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ZULIANG LU, SHUHUA ZHANG, LONGZHOU CAO, LIN LI AND YIN YANG

(Communicated by M. Aslam Noor)

Abstract. In this paper, we investigate L∞ -error estimates for the convex optimal control prob-
lem governed by nonlinear elliptic equations using interpolation coefficients mixed finite ele-
ment methods. By using the interpolation coefficient thought to process the nonlinear term of
equations, we present the mixed finite element approximation with interpolated coefficients for
nonlinear optimal control problem. We derive L∞ -error estimates for the interpolation coeffi-
cients mixed finite element approximation of nonlinear optimal control problem. Finally some
numerical examples are given to confirm our theoretical results.

1. Introduction

We consider the following nonlinear optimal control problem:

min
u∈K⊂L∞(Ω)

{
1
2
‖ p − pd‖2 +

1
2
‖y− yd‖2 +

1
2
‖u‖2

}
(1.1)

subject to the state equations

divp+ φ(y) = f +u, p = −A∇y, x ∈ Ω, (1.2)

with the boundary condition y = 0, x∈ ∂Ω , where Ω is a bounded open set in R
2 with

Lipschitz continuous boundary ∂Ω , f ∈ H1(Ω) . For any R > 0 the function φ(·) ∈
W 2,∞(−R,R) , φ ′(y) ∈ L2(Ω) for any y ∈ H1(Ω) , and φ ′(y) � γ0 > 0. We assume that
the two given functions satisfy the regularity pd ∈ (W 2,p(Ω))2, yd ∈W 1,p(Ω) , p � 2.
Furthermore, we assume the coefficient matrix A(x) = (ai, j(x))2×2 ∈ (W 1,∞(Ω))2×2 is a
symmetric 2×2-matrix and there is a constant c > 0 satisfying for any vector X ∈ R

2 ,
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X′AX � c‖X‖2
R2 . Here, K denotes the admissible set of the control variable, defined

by

K = {u(x) ∈ L∞(Ω) : α(x) � u(x) � β (x)} , (1.3)

where α(x) and β (x) are two real functions.
For 1 � p < ∞ and any nonnegative integer m . Let Wm,p(Ω)= {v∈Lp(Ω); Dαv∈

Lp(Ω) if |α| � m} denote the Sobolev spaces endowed with the norm ‖v‖p
m,p =

∑
|α |�m

‖Dαv‖p
Lp(Ω) , and the semi-norm |v|pm,p = ∑

|α |=m
‖Dαv‖p

Lp(Ω) . We set Wm,p
0 (Ω) =

{v ∈ Wm,p(Ω) : v|∂Ω = 0}. For p = 2, we denote Hm(Ω) = Wm,2(Ω), Hm
0 (Ω) =

Wm,2
0 (Ω), and ‖ · ‖m = ‖ · ‖m,2, ‖ · ‖= ‖ · ‖0,2. Let ‖ · ‖0,∞ denote the maximum norm.

In the recent years, efficient numerical approximation methods play a critical role
in solving optimal control problems. Finite element methods have been extensive stud-
ies in this aspect. Systematic introduction of the finite element methods for optimal
control problems can be found in, for example, [9, 8]. In finite element literature,
progress has been made in proving localized bounds by Schatz and Wahlbin in, for ex-
ample, [26, 27]. In particular, Kwon and Milner [11] have studied L∞ -error estimates
for mixed finite element methods for semilinear second-order elliptic equations, which
directly relevant to our work. For optimal control problem governed by linear elliptic
state equations, there are two early papers on the numerical approximation for linear
control constrained problems [8]. Moreover, Meyer and Rösch have studied the super-
convergence property for linear quadratic optimal control problem in [24]. Liu and Yan
[20, 21] have derived a posteriori error estimates for finite element approximation of
convex optimal control problems and boundary control problems.

Interpolated coefficients mixed finite element methods are economic and graceful
methods. The interpolated coefficients finite element methods were introduced and
analyzed for semilinear parabolic problems in Zlamal [31]. Later Larsson, Tomee and
Zhang [12] studied the semi-discrete interpolation coefficients finite element methods
for nonlinear heat equations. Chen et al. [4] presented optimal order convergence on
piecewise uniform triangular meshes by use of superconvergence techniques. Xiong
and Chen derived superconvergence of triangular finite element methods for semilinear
elliptic problems in [29, 30].

Recently, in [23], we considered mixed finite element discretization for general
semilinear optimal control problems. The state and co-state were approximated by low-
est order Raviart-Thomas mixed finite element spaces, and the control was discretized
by piecewise constant functions. A posteriori error estimates were derived for both
the coupled state and the control solutions. In [22], we discussed L∞ -error estimates
of mixed finite element methods for semilinear optimal control problem. In [7], we
considered a bilinear constrained optimal control problem and obtained a priori error
estimates and superconvergence of mixed finite element methods for the optimal con-
trol problem. However, the interpolated coefficients mixed finite element methods have
not been studied and applied for optimal control problems. In this paper, we shall study
the interpolation coefficients mixed finite element methods for optimal control prob-
lems governed by nonlinear elliptic equations and then derive L∞ -error estimates for
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the coupled state and control variables. The results seem to be new and are an impor-
tant step towards developing efficient mixed finite element approximation for optimal
control problems.

In the paper, we will transform the nonlinear elliptic optimal control problems
into the optimality conditions, including the variational inequality, so we must solve
the variational inequality carefully. A systematic introduction of the variational in-
equality can be found in [16, 17]. In [18, 10], the authors discussed a posteriori error
estimates for some elliptic variational inequalities. The authors studied the moving
mesh finite element approximations for a class of variational inequalities in [13]. By
using some techniques to solve the variational inequality in those references, we can
solve the nonlinear optimal control problems easily.

The outline of this paper is as follows. In Section 2, we construct the interpolation
coefficients mixed finite element approximation for optimal control problem governed
by nonlinear elliptic equations. In Section 3, we derive L∞ -error error estimates for
the lowest order Raviart-Thomas mixed finite element approximation for the optimal
control problem. Numerical examples are presented in Section 4.

2. Interpolation coefficients mixed methods

In this section, by using the interpolation operator Ih to process the nonlinear
term φ(yh) of equations, we present the interpolated coefficients mixed finite element
discretization for optimal control problem governed by nonlinear equations (1.1)–(1.2).

Let V = H(div;Ω) = {v ∈ (L2(Ω))2,divv ∈ L2(Ω)} endowed with the norm
given by ‖v‖H(div;Ω) = (‖v‖2

0,Ω +‖divv‖2
0,Ω)1/2 . We denote W = L2(Ω) , U = L∞(Ω) .

We recast (1.1)–(1.2) as the following weak form: find ( p ,y,u) ∈ V ×W ×U such that

min
u∈K⊂U

{
1
2
‖p− pd‖2 +

1
2
‖y− yd‖2 +

1
2
‖u‖2

}
(2.1)

(A−1p,v)− (y,divv) = 0, ∀v ∈V , (2.2)

(divp,w)+ (φ(y),w) = ( f +u,w), ∀w ∈W. (2.3)

It is well known (see e.g., [15]) that the optimal control problem (2.1)–(2.3) has at least
a solution ( p ,y,u) , and that if a triplet ( p ,y,u) is the solution of (2.1)–(2.3), then there
is a co-state (q ,z) ∈ V ×W such that ( p ,y, q ,z,u) satisfies the following optimality
conditions:

(A−1p,v)− (y,divv) = 0, ∀v ∈V , (2.4)

(divp,w)+ (φ(y),w) = ( f +u,w), ∀w ∈W, (2.5)

(A−1q,v)− (z,divv) = −(p− pd ,v), ∀v ∈V , (2.6)

(divq,w)+ (φ ′(y)z,w) = (y− yd,w), ∀w ∈W, (2.7)

(z+u, ũ−u)U � 0, ∀ũ ∈ K, (2.8)

where (·, ·)U is the inner product of U . For simplify, the product (·, ·)U will be denoted
as (·, ·) .
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In order to state the control variable succinctly, we introduce the following projec-
tion [2]:

Proj[α(x),β (x)] (g(x)) = max(α(x),min(g(x),β (x))) , a.e. x ∈ Ω, (2.9)

we can directly express the control from above optimality condition:

u(x) = Proj[α(x),β (x)] (−z(x)) . (2.10)

Let Th be regular triangulation of Ω , with boundary elements only allowed to
have one curved side. They are assumed to satisfy the angle condition which means
that there is a positive constant C such that for all T ∈ Th , C−1h2

T � |T |�Ch2
T , where

|T | is the area of T and hT is the diameter of T . Let h = maxhT . In addition C or c
denotes a general positive constant independent of h .

Let V h ×Wh ⊂ V ×W denote the k order (k � 0) Raviart-Thomas space [5]
associated with the triangulation Th of Ω . We define

Vh := {vh ∈V : ∀T ∈ Th, vh|T ∈ P2
k (T )+ x ·Pk(T )},

Wh := {wh ∈W : ∀T ∈ Th, wh|T ∈ Pk(T )},
Kh := {ũh ∈ K : ∀T ∈ Th, ũh|T ∈ Pk(T )},

where Pk denotes the space of polynomials of total degree at most k . By the definition
of finite element subspace, the mixed finite element discretization of (2.1)–(2.3) is as
follows: compute ( ph,yh,uh) ∈ V h×Wh×Kh such that

min
uh∈Kh

{
1
2
‖ph − pd‖2 +

1
2
‖yh− yd‖2 +

1
2
‖uh‖2

}
(2.11)

(A−1ph,vh)− (yh,divvh) = 0, ∀vh ∈Vh, (2.12)

(divph,wh)+ (φ(yh),wh) = ( f +uh,wh), ∀wh ∈Wh. (2.13)

Define interpolating operator Ih : C(Ω) →Wh by

Ihv =
N

∑
j=1

v jϕ j(x),

where {ϕ j}N
j=1 be the standard Lagrangian nodal basis of Wh . Since yh =

N
∑
j=1

y jϕ j(x) ,

then φ(yh) = φ

(
N
∑
j=1

y jϕ j(x)

)
. By using the definition of the interpolating operator Ih ,

we have

Ihφ(yh) =
N

∑
j=1

φ(y j)ϕ j(x), (2.14)

and the interpolation error estimate [12]: for 0 � m � r and 1 � p � ∞ we have

‖v− Ihv‖m,p � Chr−m‖v‖r,p, (2.15)
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where v belongs to C(Ω)∩Wr,p(T ) for all T ∈ Th . By substituting Ihφ(yh) for φ(yh)
in (2.13), then the optimal control problem (2.11)–(2.13) again has at least a solution
( ph,yh,uh) , and that if a triplet ( ph,yh,uh) is the solution of (2.11)–(2.13), then there
is a co-state (qh,zh) ∈ V h ×Wh such that ( ph,yh, qh,zh,uh) satisfies the following
optimality conditions:

(A−1ph,vh)− (yh,divvh) = 0, ∀vh ∈Vh, (2.16)

(divph,wh)+ (Ihφ(yh),wh) = ( f +uh,wh), ∀wh ∈Wh, (2.17)

(A−1qh,vh)− (zh,divvh) = −(ph− pd ,vh) ∀vh ∈Vh, (2.18)

(divqh,wh)+ (φ ′(yh)zh,wh) = (yh− yd,wh), ∀wh ∈Wh, (2.19)

(zh +uh, ũh−uh) � 0, ∀ũh ∈ Kh. (2.20)

For ϕ ∈Wh , we shall write

φ(ϕ)−φ(ψ) = −φ̃ ′(ϕ)(ψ −ϕ) = −φ ′(ψ)(ψ −ϕ)+ φ̃ ′′(ϕ)(ψ −ϕ)2, (2.21)

where

φ̃ ′(ϕ) =
∫ 1

0
φ ′(ϕ + t(ψ −ϕ))dt,

φ̃ ′′(ϕ) =
∫ 1

0
(1− t)φ ′′(ψ + t(ϕ −ψ))dt (2.22)

are bounded functions in Ω [25].
Let Rh : W →Wh be the orthogonal L2 -projection into Wh define by [1, 6]:

(Rhw−w,χ) = 0, w ∈W, χ ∈Wh, (2.23)

which satisfies

‖Rhw−w‖0,q � C‖w‖t,qh
t , 0 � t � k+1, if w ∈W ∩Wt,q(Ω), (2.24)

‖Rhw−w‖−r � C‖w‖th
r+t , 0 � r,t � k+1, if w ∈ Ht(Ω), (2.25)

(divv,w−Rhw) = 0, w ∈W, v ∈Vh. (2.26)

Let Πh : V → V h be the Raviart-Thomas projection [25], which satisfies

(div(Πhv− v),w) = 0, v ∈V , w ∈Wh, (2.27)

‖Πhv− v‖0,q � C‖v‖t,qh
t , 1/q < t � k+1, if v ∈V ∩Wt,q(Ω)2, (2.28)

‖div(Πhv− v)‖0,∞ � C‖divv‖th
t , 0 � t � k+1, if v ∈V ∩Ht(div;Ω). (2.29)

We have the commuting diagram property

div◦Πh = Rh ◦ div : V →Wh and div(I−Πh)V ⊥Wh. (2.30)
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3. L∞ -error estimates

In this section, we will present L∞ -error estimates for the control variable and the
state, co-state variables.

For any control function uh ∈ Kh , we first define the state solution ( p(uh),y(uh),
q(uh),z(uh)) satisfies

(A−1p(uh),v)− (y(uh),divv) = 0, ∀v ∈V , (3.1)

(divp(uh),w)+ (φ(y(uh)),w) = ( f +uh,w), ∀w ∈W, (3.2)

(A−1q(uh),v)− (z(uh),divv) = −(p(uh)− pd ,v), ∀v ∈V , (3.3)

(divq(uh),w)+ (φ ′(y(uh))z(uh),w) = (y(uh)− yd,w), ∀w ∈W. (3.4)

Let

ε1 := p(uh)− ph, r1 := y(uh)− yh, (3.5)

ε2 := q(uh)−qh, r2 := z(uh)− zh. (3.6)

From (2.16)–(2.19), (3.1)–(3.4), and (2.21), we have

(A−1ε1,vh)− (r1,divvh) = 0, ∀vh ∈Vh, (3.7)

(divε1,wh)+ (φ̃ ′(y(uh))r1,wh) = (φ(yh)− Ihφ(yh),wh), ∀wh ∈Wh, (3.8)

(A−1ε2,vh)− (r2,divvh) = −(ε1,vh), ∀vh ∈Vh, (3.9)

(divε2,wh)+ (φ ′(y(uh))r2,wh) = (r1,wh)− (φ̃ ′′(y(uh))zhr1,wh), ∀wh ∈Wh. (3.10)

By (3.7)–(3.10) and Theorem 3.1 in [25], we can establish the following error
estimates.

LEMMA 3.1. Let uh be the solution of (2.20) and ( p(uh),y(uh), q(uh),z(uh)) be
the solution of (3.1)–(3.4), there is a positive constant C independent of h such that

‖p(uh)− ph‖H(div;Ω) +‖y(uh)− yh‖0 � Chk+1, (3.11)

‖q(uh)−qh‖H(div;Ω) +‖z(uh)− zh‖0 � Chk+1. (3.12)

Similar to Theorem 3.1 in [25], we can establish the following error estimate.

THEOREM 3.1. Let ( p ,y, q ,z,u)∈ (V ×W )2×K and ( ph,yh, qh,zh,uh)∈ (V h×
Wh)2 ×Kh be the solutions of (2.4)–(2.8) and (2.16)–(2.20), respectively. We assume
that u+ z ∈ Hk+1(Ω) . Then, we have

‖u−uh‖0 � Chk+1. (3.13)

Proof. For the proof, the reader can consult Theorem 3.1 of [22]. �
Now, we introduce the weighted L2 -norms which will play a central role in our

work to derive L∞ -error estimates. Let x0 ∈ Ω and ρ > 0. We define the weight
function

μ = |x− x0|2 + ρ2, x ∈ Ω. (3.14)
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For any r ∈ R we define the r -weighted norm by

‖v‖r,μ = ‖μ− r
2 v‖0, v ∈ L2(Ω) or (L2(Ω))2. (3.15)

By Lemma 3.1 in [11], we can obtain the following technical results.

LEMMA 3.2. Let μ be given by (3.14), if v ∈ (L2(Ω))2 , then

‖∇μ−1 · v‖0 � Cρ−2‖v‖1,μ . (3.16)

LEMMA 3.3. If v ∈ (L∞(Ω))2 , then

‖v‖0 � C‖v‖1,μ . (3.17)

Furthermore, we introduce the following relations between weighted L2 -norms
and L∞ -norms and super-approximability results [28]:

‖v‖1,μ � C| lnh| 1
2 ‖v‖0,∞, v ∈ L∞(Ω)∩Wh, (3.18)

‖μ−1η −Πh(μ−1η)‖−1,μ � Chk+1ρ−1‖η‖1,μ , η ∈Vh. (3.19)

If v ∈Wh is a fixed element and x0 ∈ Ω is chosen so that ‖v‖0,∞ = |v(x0)| , then

‖v‖0,∞ � Cκh−1ρ‖v‖1,μ, for ρ � κh. (3.20)

Now we recall a priori regularity estimate for the following auxiliary problems:

−div(A∗∇ξ )+ ϒξ = g1, x ∈ Ω, ξ |∂Ω = 0, (3.21)

−div(A∇ζ )+ φ ′(y(uh))ζ = g2, x ∈ Ω, ζ |∂Ω = 0. (3.22)

where

ϒ =

⎧⎨
⎩

φ(y(uh))−φ(yh)
y(uh)− yh

, y(uh) �= yh, (3.23a)

φ ′(yh), y(uh) = yh. (3.23b)

The next lemma gives the desired priori estimates. (See [19], for example.)

LEMMA 3.4. Let ξ and ζ be the solutions of (3.21) and (3.22), respectively.
Assume that Ω is convex, A ∈ (W 1,∞(Ω))(2×2) , X ′AX � c‖X‖2

R2 for all X ∈ R
2 . Then

‖ξ‖k+2 � C‖g1‖0, (3.24)

‖ζ‖k+2 � C‖g2‖0. (3.25)

Now, we will prove two important theorems.

THEOREM 3.2. Let ( p ,y, q ,z) and ( p(uh),y(uh), q(uh),z(uh)) be the solutions
of (2.4)–(2.8) and (3.1)–(3.4), respectively. Then, we have

‖Rhy(uh)− yh‖0 +‖Rhz(uh)− zh‖0 � Chk+2. (3.26)
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Proof. We only prove ‖Rhy(uh)− yh‖0 � Chk+2 , the other part of (3.26) can be
estimated in the same way. We can rewrite (3.7)–(3.8) as

(A−1ε1,vh)− (Rhy(uh)− yh,divvh) = 0, ∀vh ∈Vh, (3.27)

(divε1,wh)+ (φ(y(uh))− Ihφ(yh),wh) = 0, ∀wh ∈Wh. (3.28)

Then we have

(A−1ε1,vh)− (Rhy(uh)− yh,divvh) = 0, ∀vh ∈Vh, (3.29)

(divε1,wh)+ (φ̃ ′(y(uh))r1,wh) = (φ(yh)− Ihφ(yh),wh), ∀wh ∈Wh. (3.30)

Let τ = Rhy(uh)− yh and ξ be the solution of (3.21) with g1 = τ , then it follows from
(2.27), (3.7)–(3.8), (3.21), and (3.27)–(3.28) that

‖τ‖2
0 = (τ,−div(A∗∇ξ )+ ϒξ )

= (divε1,ξ )+ (φ̃ ′(y(uh))r1,ξ )

= (divε1,ξ −Rhξ )+ (φ̃ ′(y(uh))r1,ξ −Rhξ )+ (φ(yh)− Ihφ(yh),Rhξ ). (3.31)

We then estimate the two terms on the right side of (3.31). First, from Lemma 3.1 and
(2.24) it follows that

(divε1,ξ −Rhξ ) � ‖ε1‖H(div;Ω) · ‖ξ −Rhξ‖0 � Chk+2‖τ‖0. (3.32)

Now, we estimate the second term

(φ̃ ′(y(uh))r1,ξ −Rhξ ) � C‖r1‖0 · ‖ξ −Rhξ‖0 � Chk+2‖τ‖0. (3.33)

For the third term, we have

(φ(yh)− Ihφ(yh),Rhξ ) � C‖φ(yh)− Ihφ(yh)‖0 · ‖Rhξ‖0 � Chk+2‖τ‖0. (3.34)

Inserting (3.32) and (3.34) into (3.31) and we can deduce that ‖τ‖0 � Chk+2 , from
which the theorem follows immediately. �

THEOREM 3.3. Let ( p ,y, q ,z) and ( p(uh),y(uh), q(uh),z(uh)) be the solutions
of (2.4)–(2.8) and (3.1)–(3.4), respectively. Then, we have

‖Πhp(uh)− ph‖0,∞ +‖Πhq(uh)−qh‖0,∞ � Chk+ 1
2 | lnh| 1

2 . (3.35)

Proof. Let us denote σ = Πh p(uh)− ph , we obtain

‖σ‖2
1,μ �C(A−1σ ,μ−1σ)

�C
{
(A−1σ ,μ−1σ −Πh(μ−1σ))+ (A−1ε1,Πh(μ−1σ))

+ (A−1(Πhp(uh)− p(uh)),Πh(μ−1σ))
}

�C
{
hk+1ρ−1‖σ‖1,μ +(A−1ε1,Πh(μ−1σ))

+ | lnh| 1
2 (1+hk+1ρ−1)sup

T
‖Πhp(uh)− p(uh)‖0,∞,T · ‖σ‖1,μ

}
, (3.36)
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using ε -cauchy inequality, then we have

‖σ‖2
1,μ � C(A−1ε1,Πh(μ−1σ))+C| lnh|sup

T
‖Πhp(uh)− p(uh)‖2

0,∞,T

� C(A−1ε1,Πh(μ−1σ))+Ch2k+2| lnh|. (3.37)

For the first term of the right hand of (3.37), integrating in polar coordinates, we obtain
‖μ−1‖0 � Cρ−1 , thus using equation (3.7), we obtain

(A−1ε1,Πh(μ−1σ)) = (r1,div◦Πh(μ−1σ))

=(r1,Rh ◦ div(μ−1σ)) = (τ,div(μ−1σ)) = (τ,∇μ−1σ)+ (τ,μ−1divσ)

�‖τ‖0 · ‖∇μ−1σ‖0 +‖τ‖0 · ‖μ−1‖0 · ‖divσ‖0,∞

�Chk+2 (ρ−2‖σ‖1,μ + ρ−1 · ‖divσ‖0,∞
)
. (3.38)

Using (3.30) and definition of Rh , we can easily see that

Rh ◦ divε1 = Rh [φ(yh)− Ihφ(yh)]−Rh
[
φ̃ ′(y(uh))r1

]
, (3.39)

then, using (2.30), we can see that

divσ = div◦Πhε1 = Rh ◦ divε1 = Rh [φ(yh)− Ihφ(yh)]−Rh
[
φ̃ ′(y(uh))r1

]
, (3.40)

thus we have

‖divσ‖0,∞ �
(‖φ(yh)− Ihφ(yh)‖0,∞ +‖φ̃ ′(y(uh))r1‖0,∞

)
�
(
Chk+1 +‖r1‖0,∞

)
� Chk+1, (3.41)

where we used the priori estimate ‖r1‖0,∞ � Chk+1 , which was demonstrated in [25].
Inserting (3.41) to (3.38) yields the bound

(A−1ε1,Πh(μ−1σ)) � Chk+2ρ−2‖σ‖1,μ +Chk+3ρ−1. (3.42)

Inserting (3.42) into (3.37), and using ε -Cauchy inequality, we have

‖σ‖2
1,μ � C(ε)h2k+2| lnh|+ ε‖σ‖2

1,μ +Ch2ρ−2. (3.43)

Let hρ−2 = C−2 , that is to say ρ = Ch
1
2 . Combining (3.20) and (3.43), h sufficiently

small, then we have

‖σ‖0,∞ � Ch−
1
2 ‖σ‖1,μ � Chk+ 1

2 | lnh| 1
2 . (3.44)

The proof of ‖Πh q(uh)− qh‖0,∞ � hk+ 1
2 | lnh| 1

2 is quite similar with above and we
omitted here. �

Finally, we will give the L∞ -error estimates both for the control variable and the
state variables.
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THEOREM 3.4. Let ( p ,y, q ,z,u) and ( ph,yh, qh,zh,uh) be the solutions of (2.4)–
(2.8) and (2.16)–(2.20), respectively. Then, we have

‖u−uh‖0,∞ +‖y− yh‖0,∞ +‖z− zh‖0,∞ � Chk+1, (3.45)

‖p− ph‖0,∞ +‖q−qh‖0,∞ � Chk+ 1
2 | lnh| 1

2 . (3.46)

Proof. By (2.24)–(2.25), (3.26), (3.35), and the classical imbedding theorem
H2(Ω) ⊂C(Ω) , we can see that

‖y− yh‖0,∞ +‖z− zh‖0,∞

�‖y− y(uh)‖0,∞ +‖y(uh)− yh‖0,∞ +‖z− z(uh)‖0,∞ +‖z(uh)− zh‖0,∞

�C‖y− y(uh)‖C(Ω) +‖y(uh)−Rhy(uh)‖0,∞ +‖Rhy(uh)− yh‖0,∞

+C‖z− z(uh)‖C(Ω) +‖z(uh)−Rhz(uh)‖0,∞ +‖Rhz(uh)− zh‖0,∞

�C‖y− y(uh)‖2 +C‖z− z(uh)‖2 +‖Rhy(uh)− yh‖0,∞ +‖Rhz(uh)− zh‖0,∞ +Chk+1

�C
(
‖u−uh‖0 +h−1‖Rhy(uh)− yh‖0 +h−1‖Rhz(uh)− zh‖0 +hk+1

)
�Chk+1. (3.47)

Similar to Theorem 4.1 in [22], we can obtain the following result

‖u−uh‖0,∞ � C‖z− zh‖0,∞. (3.48)

Combining (3.47) and (3.48), we have

‖u−uh‖0,∞ +‖y− yh‖0,∞ +‖z− zh‖0,∞ � Chk+1 +‖z− zh‖0,∞ � Chk+1. (3.49)

By (2.28), (3.26), (3.35), and the classical imbedding theorem W 2,3(Ω) ⊂ W 1,∞(Ω) ,
we can see that

‖p− ph‖0,∞ +‖q−qh‖0,∞

�‖p− p(uh)‖0,∞ +‖p(uh)− ph‖0,∞ +‖q−q(uh)‖0,∞ +‖q(uh)−qh‖0,∞

�C‖∇y−∇y(uh)‖0,∞ +‖p(uh)−Πhp(uh)‖0,∞

+‖Πhp(uh)− ph‖0,∞ +‖∇(z− z(uh))+ p− p(uh)‖0,∞

+‖q(uh)−Πhq(uh)‖0,∞ +‖Πhq(uh)−qh‖0,∞

�C
(
‖y− y(uh)‖2,3 +hk+1 +hk+ 1

2 | lnh| 1
2

)
�C
(
‖u−uh‖0,∞ +hk+1 +hk+ 1

2 | lnh| 1
2

)
�Chk+ 1

2 | lnh| 1
2 . (3.50)

Thus, we completed the proof. �
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4. Numerical examples

In this section, we are going to validate the L∞ -error estimates for the errors in the
control, state, and co-state numerically. The optimization problems were dealt numeri-
cally with codes developed based on AFEPACK [14]. Our numerical examples are the
following optimal control problem:

min
u∈K

{
1
2
‖p− pd‖2 +

1
2
‖y− yd‖2 +

1
2
‖u‖2

}
(4.1)

divp+ y5 = u+ f , p = −∇y, x ∈ Ω, y|∂Ω = 0, (4.2)

divq+5y4z = y− yd, q = −∇z− p+ pd , x ∈ Ω, z|∂Ω = 0. (4.3)

In our examples, we choose the domain Ω = [0,1]× [0,1] , K = {u ∈ L∞(Ω) :
α(x) � u(x) � β (x)} . The state and co-state are approximated by the lowest order
Raviart-Thomas mixed finite element spaces and the control is approximated by piece-
wise constant functions. We present below two examples to illustrate the theoretical
results for the nonlinear optimal control problem.

EXAMPLE 1. In first numerical example, we set

α(x1,x2) = 0.03+0.05
|x1− x2|√

3
, (4.4)

β (x1,x2) = 0.06+0.09
|1− x1− x2|√

3
. (4.5)

We define

y(x) = sin(πx1)sin(4πx2), (4.6)

thus the state variable p(x) can be given by

p(x) = −
(

π cos(πx1)sin(4πx2)
4π sin(πx1)cos(4πx2)

)
, (4.7)

and the source function f (x) is given by

f (x) =

⎧⎪⎨
⎪⎩

f1(x)+ y5−α(x), if u f (x) < α(x), (4.8a)

f1(x)+ y5−u f (x), if u f (x) ∈ [α(x),β (x)], (4.8b)

f1(x)+ y5−β (x), if u f (x) > β (x), (4.8c)

with f1(x1,x2) = 17sin(πx1)sin(4πx2) and u f (x1,x2) = sin(πx1)sin(4πx2) . Due to
the state equation (4.2), we obtain for the exact control function u as follows:

u(x) =

⎧⎪⎨
⎪⎩

α(x), if u f (x) < α(x), (4.9a)

u f (x), if u f (x) ∈ [α(x),β (x)], (4.9b)

β (x), if u f (x) > β (x). (4.9c)
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For the optimal co-state function z , we find

z(x) = −sin(πx1)sin(4πx2), (4.10)

then the desired state variables can be given by

pd(x) = 2

(
π cos(πx1)sin(4πx2)
4π sin(πx1)cos(4πx2)

)
,

yd(x) = y+68sin(πx1)sin(4πx2)−5y4z. (4.11)

Table 1: The numerical errors on uniformly triangle mesh grid.

resolution ‖u−uh‖0,∞ ‖y−yh‖0,∞ ‖z− zh‖0,∞ ‖p− ph‖0,∞ ‖q−qh‖0,∞

16×16 5.35785×10−2 2.38136×10−1 2.46124×10−1 1.72316×100 1.72328×100

32×32 2.68118×10−2 1.19067×10−1 1.23062×10−1 1.21766×100 1.21771×100

64×64 1.32934×10−2 5.95342×10−2 6.09488×10−2 8.60948×10−1 8.60952×10−1

128×128 6.64141×10−3 2.97656×10−2 3.03198×10−2 6.09081×10−1 6.09083×10−1

The profile of the numerical solution u is plotted in Figure 1. In this numerical
implementation, the errors ‖u− uh‖0,∞ , ‖y− yh‖0,∞ , ‖z− zh‖0,∞ , ‖ p − ph‖0,∞ and
‖q− qh‖0,∞ obtained on a sequence of uniformly refined triangle meshes are presented
in Table 1. We show the convergence orders by slopes in Figure 2. The theoretical
results can be observed clearly from the data.
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10
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Figure 1: The profile of the numerical control solution u on 64×64 mesh grids.

To show the efficiency of interpolated coefficients mixed finite element methods,
we give a numerical comparison with classical mixed finite element methods in Table
2. It is clear that the interpolated coefficients mixed finite element methods are able to
save substantial computational time, in comparison with classical mixed methods.
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Figure 2: Convergence orders of u−uh , p− ph , y−yh , q− qh , and z−zh on triangle
meshes.

Table 2: CPU times on classical mixed methods and interpolation coefficients mixed methods.

resolution
CPU times

Classical mixed methods Interpolation coefficients mixed methods
16×16 11.4s 6.8s
32×32 54.6s 28.4s
64×64 352.9s 148.7s

128×128 2294.9s 802.2s

EXAMPLE 2. In the second example, we set

α(x1,x2) = 0.03+0.05
|x1− x2|√

2
, (4.12)

β (x1,x2) = 0.05+0.07
|1− x1− x2|√

2
. (4.13)

We define

y(x) = x1x2(1− x1)(1− x2), (4.14)

thus the state variable p can be given by

p(x) = −
(

(1−2x1)x2(1− x2)
(1−2x2)x1(1− x1)

)
, (4.15)

and

f (x) =

⎧⎪⎨
⎪⎩

f1(x)+ y5−α(x), if u f (x) < α(x), (4.16a)

f1(x)+ y5−u f (x), if u f (x) ∈ [α(x),β (x)], (4.16b)

f1(x)+ y5−β (x), if u f (x) > β (x), (4.16c)
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with f1(x1,x2) = 2x1(1− x1)+ 2x2(1− x2) and u f (x1,x2) = −2x1x2(1− x1)(1− x2) .
Due to the state equation (4.2), we obtain for the exact control function u as follows:

u(x) =

⎧⎪⎨
⎪⎩

α(x), if u f (x) < α(x), (4.17a)

u f (x), if u f (x) ∈ [α(x),β (x)], (4.17b)

β (x), if u f (x) > β (x). (4.17c)

For the optimal co-state function z(x) , we find

z(x) = 2x1x2(1− x1)(1− x2), (4.18)

then the desired state variables can be given by

pd(x) = 3

(
(1−2x1)x2(1− x2)
(1−2x2)x1(1− x1)

)
,

yd(x) = y+4x1(1− x1)+4x2(1− x2)−5y4z. (4.19)

Table 3: The numerical errors on uniformly triangle mesh grid.

resolution ‖u−uh‖0,∞ ‖y−yh‖0,∞ ‖z− zh‖0,∞ ‖p− ph‖0,∞ ‖q−qh‖0,∞
16×16 3.26518×10−3 4.94943×10−3 4.94122×10−3 1.41383×10−1 1.41374×10−1

32×32 1.67748×10−3 2.54454×10−3 2.53685×10−3 1.01172×10−1 1.01171×10−1

64×64 8.49715×10−4 1.28784×10−3 1.28519×10−3 7.18876×10−2 7.18874×10−2

128×128 4.19911×10−4 6.47606×10−4 6.46848×10−4 5.09402×10−2 5.09403×10−2

In this numerical example, the profile of the numerical solution is presented in
Figure 3. From the error data on the uniform refined triangle meshes, as listed in Table
3, it can be seen that the L∞ -error estimates remain in our data. A numerical comparison
with classical mixed finite element methods has been given in Table 4. It is shown from
Table 4 that the CPU times have reduced obviously. Furthermore we also show the
convergence orders by slopes in Figure 4, the convergence order for the coupled state
and control variables can be observed clearly.

Table 4: CPU times on classical mixed methods and interpolation coefficients mixed methods.

resolution
CPU times

Classical mixed methods Interpolation coefficients mixed methods
16×16 4.8s 2.1s
32×32 12.1s 3.9s
64×64 49.4s 10.6s

128×128 255.1s 42.3s
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Figure 3: The profile of the numerical control solution u on 64×64 mesh grids.
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Figure 4: Convergence orders of u−uh , p− ph , y−yh , q− qh , and z−zh on triangle
meshes.

From the two above numerical examples, we can find that the numerical results
demonstrate our theoretical results.
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