
Journal of
Mathematical

Inequalities

Volume 11, Number 4 (2017), 1151–1160 doi:10.7153/jmi-2017-11-85

A GENERALIZED GRONWALL–BELLMAN TYPE

DELAY INTEGRAL INEQUALITY WITH TWO
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Abstract. Using a technique of monotonization, this paper investigates a generalized Gronwall-
Bellman type delay integral inequality with two independent variables on time scales. The result
not only unifies some continuous inequalities and their discrete analogues but also extends some
known integral inequalities on time scales. An application to the estimation of solutions of delay
dynamic integral equations on time scales is also given.

1. Introduction

To unify and extend continuous and discrete analysis, the theory of time scales
was introduced by Hilger [1] in his Ph. D. Thesis in 1988. Since then, the theory has
been evolving, and has been applied to various fields of Mathematics (see [2, 3, 4, 5])
and references given therein.

It is well known that Gronwall type integral inequalities involving functions of one
and more than one independent variables play important roles in the study of existence,
uniqueness, boundness, stability, invariant manifolds and other qualitative properties of
solutions of the theory of differential and integral equations. A lot of contributions to
its generalization have been archived by many researchers (see [6, 7, 8, 9, 10, 11, 12,
13, 14]).

Recently, more attention has been paid to generalizations of Gronwall’s inequali-
ties on time scales (see [15, 16, 17, 18, 19, 20, 21] and the references therein). A lot of
integral inequalities on time scales have been established, which have been designed to
unify continuous and discrete analysis. One of the important things is that Bohner [22]
studied the following inequality on time scales

u(t) � a(t)+ p(t)
∫ t

t0
k(t,τ)[b(τ)u(τ)+q(τ)]Δτ. (1.1)

In 2006, Pachpatte [23] discussed Gronwall-Bellman inequality with nonlinearity on
time scales

uα(t) � u0 +
∫ t

t0

∫ s

t0
{[ f (s)g(u(s))+h(s,τ)g(u(τ))]Δτ}Δs. (1.2)
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2010, Li [24] investigated Gronwall-Bellman type inequality with delay on time scales

up(t) � a(t)+ c(t)
∫ t

t0
[ f (s)u(τ(s))+g(s)]Δs. (1.3)

Later, Zheng [25] studied some delay integral inequalities in two independent variables
on time scales

up(x,y) � a(x,y)+b(x,y)
∫ x

x0

∫ y

y0

[ f (s,t)u(τ1(s),τ2(t))]ΔsΔt, (1.4)

up(x,y) � a(x,y)+b(x,y)
∫ x

x0

∫ y

y0

[ f (s,t)uq(τ1(s),τ2(t))+g(s,t)ur(τ1(s),τ2(t))]ΔsΔt,

(1.5)

up(x,y) � c+
∫ x

x0

∫ y

y0

[ f (s,t)ω(u(τ1(s),τ2(t)))+g(s,t)u(τ1(s),τ2(t))]ΔsΔt, (1.6)

where p is a constant and p � 1, a(x,y),b(x,y) and ω(u) are nondecreasing and ω(u)
is submultiplicative.

In this paper, motivated by the work above, we will establish the following much
more general Gronwall-Bellman type delay integral inequality with two independent
variables on time scales

up(x,y) � a(x,y)+
∫ x

x0

∫ y

y0

f1(x,y,s,t)g1(u(σ1(s),τ1(t)))ΔsΔt

+
∫ x

x0

∫ y

y0

f2(x,y,s,t)g2(u(σ2(s),τ2(t)))ΔsΔt, (1.7)

which has two nonlinear terms g1(u) and g2(u) where we do not require that g1 and g2

are nondecreasing. Moreover, fi(x,y,s,t)(i = 1,2) has a more general form. We also
show that many integral inequalities on time scales such as (1.4)-(1.6) can be reduced
to the form of (1.7). Finally, our main result is applied to an estimation of the bounds
of delay dynamic solutions of integral equations on time scales.

2. Some preliminaries on time scales

In what follows, R denots the set of real numbers, R+ = [0,∞) . A time scale is
an arbitrary nonempty closed subset of the real numbers. In this paper, T denotes an
arbitrary time scale.

DEFINITION 2.1. [2] Let T be a time scale. For t ∈T we define the forward jump
operator σ : T → T by σ(t) = inf{s ∈ T,s > t} , while the backward jump operator
ρ : T → T is defined by ρ(t) = sup{s ∈ T,s < t}.

DEFINITION 2.2. [2] The graininess function μ : T → R+ is defined by μ(t) =
σ(t)− t .

DEFINITION 2.3. [2] A point t ∈ T is said to be left-dense if ρ(t) = t and
t �= infT , right-dense if σ(t) = t and t �= supT , left-scattered if ρ(t) < t , and right-
scattered if σ(t) > t .
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DEFINITION 2.4. [2] The set Tk is defined to be T if T does not have a left-
scattered maximum, otherwise it is T without the left-scattered maximum.

DEFINITION 2.5. [2] A function f : T → R is called rd-continuous if it is con-
tinuous in right-dense points and if the left-sided limits exist in left-dense points. Crd

denotes the set of rd-continuous functions.

DEFINITION 2.6. [2] Assume f : T×T → R is a function and let t ∈ Tk . Then
the partial delta derivative of f (x,y) with respect to x is denoted by ( f (x,y))Δ

x and
satisfies

| f (σ(x),y)− f (s,y)− ( f (x,y))Δ
x (σ(x)− s)| � ε|σ(x)− s|, ∀ε > 0,

where ε ∈ � , and � is a neighborhood of t . The function f (x,y) is called partial delta
differentiable to x on Tk .

DEFINITION 2.7. [2] If exists U : T×T → R , UΔ
y (x,y) = u(x,y) , U(x,y) is

called pre-differentiable, and∫ d

c
u(x,v)Δv = U(x,d)−U(x,c),∀c,d ∈ T.

For more details about the calculus of time scales, see[2]. In the rest of this pa-
per, we always assume that Tx0 = {x ∈ T|x � x0}, T[x0,X ] = {x ∈ T|x0 � x � X},
Ty0 = {y ∈ T|y � y0},Ω = Tx0 ×Ty0 where x0,y0 ∈ T , and furthermore assume Tx0 ⊂
Tk,Ty0 ⊂ Tk.

3. Main results

For convenience, we give some remarks. Let

ω1(s) = max
0�τ�s

{g1(τ)}, (3.1)

ω2(s) = max
0�τ�s

{g2(τ)/ω1(τ)}ω1(s), (3.2)

where s ∈ R+ . According to (3.1) and (3.2), we define

W1(u) =
∫ u

u1

1

ω1(r1/p)
Δr, (3.3)

W2(u) =
∫ u

u2

ω1((W−1
1 (r))1/p)

ω2((W−1
1 (r))1/p)

Δr, (3.4)

where u1,u2 � 0 and u > 0.
Consider (1.7) and assume that
(H1 ) a ∈Crd(Ω,R+) and a(x0,y0) �= 0;
(H2 ) u ∈Crd(Ω,R+), f1, f2 ∈Crd(Ω×Ω,R+) ;
(H3 ) g1(u) and g2(u) are continuous and nonnegative functions on R+ ;
(H4 ) σi : Tx0 → T with σi(x) � x, i = 1,2 and −∞ < α = inf{min{σi(x), i =

1,2},x∈Tx0}� x0 . τi : Ty0 →T with τi(y) � y, i = 1,2 and −∞ < β = inf{min{τi(y),
i = 1,2},y ∈ Ty0} � y0 , φ ∈Crd([α,x0]× [β ,y0]∩T2,R+) .
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THEOREM 3.1. Suppose that (H1)-(H4) hold and for (x,y) ∈ Ω, u(x,y) satisfies
(1.7) and with the initial condition

u(x,y) = φ(x,y) i f x ∈ [α,x0]∩T or y ∈ [β ,y0]∩T,

φ(σi(x),τi(y)) � a1/p(x,y),∀(x,y) ∈ Ω i f σi(x) � x0 or τi(y) � y0. (3.5)

Then

u(x,y) �
{
W−1

1

[
W−1

2 (W2(W1(r(x,y))+
∫ x

x0

∫ y

y0

f̃1(x,y,s,t)ΔsΔt)

+
∫ x

x0

∫ y

y0

f̃2(x,y,s,t)ΔsΔt)
]}1/p

, (3.6)

where

r(x,y) = max
x0�ξ�x

max
y0�η�y

a(ξ ,η), f̃i(x,y,s,t) = max
x0�ξ�x

max
y0�η�y

fi(ξ ,η ,s,t), (3.7)

provided that

W2
[
W1((r(x,y))+

∫ x

x0

∫ y

y0

f̃1(x,y,s,t)ΔsΔt)+
∫ x

x0

∫ y

y0

f̃2(x,y,s, t)ΔsΔt
]

�
∫ ∞

u2

ω1((W−1
1 (r))1/p)

ω2((W−1
1 (r))1/p)

Δr,

W−1
2

[
W2(W1(r(x,y))+

∫ x

x0

∫ y

y0

f̃1(x,y,s,t)ΔsΔt)

+
∫ x

x0

∫ y

y0

f̃2(x,y,s,t)ΔsΔt
]
�

∫ ∞

u1

1

ω1(r1/p)
Δr. (3.8)

Proof. Obviously, for any (x,y) ∈ Ω , r(x,y) is positive and nondecreasing with
respect to x and y , f̃i(x,y,s,t) (i = 1,2) is nonnegative and nondecreasing with respect
to x and y for each fixed s and t . They satisfy a(x,y) � r(x,y) and fi(x,y,s,t) �
f̃i(x,y,s, t) for i = 1,2. By (3.1) and (3.2), we have g1(u) � ω1(u),g2(u) � ω2(u) .

Take any fixed X ∈ Tx0 and for arbitrary x ∈ T[x0,X ],y ∈ Ty0 , we get

up(x,y) � r(x,y)+
∫ x

x0

∫ y

y0

f̃1(x,y,s,t)ω1(u(σ1(s),τ1(t)))ΔsΔt

+
∫ x

x0

∫ y

y0

f̃2(x,y,s,t)ω2(u(σ2(s),τ2(t)))ΔsΔt

� r(X ,y)+
∫ x

x0

∫ y

y0

f̃1(X ,y,s,t)ω1(u(σ1(s),τ1(t)))ΔsΔt

+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)ω2(u(σ2(s),τ2(t)))ΔsΔt. (3.9)
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Let

z(x,y) = r(X ,y)+
∫ x

x0

∫ y

y0

f̃1(X ,y,s,t)ω1(u(σ1(s),τ1(t)))ΔsΔt

+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)ω2(u(σ2(s),τ2(t)))ΔsΔt. (3.10)

Hence, u(x,y) � z1/p(x,y) and z(x0,y) = r(X ,y) . Clearly, z(x,y) is a nonnegative and
nondecreasing function for x ∈ T[x0,X ] and y ∈ Ty0 .

If σi(x) � x0 and τi(y) � y0 , then σi(x) ∈ T[x0,X ] and τi(y) ∈ Ty0 , and

u(σi(x),τi(y)) � z1/p(σi(x),τi(y)) � z1/p(x,y), i = 1,2. (3.11)

If σi(x) � x0 or τi(y) � y0 , then from (3.5), we have

u(σi(x),τi(y)) = φ(σi(x),τi(y)) � a1/p(x,y) � z1/p(x,y), i = 1,2. (3.12)

Thus from (3.11) and (3.12), we have

z(x,y) � r(X ,y)+
∫ x

x0

∫ y

y0

f̃1(X ,y,s,t)ω1(z1/p(s,t))ΔsΔt

+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)ω2(z1/p(s,t))ΔsΔt. (3.13)

Furthermore,

z�x (x,y) =
∫ y

y0

f̃1(X ,y,x,t)ω1(z1/p(x,t))Δt +
∫ y

y0

f̃2(X ,y,x,t)ω2(z1/p(x, t))Δt. (3.14)

That is,

z�x (x,y)
ω1(z1/p(x,y))

=

∫ y
y0

f̃1(X ,y,x,t)ω1(z1/p(x,t))Δt +
∫ y
y0

f̃2(X ,y,x,t)ω2(z1/p(x,t))Δt

ω1(z1/p(x,y))

�
∫ y

y0

f̃1(X ,y,x,t)Δt +
∫ y

y0

f̃2(X ,y,x,t)
ω2(z1/p(x,t))
ω1(z1/p(x,t))

Δt. (3.15)

First, we prove that

[W1(z(x,y))]�x � z�x (x,y)
ω1(z1/p(x,y))

, ∀x ∈ T[x0,X ]. (3.16)

If σ(x) > x , then

[W1(z(x,y))]�x =
W1(z(σ(x),y))−W1(z(x,y))

σ(x)− x
=

1
σ(x)− x

∫ z(σ(x),y)

z(x,y)

1

ω1(r1/p)
Δr

� z(σ(x),y)− z(x,y)
σ(x)− x

1

ω1(z1/p(x,y))
=

z�x (x,y)
ω1(z1/p(x,y))

.



1156 Y. MI

If σ(x) = x , then

[W1(z(x,y))]�x = lim
s→x

W1(z(x,y))−W1(z(s,y))
x− s

= lim
s→x

1
x− s

∫ z(x,y)

z(s,y)

1

ω1(r1/p)
Δr

= lim
s→x

z(x,y)− z(s,y)
x− s

1

ω1(z1/p(ξ ,y))
=

z�x (x,y)
ω1(z1/p(x,y))

,

where ξ satisfies z1/p(s,y) � z1/p(ξ ,y) � z1/p(x,y) . Integrating both sides of (3.15)
with respect to x from x0 to x , we obtain

W1(z(x,y)) � W1(z(x0,y))+
∫ x

x0

∫ y

y0

f̃1(X ,y,s,t)ΔsΔt

+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)
ω2(z1/p(s,t))
ω1(z1/p(s,t))

ΔsΔt

� W1(r(X ,y))+
∫ X

x0

∫ y

y0

f̃1(X ,y,s,t)ΔsΔt

+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)
ω2(z1/p(s,t))
ω1(z1/p(s,t))

ΔsΔt. (3.17)

We let the right of (3.17) be z1(x,y) . Then z1(x,y) is nonnegative and nondecreasing
with respect to x and y , where x ∈ T[x0,X ],y ∈ Ty0 , and

z1(x0,y) = W1(r(X ,y))+
∫ X

x0

∫ y

y0

f̃1(X ,y,s,t)ΔsΔt. (3.18)

Then (3.17) becomes to

z(x,y) � W−1
1 (z1(x,y)) (3.19)

and

z�1x(x,y) =
∫ y

y0

f̃2(X ,y,x,t)
ω2(z1/p(x,t))
ω1(z1/p(x,t))

Δt

�
∫ y

y0

f̃2(X ,y,x,t)
ω2((W−1

1 (z1(x,t)))1/p)
ω1((W−1

1 (z1(x,t)))1/p)
Δt. (3.20)

Thus

ω1((W−1
1 (z1(x,y)))1/p)z�1x(x,y)

ω2((W−1
1 (z1(x,y)))1/p)

�
∫ y

y0

f̃2(X ,y,x,t)Δt. (3.21)

Similiarly, we can prove that

[W2(z1(x,y))]�x � ω1(W−1
1 (z1(x,y))1/p)z�1x(x,y)

ω2(W−1
1 (z1(x,y))1/p)

.
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Integrating both sides of (3.21) with respect to x from x0 to x , we obtain

W2(z1(x,y)) � W2(z1(x0,y))+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)ΔsΔt, (3.22)

and

z1(x,y) � W−1
2

{
W2(z1(x0,y))+

∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)ΔsΔt
}
. (3.23)

Hence,

u(x,y) � z1/p(x,y) � (W−1
1 (z1(x,y)))1/p

�
{
W−1

1

[
W−1

2 (W2(z1(x0,y))+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)ΔsΔt)
]}1/p

=
{
W−1

1

[
W−1

2 (W2(W1(r(X ,y))+
∫ X

x0

∫ y

y0

f̃1(X ,y,s,t)ΔsΔt)

+
∫ x

x0

∫ y

y0

f̃2(X ,y,s,t)ΔsΔt)
]}1/p

(3.24)

for (x,y) ∈ T[x0,X ] ×Ty0 . Let x = X , which gives

u(X ,y) �
{
W−1

1

[
W−1

2 (W2(W1(r(X ,y))+
∫ X

x0

∫ y

y0

f̃1(X ,y,s,t)ΔsΔt)

+
∫ X

x0

∫ y

y0

f̃2(X ,y,s,t)ΔsΔt)
]}1/p

. (3.25)

Replacing X by x yields

u(x,y) �
{
W−1

1

[
W−1

2 (W2(W1(r(x,y))+
∫ x

x0

∫ y

y0

f̃1(x,y,s,t)ΔsΔt)

∫ x

x0

∫ y

y0

f̃2(x,y,s,t)ΔsΔt)
]}1/p

. (3.26)

This completes the proof of Theorem 3.1. �

REMARK 3.1. The result of Theorem 3.1 holds for an arbitrary time scale. If
T = R , then the inequality established in Theorem 3.1 reduces to the the inequal-
ity established by [6] (the case of n = 2). If T = Z and f1(x,y,s,t) = b(x,y) f (s, t) ,
f2(x,y,s, t) = 0, then from Theorem 3.1, we obtain Theorem 2.1 in [11].

REMARK 3.2. (1) If we take f1(x,y,s,t) = b(x,y) f (s,t) and f2(x,y,s, t) = 0 then
(1.7) reduces to (1.4). In our results, a(x,y) and b(x,y) need not be nondecreasing.

(2) If we take f1(x,y,s,t) = b(x,y) f (s,t) , f2(x,y,s,t) = b(x,y)g(s,t) ,
g1(u(σ1(s),τ1(t)))= uq(σ1(s),τ1(t)) , g2(u(σ2(s),τ2(t))))= ur(σ1(s),τ1(t)), then (1.7)
reduces to (1.5). In our results, a(x,y) and b(x,y) need not be nondecreasing.
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(3) If we take f1(x,y,s,t) = f (s,t) , f2(x,y,s,t) = g(s,t) , g2(u(σ1(s),τ1(t)))) =
u(σ1(s),τ1(t)) then (1.7)reduces to (1.6). In our results, a(x,y) , f (x,y) , g(x,y) and
ω(u) need not be nondecreasing, and w(u) need not be submultiplicative.

Consider the inequality

ϕ(u(x,y)) � a(x,y)+
∫ x

x0

∫ y

y0

f1(x,y,s,t)g1(u(σ1(s),τ1(t)))ΔsΔt

+
∫ x

x0

∫ y

y0

f2(x,y,s,t)g2(u(σ2(s),τ2(t)))ΔsΔt, (3.27)

which looks much more complicated than (1.7).

COROLLARY 3.1. In addition to the assumptions (H1)-(H4) , suppose that ϕ(u)
is positive on (0,∞) and u(x,y) satisfies (3.27) for (x,y) ∈ Ω and with the initial
condition

u(x,y) = φ(x,y) i f x ∈ [α,x0]∩T or y ∈ [β ,y0]∩T,

φ(σi(x),τi(y)) � a(x,y),∀(x,y) ∈ Ω i f σi(x) � x0 or τi(y) � y0. (3.28)

Then

u(x,y) � ϕ−1{W−1
1

[
W−1

2 (W2(W1(r(x,y))+
∫ x

x0

∫ y

y0

f̃1(x,y,s,t)ΔsΔt)

+
∫ x

x0

∫ y

y0

f̃2(x,y,s,t)ΔsΔt)
]}

, (3.29)

where r(x,y), f̃i(x,y,s,t) are given in Theorem 3.1, W1(u),W2(u) are given in (3.3) and
(3.4) when the case of p = 1 .

The proof is similar to one of Theorem 3.1.

4. Applications

Consider the following delay dynamic integral equation on time scale

up(x,y) = C+
∫ x

x0

∫ y

y0

F(x,y,s,t,u(σ1(s),τ1(t)),u(σ2(s),τ2(t)))ΔsΔt, (4.1)

with the initial condition

u(x,y) = φ(x,y) i f x ∈ [α,x0]∩T or y ∈ [β ,y0]∩T,

φ(σi(x),τi(y)) � |C|1/p,∀(x,y) ∈ Tx0 ×Ty0 i f σi(x) � x0, or τi(y) � y0,
(4.2)

where (x,y) ∈ Ω,u ∈Crd(Tx0 ×Ty0 ,R) C is a nonzero constant, φ ,α,β ,σi,τi are the
same as in Theorem 3.1 and F ∈Crd(Tx0 ×Ty0 ×Tx0 ×Ty0 ×R×R,R) . We can obtain
the following Corollary.
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COROLLARY 4.1. Assume that

|F(x,y,s, t,u(σ1(s),τ1(t)),u(σ2(s),τ2(t)))|
� f1(x,y,s,t)g1(u(σ1(s),τ1(t)))+ f2(x,y,s,t)g2(u(σ2(s),τ2(t))) (4.3)

where the definition of f1, f2,g1,g2 are given in (H2) and (H3) . Then the solution of
(4.1) has an estimate for x ∈ Tx0 ,y ∈ Ty0

|u(x,y)| � {
W−1

1

[
W−1

2 (W2(W1(|C|)+
∫ x

x0

∫ y

y0

f̃1(x,y,s,t)ΔsΔt)

+
∫ x

x0

∫ y

y0

f̃2(x,y,s,t)ΔsΔt)
]}1/p

. (4.4)

where f̃i(x,y,s, t),ωi(u),Wi(u) are defined in Theorem 3.1.

Proof. From (4.1) we have

|up(x,y)| � |C|+
∫ x

x0

∫ y

y0

|F(x,y,s,t,u(σ1(s),τ1(t)),u(σ2(s),τ2(t)))|ΔsΔt,

� |C|+
∫ x

x0

∫ y

y0

f1(x,y,s,t)g1(u(σ1(s),τ1(t)))ΔsΔt

+
∫ x

x0

∫ y

y0

f2(x,y,s,t)g2(u(σ2(s),τ2(t)))ΔsΔt (4.5)

Then according to Theorem 3.1, we can obtain (4.4). �
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