sec
�i

(li) �
3

∑
i=1

λi f
sec
� (li) = f sec

� (l).
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Putting together the inequalities in formulae (23), (24) and (25) into a series, we pro-
duce the inequality in formula (22). �

The geometric presentation of the series of inequalities in formula (22) can be seen
in Figure 1. The inequality terms are represented by five black dots above the point l .
If the function f is strictly convex, and if the functional L is strictly positive, then all
black dots are different.

Figure 1: Geometric presentation of the inequality in formula (22).

In order to adapt Theorem 2 for applications, we need to emphasize the points
a , b , c and d in formula (22). In the representation of the point l , we have already
used the convex combination of vertices of the triangle � . We can similarly represent
the points li by the convex combinations of vertices of the triangles �i . Due to the
affinity of the secant planes f sec

�i
, the representations of li may be employed to obtain

the convex combination

3

∑
i=1

λi f
sec
�i

(li) = α f (a)+ β f (b)+ γ f (c)+ δ f (d).

COROLLARY 2. Let d ∈ �o , and let �1 = dbc, �2 = dac, �3 = dab. Let
g1,g2 ∈ F be functions such that (g1(s),g2(s)) ∈� for every s ∈ S , and let Li ∈ L be
positive unital functionals such that li = (Li(g1),Li(g2)) ∈�i . Let L = ∑3

i=1 λiLi be a
convex combination of Li , and let l = (L(g1),L(g2)) = αla+ βlb+ γlc .
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Then each continuous convex function f :�→R such that f (g1,g2)∈ F satisfies
the series of inequalities

f (αla+ βlb+ γlc) �
3

∑
i=1

λi f (li) � L
(
f (g1,g2)

)
� α f (a)+ β f (b)+ γ f (c)+ δ f (d)

� αl f (a)+ βl f (b)+ γl f (c)

(26)

where

α = λ2
ar(dcl2)
ar(�2)

+ λ3
ar(dbl3)
ar(�3)

(27)

β = λ1
ar(dcl1)
ar(�1)

+ λ3
ar(dal3)
ar(�3)

(28)

γ = λ1
ar(dbl1)
ar(�1)

+ λ2
ar(dal2)
ar(�2)

(29)

δ = λ1
ar(bcl1)
ar(�1)

+ λ2
ar(acl2)
ar(�2)

+ λ3
ar(abl3)
ar(�3)

(30)

Proof. By including the convex combinations

l1 = β1b+ γ1c+ δ1d

l2 = α2a+ γ2c+ δ2d

l3 = α3a+ β3b+ δ3d

it follows that

3

∑
i=1

λi f
sec
�i

(li) = (λ2α2 + λ3α3) f (a)+ (λ1β1 + λ3β3) f (b)

+(λ1γ1 + λ2γ2) f (c)+ (λ1δ1 + λ2δ2 + λ3δ3) f (d).

The above representation shows the required coefficients. Using formula (4), we can
determine the coefficient

α = λ2α2 + λ3α3 = λ2
ar(dcl2)
ar(�2)

+ λ3
ar(dbl3)
ar(�3)

,

and similarly the coefficients β , γ and δ . �

Generalizations of important inequalities for convex functions on the triangle with-
out using functionals were discussed in [11]. Certain functional inequalities for func-
tions that are not necessarily convex were considered in [10].
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3. Applications

We utilize Theorem 1 to derive the generalizations of important integral and dis-
crete inequalities for convex functions on the triangle.

COROLLARY 3. Let g1,g2 :�→R be integrable functions such that (g1(x),g2(x))
∈� for every x ∈� , and let h : �→ R be a positive integrable function. Let

l =
(∫

� g1hdx∫
� hdx

,

∫
� g2hdx∫
� hdx

)
. (31)

Then each convex function f : �→ R satisfies the double inequality

f

(∫
� g1hdx∫
� hdx

,

∫
� g2hdx∫
� hdx

)
�
∫
� f (g1,g2)hdx∫

� hdx

� ar(lbc)
ar(�)

f (a)+
ar(lac)
ar(�)

f (b)+
ar(lab)
ar(�)

f (c).

(32)

Proof. Let F be the space of all integrable functions over the domain S = � .
The composition f (g1,g2) is integrable over � because it is bounded, and continuous
almost everywhere in � (the Lebesgue theorem on the Riemann integral, see [9]).

We define the integrating linear functional L for every function g ∈ F by the
formula

L(g) = L(g;h) =

∫
� ghdx∫
� hdx

.

The functional L is positive and unital. Using this functional in formula (16), we obtain
formula (32) if the function f is continuous.

Let us verify that the inequality in formula (32) applies to a convex function which
is not continuous on the boundary ∂� . We use convex combinations associated with
points x ∈� ,

(g1(x),g2(x)) = α(x)a+ β (x)b+ γ(x)c. (33)

Multiplying the above equation by h(x) , integrating each coordinate over � , and di-
viding by

∫
� hdx , we obtain the convex combination with integral coefficients,

l =

∫
� αhdx∫
� hdx

a+

∫
� βhdx∫
� hdx

b+

∫
� γhdx∫
� hdx

c. (34)

If l belongs to the interior �o , then the continuous extension f̃ of f/�o to �
may be utilized in formula (32). The first two terms are the same as we use f , and the
last terms satisfy the inequality

αl f̃ (a)+ βl f̃ (b)+ γl f̃ (c) < αl f (a)+ βl f (b)+ γl f (c).

If l belongs to the relative interior Io of the side I = conv{a,b} , then γ(x) = 0 for
almost every x ∈� by equation (34), and so (g1(x),g2(x)) ∈ I for almost every x ∈�
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by equation (33). Any continuous convex extension f̂ of f/Io to � may be utilized in
formula (32). The first two terms are the same as we use f , and the last terms satisfy
the inequality

αl f̂ (a)+ βl f̂ (b) � αl f (a)+ βl f (b).

If l is equal to the vertex a , then α(x)−1 = β (x) = γ(x) = 0 and (g1(x),g2(x)) =
a for almost every x ∈ � . Consequently, f (g1(x),g2(x)) = f (a) for almost every
x ∈� , and the inequality f (a) � f (a) � f (a) represents formula (32).

Respecting all considerations, we may conclude that the inequality in formula (32)
applies to any convex function f . �

To demonstrate the generality of the inequality in formula (32), we will say a
few words about barycenters. Let μ be a positive measure on the plane R

2 . The
μ -barycenter of the measurable set S ⊆ R

2 such that μ(S) > 0 is defined by(∫
S x1 dμ
μ(S)

,

∫
S x2 dμ
μ(S)

)
, (35)

and the μ -barycenter of the nonnegative μ -integrable function h : S → R such that∫
S hdμ > 0 can be defined by (∫

S x1hdμ∫
S hdμ

,

∫
S x2hdμ∫
S hdμ

)
. (36)

The inequality in formula (32) contains the extended integral form of Jensen’s in-
equality (see [6]), the Fejér inequality (see [2]), and consequently the Hermite-Hadamard
inequality (see [4] and [3]). Let us demonstrate the simplifications of this inequality re-
lating to the unit function, projections and symmetric functions.

Using the unit function h(x1,x2) = 1, in which case

l =
(∫

� g1 dx

ar(�)
,

∫
� g2 dx

ar(�)

)
, (37)

we get the extended integral form of Jensen’s inequality for convex functions on the
triangle,

f

(∫
� g1 dx

ar(�)
,

∫
� g2 dx

ar(�)

)
�
∫
� f (g1,g2)dx

ar(�)

� ar(lbc)
ar(�)

f (a)+
ar(lac)
ar(�)

f (b)+
ar(lab)
ar(�)

f (c).

(38)

Now we use the projections g1(x1,x2) = x1 and g2(x1,x2) = x2 , and a positive
integrable function h(x1,x2) whose barycenter falls into (a+b+ c)/3. Thus

l =
(∫

� x1hdx∫
�hdx

,

∫
� x2hdx∫
� hdx

)
=

a+b+ c
3

(39)
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indicating that αl = βl = γl = 1/3, and we have the extension of the Fejér inequality to
convex functions on the triangle,

f

(
a+b+ c

3

)
�
∫
� f hdx∫
� hdx

� f (a)+ f (b)+ f (c)
3

. (40)

Putting the unit function h(x1,x2) = 1 in Fejér’s inequality in formula (40), we
obtain the Hermite-Hadamard inequality for convex functions on the triangle,

f

(
a+b+ c

3

)
�
∫
� f dx

ar(�)
� f (a)+ f (b)+ f (c)

3
. (41)

In a context of the measure theory, the aspect of the Fejér inequality determines
the μ -barycenter of the function h on the triangle � . If(∫

� x1hdμ∫
� hdμ

,

∫
� x2hdμ∫
� hdμ

)
= αa+ βb+ γc (42)

respecting the measure μ , then

f (αa+ βb+ γc) �
∫
� f hdμ∫
� hdμ

� α f (a)+ β f (b)+ γ f (c). (43)

Equally, the aspect of the Hermite-Hadamard inequality determines the μ -barycenter
of the triangle � .

At the end of the section, let us present the discrete version of Corollary 1. In
the next corollary, we will use functions u = g1 and v = g2 . The evaluations at points
xi ∈� will be marked by u(xi) = ui , v(xi) = vi and h(xi) = hi .

COROLLARY 4. Let u,v : � → R be functions such that (u(x),v(x)) ∈ � for
every x ∈ � , and let h : �→ R be a positive function. Let x1, . . . ,xn ∈ � be points,
and let

l =
(

∑n
i=1 uihi

∑n
i=1 hi

,
∑n

i=1 vihi

∑n
i=1 hi

)
. (44)

Then each convex function f : �→ R satisfies the double inequality

f

(
∑n

i=1 uihi

∑n
i=1 hi

,
∑n

i=1 vihi

∑n
i=1 hi

)
� ∑n

i=1 f (ui,vi)hi

∑n
i=1 hi

� ar(lbc)
ar(�)

f (a)+
ar(lac)
ar(�)

f (b)+
ar(lab)
ar(�)

f (c).

(45)

Proof. Having F as the space of all real functions on the domain S = � , and
taking the summarizing linear functional defined by

L(g) = L(g;h) = ∑n
i=1 gihi

∑n
i=1 hi

(46)
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for every g ∈ F , we can follow the proof of Corollary 3. �

Note that the right-hand side of equation (46) is the convex combination of points
gi with coefficients λi = hi/∑n

i=1 hi .
Jensen type inequalities, and generalizations of the Hermite-Hadamard inequal-

ity for convex functions of several variables were considered in [12]. The Hermite-
Hadamard-Fejér type inequalities were considered in [13].

4. Refinements

We exploit Corollary 2 to obtain the series of inequalities which refines the double
inequality in formula (32).

COROLLARY 5. Let d ∈ �o , and let �1 = dbc, �2 = dac, �3 = dab. Let
g1,g2 : �→ R be integrable functions such that (g1(x),g2(x)) ∈�i for every x ∈�i ,
and let h : �→ R be a positive integrable function.

Then each convex function f : �→ R satisfies the series of inequalities

f

(∫
� g1hdx∫
� hdx

,

∫
� g2hdx∫
� hdx

)
�

3

∑
i=1

∫
�i

hdx∫
� hdx

f

(∫
�i

g1hdx∫
�i

hdx
,

∫
�i

g2hdx∫
�i

hdx

)

�
∫
� f (g1,g2)hdx∫

� hdx

� α f (a)+ β f (b)+ γ f (c)+ δ f (d)

� ar(lbc)
ar(�)

f (a)+
ar(lac)
ar(�)

f (b)+
ar(lab)
ar(�)

f (c),

(47)

where coefficients α , β , γ and δ are as in Corollary 2 with respect to

li =
(∫

�i
g1hdx∫

�i
hdx

,

∫
�i

g2hdx∫
�i

hdx

)
, λi =

∫
�i

hdx∫
� hdx

, l=
(∫

� g1hdx∫
� hdx

,

∫
� g2hdx∫
� hdx

)
.

Proof. As in Corollary 3, let F be the space of all integrable functions over the
triangle S = � . We take the integrating linear functionals Li defined by the formulae

Li(g) = Li(g;h) =

∫
�i

ghdx∫
�i

hdx

for every g ∈ F . The functionals Li are positive and unital. The point

(Li(g1),Li(g2)) =
(∫

�i
g1hdx∫

�i
hdx

,

∫
�i

g2hdx∫
�i

hdx

)
= li (48)
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falls into the triangle �i by Lemma 1. Applying the functional convex combination
L = ∑3

i=1 λiLi , we get

(L(g1),L(g2)) =
(∫

� g1hdx∫
� hdx

,

∫
� g2hdx∫
� hdx

)
= l (49)

and

L
(
f (g1,g2)

)
=

∫
� f (g1,g2)hdx∫

� hdx
. (50)

Inserting the integrals of formulae (48), (49) and (50) into formula (26), we obtain
the series of inequalities in formula (47). �

We will just apply the series of inequalities in formula (47) to obtain the simplest
refinement of the Hermite-Hadamard inequality in formula (41). Formula (47) with
g1(x1,x2) = x1 , g2(x1,x2) = x2 , h(x1,x2) = 1 and

d =
(∫

� x1 dx

ar(�)
,

∫
� x2 dx

ar(�)

)
=

a+b+ c
3

gives the inequality including a plurality of convex combinations,

f

(
a+b+ c

3

)
� 1

3
f

(
a+4b+4c

9

)
+

1
3

f

(
b+4a+4c

9

)
+

1
3

f

(
c+4a+4b

9

)

�
∫
� f dx

ar(�)

� 2
9

f (a)+
2
9

f (b)+
2
9

f (c)+
1
3

f

(
a+b+ c

3

)

� f (a)+ f (b)+ f (c)
3

.

(51)

We will briefly explain the above inequality. The triangles �i have the same area
equal to ar(�)/3, and therefore

λi =

∫
�i

dx∫
� dx

=
1
3
.

The point

li =
(∫

�i
x1 dx

ar(�i)
,

∫
�i

x2 dx

ar(�i)

)
is the barycenter of the triangle �i , which consequently yields the representations

l1 =
b+ c+d

3
=

a+4b+4c
9

,

l2 =
a+ c+d

3
=

b+4a+4c
9

,
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l3 =
a+b+d

3
=

c+4a+4b
9

,

and l = d . All three subtriangles of �i have the same area equal to ar(�i)/3. By
applying formulae (27)-(30), it follows that

α = β = γ =
2
9
, δ =

1
3
.

The series of inequalities in formula (51) is also obtained in [11, Theorem 3.1] by
using the triangle barycenter and its convex combinations.
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