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Abstract. In this paper, we give answers to two open problems concerning Gauss Compound
mean posed in the paper: [ZH. H. YANG, A New Proof of Inequalities for Gauss Compound
Mean, Int. Journal of Math. Analysis, Vol. 4, (2010), no. 21, 1013–1018.] One of the problems
is equivalent to the Vamanamurthy problem.

1. Introduction

Within the past years, means have been the subject of intensive research. Many
interesting results and inequalities for means can be found in the literature [1]–[9]. The
well known Gauss compound mean of positive numbers a, b with a �= b is the limit

AGM(a,b) = lim
n→∞

an = lim
n→∞

bn

where

a1 = a, b1 = b, an+1 =
an +bn

2
= A(an,bn), bn+1 =

√
anbn = G(an,bn). (1)

The power mean of positive a and b is defined by

Mt(a,b) = M1/t(at ,bt) if t �= 0 and M0(a,b) =
√

ab. (2)

The t-order logarithmic mean of a,b > 0 is defined by

Lt(a,b) =

⎧⎨
⎩
(

bt−at

t(lnb−lna)

) 1
t
, t �= 0√

ab, t = 0,
(3)

where L1(a,b) = L(a,b) = b−a
lnb−lna is the logarithmic mean.
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We note, that AGM is connected with elliptic integrals by Gauss’s fantastic result:

AGM(1,r′) =
π

2k(r)

where k(r) =
π/2∫
0

(1− r2 sin2 x)−1/2dx, r′ =
√

1− r2, 0 � r � 1 (see [2]).

In the paper [8], the author presented new sophisticated proofs for famous inequal-
ities

L(a,b) < AGM(a,b) < L2/3(a3/2,b3/2)

where the first inequality was proved by B. C. Carlson and M. Vuorinen [4], while the
second one is due to J. and P. Borwein [2].

Denote by

Dn(t) = b−t
n+1

(
bt

n−at
n

lnbn− lnan
− bt

n+1−at
n+1

lnbn+1− lnan+1

)
, (4)

where an,bn is defined by (1). It was showed in [8] that t �→ Dn(t) is continuous on R

and increasing on (1,∞) with Dn(1) < 0, Dn(3/2) > 0. So Dn(t) has an unique zero

t(n)
0 (a,b) on (1,3/2) .

Denote by t0i(a,b) = inf
n∈N

{t(n)
0 (a,b)} and t0s(a,b) = sup

n∈N
{t(n)

0 (a,b)}. It is evident

that 1 � t0i(a,b) < 3/2, 1 < t0s(a,b) � 3/2.
At the end in the same paper [8], the author posed two open problems and remarks

as follows:

PROBLEM 1. Is t0i(a,b) equal to 1?

REMARK 1. If the answer is “no”, then there must exist t1 ∈ (1,t0i(a,b)) such
that Dn(t1) < 0 for all n , whence

L(at1
n ,bt1

n ) < L(at1
n+1,b

t1
n+1) for all n,

which implies
Lt1(a,b) < AGM(a,b), (5)

where Lt(a,b) is defined by (3).
Furthermore, are there some concrete constants t1 ∈ (1,t0i(a,b)) such that (5)

holds?

PROBLEM 2. Is t0s(a,b) equal to 3/2?

REMARK 2. If the answer is “no”, then there must exist t2 ∈ (t0s(a,b),3/2) such
that Dn(t2) > 0 for all n , whence

L(at2
n ,bt2

n ) > L(at2
n+1,b

t2
n+1) for all n,
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which implies
AGM(a,b) < Lt2(a,b), (6)

where Lt(a,b) is defined by (3).
Furthermore, are there some concrete constants t2 ∈ (t0s(a,b),3/2) such that (6)

holds?

REMARK 3. If replacing at , bt by a,b in Lt(a,b) and a , b by a1/t , b1/t in
AGM(a,b), then the inequality (5) is equivalent to

L(a,b) < AGM1/t1(a,b) for 1/t1 ∈ (1/t0i(a,b),1). (7)

This shows that the open problem presented by Vamanamurthy is equivalent to the
problem 1.

In this note, we will prove that

• for ∀a,b > 0 with a �= b we have t0i(a,b) > 1, and inf
a,b>0,a �=b

{t0i(a,b)} = 1;

• for ∀a,b > 0 with a �= b we have t0s(a,b) = 3/2.

These solve two open problems as above.

2. Two lemmas

In order to solve two open problems posed in [8], we need two important lemmas.
Without loss of generality, we assume that b < a. Denote by sn = sn(a,b) = bn/an,
then 0 < sn = sn(a,b) < 1. We have

an+1

an
=

1+bn/an

2
=

1+ sn

2
,

bn+1

an+1
=

√
anbn

(an +bn)/2
= 2

√
bn/an

1+bn/an
= 2

√
sn

1+ sn
,

an

bn+1
=

an√
anbn

=
1√

bn/an
=

1√
sn

.

Then Dn(t) and D′
n(t) can be expressed as

Dn(t) = b−t
n+1

(
bt

n−at
n

lnbn− lnan
− bt

n+1−at
n+1

lnbn+1− lnan+1

)

=
(

an

bn+1

)t( (bn/an)t −1
ln(bn/an)

)
− 1− (an+1/bn+1)t

ln(bn+1/an+1)

=
st/2
n − s−t/2

n

lnsn
−

1−
(

1+sn
2
√

sn

)t

ln 2
√

sn
1+sn

, (8)
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D′
n(t) =

s−t/2
n + st/2

n

2
−
(

s−1/2
n + s1/2

n

2

)t

.

We now show that t �→ Dn(t), n ∈ N is a convex function on [1,∞).

LEMMA 1. Let Dn(t) n ∈ N be defined in (2). Then D′′
n(t) > 0 for n ∈ N, t ∈

[1,∞).

Proof. Differentiation gives

st/2
n D′′

n(t) =
stn−1

4
lnsn −

(
1+ sn

2

)t

ln

(
1+ sn

2
√

sn

)
:= g(t),

g′(t) =
(

1+ sn

2

)t

ln

(
2
√

sn

1+ sn

)
ln

(
1+ sn

2

)
+

stn ln2 sn

4
� 0,

where the inequality holds due to 0 < sn < 1.

Clearly, the proof will be done if we prove that

g(1) = h(sn) =
(

1+ sn

2

)
ln

(
2
√

sn

1+ sn

)
+

sn −1
4

lnsn � 0.

Differentiation again yields that for 0 < sn < 1,

h′(sn) =
1
2

ln

(
2sn

1+ sn

)
� 0,

which indicates that h(sn) > h(1) = 0 and the proof of our lemma is complete. �

LEMMA 2. For n ∈ N and a,b > 0 with a �= b, let

rn = 1− 1
2

Dn(1)
Dn(3/2)−Dn(1)

,

where Dn(t) is given by (2). Then we have

lim
n→∞

rn =
3
2
.

Proof. To complete the proof, we write rn as

rn = 1+
1
2

1
Dn(3/2)/(−Dn(1))+1

.
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By (8) we have

Dn(3/2)
−Dn(1)

=

⎡
⎢⎣s−3/4

n − s3/4
n

lnsn
−
(

1+sn
2
√

sn

)3/2−1

ln
(

2
√

sn
1+sn

)
⎤
⎥⎦/

⎡
⎣ 1+sn

2
√

sn
−1

ln
(

2
√

sn
1+sn

) −
1√
sn
−√

sn

lnsn

⎤
⎦

=
1

s1/4
n

(
1− s3/2

n

) ln
(

2
√

sn
1+sn

)
ln sn

−
((

1+sn
2

)3/2− s3/4
n

)

1+sn
2 −√

sn −
ln
(

2
√

sn
1+sn

)
ln sn

(1− sn)

=
1

s1/4
n

(
1− s3/2

n

)
ln
(

2
√

sn
1+sn

)
−
((

1+sn
2

)3/2− s3/4
n

)
lnsn(

1+sn
2 −√

sn

)
lnsn − ln

(
2
√

sn
1+sn

)
(1− sn)

:=
1

s1/4
n

f1(sn)
f2(sn)

.

From

sn+1 =
bn+1

an+1
=

2
√

sn

1+ sn
,

we see that 1 > sn+1(a,b) > sn(a,b) > 0, which is due to
√

x(1+x) � 2 for 0 < x < 1.
This implies that sequence {sn(a,b)}∞

n=1 is convergent, and it is easily deduced that
lim
n→∞

sn(a,b) = 1.

To prove lim
n→∞

rn = lim
sn→1

rn = 3
2 , it suffices to show that lim

sn→1
[Dn(3/2)/(−Dn(1))] =

0. To this end, we use power series expansion to get

f1(sn) =
(
1− s3/2

n

)
ln

(
2
√

sn

1+ sn

)
−
((

1+ sn

2

)3/2

− s3/4
n

)
lnsn

=
21

5×215 (sn −1)7 +O
(
(sn −1)8) ,

f2(sn) =
(

1+ sn

2
−√

sn

)
lnsn − ln

(
2
√

sn

1+ sn

)
(1− sn)

=
1

384
(sn −1)5 +O

(
(sn −1)6

)
.

Then we obtain

lim
sn→1

Dn(3/2)
−Dn(1)

= lim
sn→1

1

s1/4
n

f1(sn)
f2(sn)

= lim
sn→1

21
5×215 (sn −1)7 +O

(
(sn −1)8

)
1

384(sn −1)5 +O((sn −1)6)
= 0.

This completes the proof. �
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3. Main result

Now we are in a position to state and prove our main result.

THEOREM 1. For n ∈ N, let t(n)
0 = t(n)

0 (a,b) denote the unique zero of Dn(t)
defined by (2) on (1,3/2). Then we have

t0s = sup
n∈N

{t(n)
0 (a,b)} =

3
2
, t0i = inf

n∈N

{t(n)
0 (a,b)} > 1

and inf
a>0,b>0,a �=b

{t0i(a,b)} = 1.

Proof. Lemma 1 tells us that t �→ Dn(t) is convex on [1,∞), which implies that

for t(n)
0 ∈ [1,3/2] we have

Dn(3/2)−Dn(1)
3/2−1

>
Dn

(
t(n)
0

)
−Dn(1)

t(n)
0 −1

=
−Dn(1)

t(n)
0 −1

.

This gives

rn = 1− 1
2

Dn(1)
Dn(3/2)−Dn(1)

< t(n)
0 <

3
2
.

It follows from Lemma 2 that lim
n→∞

t(n)
0 (a,b)= 3/2, and therefore, t0s = sup

n∈N

{t(n)
0 (a,b)}=

3
2 .

Denote by

F(sn, t) =
(

2
√

sn

1+ sn

)t

ln

(
2
√

sn

1+ sn

)
×Dn(t)

=
(

ln

(
2
√

sn

1+ sn

))(
2

1+ sn

)t( stn −1
lnsn

)
−
(

2
√

sn

1+ sn

)t

+1.

Put t0 = inf
a>0,b>0,a �=b.

t0i(a,b). Let {sk}∞
k=1 be a sequence such that 0 < sk+1 < sk < 1,

lim
k→∞

sk = 0. Let {t(sk)}∞
k=1 be a sequence of solutions F(sk,t(sk)) = 0 in (1,3/2).

Then {t(sk)}∞
k=1 is a bounded sequence. It implies that the sequence has a convergent

subsequence {t(skl )}∞
l=1. Denote by t∗0 = lim

l→∞
t(skl ). It is clear that

Dn(t(a,b)) = 0 ⇐⇒ F(sn(a,b),t(a,b)) = 0.

So from lim
l→∞

F(skl , t(skl )) = 0 we obtain 2t∗0−1 = 1. It implies t0 = 1. �

CONCLUSSION 1. For all a,b > 0 with a �= b there is t1 ∈ (1,t0i(a,b)) such that

Lt1(a,b) < AGM(a,b),
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but sup
a>0,b>0,a �=b.

{t1(a,b)} = 1.

For all a,b > 0 with a �= b there is no t2 ∈ (1,3/2) such that

Lt2(a,b) > AGM(a,b).

So L1(a,b) and L3/2(a,b) are optimal lower and upper bounds for AGM(a,b), respec-
tively.
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