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MONOTONICITY AND SHARP INEQUALITIES
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(Communicated by G. Nemes)

Abstract. In this paper, we investigate the monotonicity pattern of the function

x �→ lnΓ(x+1)
ln (x2 +a)− ln (x+a)

on (0,1) for a � 1 and resolve an open problem. From which we prove that the double inequal-
ity (

x2 +a
x+a

)(1−γ)(a+1)

< Γ(x+1) <

(
x2 +b
x+b

)(1−γ)(b+1)

holds for x∈ (0,1) if and only if 0 < a � (1− γ)/(2γ −1) and b �
(
π2 −6γ

)
/
(
18−12γ −π2

)
,

while the double inequality (
x2 +a
x+a

)γa

< Γ(x+1) <

(
x2 +b
x+b

)γb

holds for x ∈ (0,1) if and only if a � (1− γ)/(2γ −1) and 0 < b � 6γ/(π2 − 12γ) , where
γ = 0.577 . . . denotes Euler-Mascheroni’s constant. These greatly improve some existing results.

1. Introduction

For x > 0 the classical Euler’s gamma function Γ and psi (digamma) function ψ
are defined by

Γ(x) =
∫ ∞

0
tx−1e−t dt, ψ (x) =

Γ′ (x)
Γ(x)

, (1.1)

respectively. The derivatives ψ ′ , ψ ′′ , ψ ′′′ , . . . are known as polygamma functions.
There has an extensive literature on approximates for gamma function Γ(x) , simi-

lar to Stirling formula, more of which are related to x is enough large. Due to Γ(x+1)=
xΓ(x) , in this paper, we are interested in those approximates for gamma function Γ(x)
on the interval (0,1) . In [7], Ivády present a very simple bound of rational functions
for the gamma function on (0,1) . He proved that the double inequality

x2 +1
x+1

< Γ(x+1) <
x2 +2
x+2

(1.2)
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holds for x ∈ (0,1) , which improves some gamma function inequalities of Alzer [3],
Baricz [5] and Elezović et al. [6].

Zhao et al. [16, Theorem 2] proved the function

Q(x) =
lnΓ(x+1)

ln(x2 +1)− ln(x+1)

is strictly increasing on (0,1) , with the limits

lim
x→0+

Q(x) = γ and lim
x→1−

Q(x) = 2(1− γ) ,

where γ = 0.577 . . . denotes Euler-Mascheroni’s constant. It follows that the double
inequality (

x2 +1
x+1

)α

< Γ(x+1) <

(
x2 +1
x+1

)β

(1.3)

holds on (0,1) if and only if α � 2(1− γ) and β � γ , which clearly refines the first
inequality in (1.2).

At the end of the same paper, they posted an open problem as follows.

PROBLEM 1. What is the largest number a > 1 (or the smallest number a < 6
respectively) for the function

Qa (x) =
lnΓ(x+1)

ln(x2 +a)− ln(x+a)
(1.4)

to be strictly increasing (or decreasing respectively) on (0,1)?

Recently, the Problem 1 was solved by Kupán and Szász in [8]. They proved
that Qa is strictly increasing if and only if a ∈ (0,a10] and decreasing if and only if
a ∈ [a50,∞) , where

a10 =
6γ

π2−12γ
≈ 1.1768 and a50 =

π2−6γ
18−π2−12γ

≈ 5.3217.

As consequences, they obtained the following sharp inequalities:

(
x2 +a10

x+a10

)(1−γ)(1+a10)

� Γ(x+1) �
(

x2 +a10

x+a10

)γa10

, x ∈ [0,1] , (1.5)

(
x2 +a50

x+a50

)γa50

� Γ(x+1) �
(

x2 +a50

x+a50

)(1−γ)(1+a50)

, x ∈ [0,1] . (1.6)

The first aim of this paper is to characterize the monotonicity pattern of the func-
tion Qa on (0,1) and give another approach to solve Problem 1. The second aim is to
determine the best constants a,b > 0 such that the double inequalities

(
x2 +a
x+a

)(1−γ)(1+a)

� Γ(x+1) �
(

x2 +b
x+b

)(1−γ)(1+b)

,
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(
x2 +a
x+a

)γa

� Γ(x+1) �
(

x2 +b
x+b

)γb

hold for x ∈ (0,1) .
The paper is organized as follows. In Section 2, some lemmas as our tools are

introduced. In Section 3, the monotonicity pattern of function Qa on (0,1) is described
for a � 1, and Problem 1 is resolved. Two best double inequalities for gamma function
are presented in Section 4. In the last section, we give some remarks.

2. Tools

To prove our results, we need some lemmas as tools. The first lemma is called
“L’Hospital Monotone Rule” (or, for short, LMR).

LEMMA 1. ([4, Theorem 2], [10]) For −∞ < a < b < ∞ , let f ,g : [a,b] → R be
continuous functions that are differentiable on (a,b) , with f (a) = g(a) = 0 or f (b) =
g(b) = 0 . Assume that g′(x) �= 0 for each x in (a,b) . If f ′/g′ is increasing (decreas-
ing) on (a,b) , then so is f/g.

The second and third lemmas are based on the auxiliary function

Hf ,g :=
f ′

g′
g− f , (2.1)

and called “L’Hospital Piecewise Monotone Rules”, for short, LPMR (see [13, Remark
1]).

LEMMA 2. ([11, Proposition 4.4], [13, Theorem 8]) For −∞ � a < b � ∞ , let f
and g be differentiable functions on (a,b) . Suppose that (i) g′ (x) �= 0 on (a,b); (ii)
f (a+) = g(a+) = 0 ; (iii) there is a c∈ (a,b) such that f ′/g′ is increasing (decreasing)
on (a,c) and decreasing (increasing) on (c,b) . Then

(i) when sgng′ (x) sgnHf ,g (b−) � (�)0 , f/g is increasing (decreasing) on (a,b) .
(ii) when sgng′ (x)sgnHf ,g (b−) < (>)0 , there is a unique number x0 ∈ (a,b) such

that f/g is increasing (decreasing) on (a,x0) and decreasing (increasing) on (x0,b) .

LEMMA 3. ([11, Proposition 4.4], [13, Theorem 9]) For −∞ � a < b � ∞ , let f
and g be differentiable functions on (a,b) with gg′ �= 0 on (a,b) . Suppose that (i)
g′ (x) �= 0 on (a,b); (ii) f (b−) = g(b−) = 0 ; (iii) there is a c ∈ (a,b) such that f ′/g′
is increasing (decreasing) on (a,c) and decreasing (increasing) on (c,b) . Then

(i) when sgng′ (x)sgnHf ,g (a+) � (�)0 , f/g is decreasing (increasing) on (a,b);
(ii) when sgng′ (x)sgnHf ,g (a+) > (<)0 , there is a unique number x0 ∈ (a,b) such

that f/g is increasing (decreasing) on (a,x0) and decreasing (increasing) on (x0,b) .

The following lemma offers a simple criterion to determine the sign of a class of
special polynomial on given interval contained in (0,∞) without using Descartes’ Rule
of Signs, which is very crucial to prove our results.
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LEMMA 4. ([14, Lemma 7]) For n ∈ N and m ∈ N∪{0} with n > m, let Pn (t)
be an n degrees polynomial defined by

Pn (t) =
n

∑
i=m+1

ait
i −

m

∑
i=0

ait
i, (2.2)

where an,am > 0 , ai � 0 for 0 � i � n−1 with i �= m. Then there is a unique number
tm+1 ∈ (0,∞) to satisfy Pn (t) = 0 such that Pn (t) < 0 for t ∈ (0,tm+1) and Pn (t) > 0
for t ∈ (tm+1,∞) .

Consequently, for given t0 > 0 , if Pn (t0) > 0 then Pn (t) > 0 for t ∈ (t0,∞) and if
Pn (t0) < 0 then Pn (t) < 0 for t ∈ (0,t0) .

LEMMA 5. ([1, p. 260.]) Let x > 0 and n ∈ N . Then

ψ(n)(x+1)−ψ(n)(x) =
(−1)n n!

xn+1 . (2.3)

LEMMA 6. ([12, Lemma 3]) For n ∈ N , the double inequality

(n−1)!
xn +

n!
2xn+1 < (−1)n+1 ψ(n) (x) <

(n−1)!
xn +

n!
xn+1

holds on (0,∞) . In particular, for x > 0 , we have

ψ ′ (x) >
1
x

+
1

2x2 , (2.4)

ψ ′′ (x) > − 1
x2 −

2
x3 , (2.5)

ψ ′′′ (x) >
2
x3 +

3
x4 . (2.6)

3. The monotonicity pattern of x �→ Qa (x)

Let

Qa (x) =
lnΓ(x+1)

ln(x2 +a)− ln(x+a)
:=

f1 (x)
f2 (x)

. (3.1)

Then f1 (0) = f2 (0) = f1 (1) = f2 (1) = 0 and

lim
x→0

Qa (x) = lim
x→0

f1 (x)
f2 (x)

= γa, lim
x→1

Qa (x) = lim
x→1

f1 (x)
f2 (x)

= (1− γ)(a+1).

Differentiation yields

f ′1 (x) = ψ (x+1) and f ′2 (x) =
x2 +2ax−a

(x2 +a)(x+a)
. (3.2)

Since

p2 (x,a) := x2 +2ax−a =
[
x+a+

√
a(a+1)

][
x−
(√

a(a+1)−a
)]

, (3.3)
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it is seen that f ′2 (x) < 0 for x ∈ (0,xa) and f ′2 (x) > 0 for x ∈ (xa,1) , where

xa ≡ x(a) =
√

a(a+1)−a ∈
(√

2−1,1/2
)

for a ∈ [1,∞), (3.4)

which follows from
dxa

da
=

1
2

2a+1√
a(a+1)

−1 > 0

and therefore, √
2−1 = x(1) < xa < x(∞) =

1
2
.

We now discuss the monotonicity of f1/ f2 on (0,xa) and (xa,1) under the con-
dition a � 1. We have that for x �= xa ,

f ′1 (x)
f ′2 (x)

=

(
x2 +a

)
(x+a)

x2 +2ax−a
ψ (x+1) ,

(
f ′1 (x)
f ′2 (x)

)′
=

p4 (x,a)

(x2 +2ax−a)2
ψ (x+1)+

(
x2 +a

)
(x+a)

(x2 +2ax−a)
ψ ′ (x+1),

where
p4 (x,a) =

(
x4 +4ax3−2a(2−a)x2 −4a2x−a2 (2a+1)

)
. (3.5)

Since the polynomial p4 (x,a) satisfies the conditions for coefficients in Lemma 4
whether the coefficient of x2 is positive or non-positive, and p4(1,a) = −(2a−1)(a+
1)2 < 0, it is easily seen that p4 (x,a) < 0 for all x ∈ (0,1) . Then ( f ′1/ f ′2)

′ can be
written as (

f ′1 (x)
f ′2 (x)

)′
=

p4 (x,a)

(x2 +2ax−a)2
f3 (x) , (x �= xa), (3.6)

where

f3 (x) = ψ (x+1)+

(
x2 +2ax−a

)(
x2 +a

)
(x+a)

p4 (x,a)
ψ ′ (x+1) . (3.7)

This implies that for x ∈ (0,1) with x �= xa ,

sgn

(
f ′1 (x)
f ′2 (x)

)′
= −sgn f3 (x) . (3.8)

A simple computation gives

f3 (0) =
π2−12γ
6(2a+1)

(
a− 6γ

π2−12γ

){
> 0 if a ∈ (a10,∞) ,
< 0 if a ∈ (1,a10) ,

(3.9)

f3 (1) =
18−π2−12γ

6(2a−1)

(
a− π2−6γ

18−π2−12γ

){
> 0 if a ∈ (a50,∞) ,
< 0 if a ∈ (1,a50) ,

(3.10)

where

a10 =
6γ

π2−12γ
≈ 1.177 and a50 =

π2−6γ
18−π2−12γ

≈ 5.322. (3.11)
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Also, it was listed in [1, p. 259] that there is a x1 ∈ (0.4616321,0.4616322) such that
ψ (x+1) < 0 for x ∈ (−1,x1) and ψ (x+1) > 0 for x ∈ (x1,∞) . So by (3.4) there is a
unique

a21 :=
x2
1

1−2x1
∈ (2.777,2.778) (3.12)

such that

f3 (xa) = ψ (xa +1)
{

< 0 if a ∈ (1,a21) ,
> 0 if a ∈ (a21,∞) .

(3.13)

Differentiation again yields

f ′3 (x) = ψ ′ (x+1)+

((
x2 +2ax−a

)(
x2 +a

)
(x+a)

p4 (x,a)

)′
ψ ′ (x+1)

+

(
x2 +2ax−a

)(
x2 +a

)
(x+a)

p4 (x,a)
ψ ′′ (x+1)

= 2

(
x2 +2ax−a

)
p6 (x,a)

p4 (x,a)2 ψ ′ (x+1)

+

(
x2 +2ax−a

)(
x2 +a

)
(x+a)

p4 (x,a)
ψ ′′ (x+1) ,

where

p6 (x,a) = x6 +6ax5 +3a(2a−3)x4 +2a2 (a−9)x3−3a2 (6a+1)x2 −6a4x−a3.
(3.14)

Similarly, whether a ∈ [1,3/2] or a ∈ (3/2,9) or a ∈ [9,∞) , the polynomial p6 (x,a)
always satisfies the conditions for coefficients in Lemma 4 and p6(1,a) = −(6a−
1)(a + 1)3 < 0, so we get that p6 (x,a) < 0 for all x ∈ (0,1) . From the expression
of f ′3 (x) we have that for x �= xa ,

p4 (x,a)2

p2 (x,a)
f ′3 (x) = 2p6 (x,a)ψ ′ (x+1)+

(
x2 +a

)
(x+a) p4 (x,a)ψ ′′ (x+1) := f4 (x) ,

(3.15)
and then,

sgn f ′3 (x) = sgn(x− xa) sgn f4 (x) (3.16)

Now we deal with the monotonicity of f4 on (0,1) for a � 1.

LEMMA 7. For a ∈ [1,∞) , the function f4 defined by (3.15) is strictly decreasing
on (0,1) .

Proof. (i) Differentiating for f4 (x) leads to

f ′4 (x) = l1 (x,a)ψ ′ (x+1)+ l2 (x,a)ψ ′′ (x+1)+ l3 (x,a)ψ ′′′ (x+1) ,
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where

l1 (x,a) = 2
∂ p6

∂x
= 12

[
x5 +5ax4 +2a(2a−3)x3 +a2 (a−9)x2−a2 (6a+1)x−a4

]
,

l2 (x,a) = 2p6 (x,a)+
∂
∂x

[(
x2 +a

)
(x+a) p4 (x,a)

]
= 3

(
3x2 +2ax+a

)
p4 (x,a) ,

l3 (x,a) =
(
x2 +a

)
(x+a) p4 (x,a) .

Clearly, whether a∈ [1,3/2] or a∈ (3/2,9) or a∈ [9,∞) , the polynomial l1 (x,a)
satisfies the conditions for coefficients in Lemma 4 and

l1 (1,a) = −12(a+1)2
(
a2 +3a−1

)
< 0,

so l1 (x,a) < 0 for all x ∈ (0,1) . While l2 (x,a) , l3 (x,a) < 0 is due to p4 (x,a) < 0 for
x ∈ (0,1) . Using the inequalities (2.4), (2.5) and (2.6) we have

f ′4 (x) < l1 (x,a)

(
1

x+1
+

1

2(x+1)2

)
− l2 (x,a)

(
1

(x+1)2
+

2

(x+1)3

)

+l3 (x,a)

(
2

(x+1)3
+

3

(x+1)4

)
:=

p8 (x,a)

(x+1)4
,

where

p8 (x,a) =
8

∑
k=6

bkx
k +b5x

7−
4

∑
k=0

bkx
k,

here
b8 = 5, b7 = (28a+11), b6 =

(
18a2 +22a+21

)
,

b5 = 4a3−36a2−21a+18, b4 = a
(
32a2 +136a+99

)
,

b3 = a
(
96a2 +199a+108

)
, b2 = a2 (134a+147),

b1 = a2 (4a3 +20a2 +47a+18
)
, b0 = a3 (10a2 +5a−9

)
.

It is evident that all bk > 0 for 0 � k � 8 except b5 . However, whether b5 > 0 or
b5 � 0, all coefficients of the polynomial p8 (x,a) meet the conditions in Lemma 4,
and

p8 (1,a) = −(a+1)2
(
14a3−3a2 +288a−55

)
< 0.

By Lemma 4 we get that p8 (x,a) < 0 for x ∈ (0,1) . Therefore, f ′4 (x) < 0 for x ∈
(0,1) . �

LEMMA 8. For a ∈ [1,∞) , let the function f4 be defined on (0,1) by (3.15).
(i) We have f4 (0) > 0 for all a ∈ [1,∞) .
(ii) We have f4 (1) < 0 for a ∈ [1,a8) and f4 (xa) > 0 for a ∈ (a8,∞) , where

a8 = 3π2−3ζ (3)−15+
√

3
√

3π4−26π2−10π2ζ (3)+27(ζ (3))2+6ζ (3)+75
12(ζ (3)−1) ≈ 8.953,
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here ζ (s) = ∑∞
n=1 n−s (s > 1 ) .

(iii) There is a unique a22 ∈ (2.817,2.818) such that f4 (xa) < 0 for a ∈ [1,a22)
and f4 (xa) > 0 for a ∈ (a22,∞) , where xa =

√
a(a+1)−a ∈ [

√
2−1,1/2) .

Proof. (i) It is easily derived that for a � 1,

f4 (0) = 2a4 (2a+1)ζ (3)− 1
3

π2a3

> 2a4 (2a+1)− 1
3

π2a3 =
a3

3

(
12a2 +6a−π2)> 0,

here we have used the known inequality ζ (3) > 1.
(ii) We have

f4 (1) = −2

(
π2

6
−1

)
(6a−1)(a+1)3 +2(ζ (3)−1)(2a−1)(a+1)4

=
1
3

(a+1)3
[
12(ζ (3)−1)a2−6a

(
π2− ζ (3)−5

)
+
(
π2−6ζ (3)

)]
.

It is easily known that the quadratic polynomial in the square brackets has two roots,
that are a8 ≈ 8.953 and

− 3ζ (3)−3π2+15+
√

3
√

3π4−26π2−10π2ζ (3)+27(ζ (3))2+6ζ (3)+75
12ζ (3)−12 ≈ 0.122,

which imply the second assertion.
(iii) Direct computation yields

p6 (xa,a) = −12a3 (a+1)2
(√

a+1−√
a
)2

,

(
x2
a +a

)
(xa +a) p4 (xa,a) = −8a3

√
a(a+1)(a+1)2

(√
a+1−√

a
)2

.

Then we have

f4 (xa) = −24a3 (a+1)2
(√

a+1−√
a
)2

ψ ′ (xa +1)

−8a3
√

a(a+1)(a+1)2
(√

a+1−√
a
)2

ψ ′′ (xa +1) ,

which shows that

f4 (xa)

8a3 (a+1)2
(√

a+1−√
a
)2 = −3ψ ′ (xa +1)−

√
a(a+1)ψ ′′ (xa +1) .

Due to the relation xa =
√

a(a+1)−a , we obtain

a =
x2
a

1−2xa
and

√
a(a+1) =

xa (1− xa)
1−2xa

. (3.17)
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Then we have

f4 (xa)

8a3 (a+1)2
(√

a+1−√
a
)2 = −3ψ ′ (xa +1)−

√
a(a+1)ψ ′′ (xa +1) (3.18)

= −3ψ ′ (xa +1)− xa (1− xa)
1−2xa

ψ ′′ (xa +1) :=
f5 (xa)
1−2xa

,

where xa ∈ [
√

2−1,1/2) and

f5 (t) = 3(2t−1)ψ ′ (t +1)+ t (t −1)ψ ′′ (t +1) .

We now show that f5 is strictly increasing on (0,∞) . Differentiation leads us to

f ′5 (t) = 6ψ ′ (t +1)+4(2t−1)ψ ′′ (t +1)+ t (t−1)ψ ′′′ (t +1) .

Utilizing the recurrence formulas (2.3) we get

f ′5 (t +1)− f ′5 (t) = 8ψ ′′ (t)+2tψ ′′′ (t)+
2
(
2t4 +3t3 +6t2 +6t +2

)
t3 (t +1)3

:= f6 (t) ,

f6 (t +1)− f6 (t) = 2ψ ′′′ (t)−22t7+9t6+47t5+187t4+378t3+396t2+216t+48
t4(t+1)3(t+2)3

:= f7 (t) ,

f7 (t +1)− f7 (t) = −8
(
12t5 +123t4 +498t3 +998t2 +994t +395

)
(t +1)4 (t +2)3 (t +3)3

< 0,

for all t > 0. Then we have

f7 (t) > f7 (t +1) > .. . > lim
n→∞

f7 (t +n) = 0,

which implies that

f6 (t) < f6 (t +1) < .. . < lim
n→∞

f6 (t +n) = 0.

This in turn indicates that

f ′5 (t) > f ′5 (t +1) > .. . > lim
n→∞

f ′5 (t +n) = 0

for all t > 0, that is, f5 is strictly increasing on (0,∞) .
Consequently, for t ∈ (0,∞) , there is a unique t0 ∈ (0.462104,0.462105) such

that f5 (t) < 0 for t ∈ (0,t0) and f5 (t) > 0 for t ∈ (t0,∞) .

Thus by the relation (3.18) it is clearly seen that f4 (xa) < 0 for xa ∈
(√

2−1,t0
)

and f4 (xa) < 0 for xa ∈ (t0,1/2) , where t0 ∈ (0.462104,0.462105) implies by (3.17)
that

a =
x2
a

1−2xa
∈ (2.817,2.818).

This completes the proof. �
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Based on the monotonicity of f4 and the signs of f4 (0) , f4 (1) and f4 (xa) , to-
gether with the relation (3.16), namely, sgn f ′3 (x) = sgn(x− xa) sgn f4 (x) , we can list
the monotonic pattern of f3 on (0,1) for a ∈ [1,∞) as follows:

Table 1: monotonicity of f3
a f4 (0) (0,xa) f4 (xa) (xa,1) f4 (1)
(1,a22) + f3 ↘↗ − f3 ↘ −
a22 + f3 ↘ 0 f3 ↘ −
(a22,a8) + f3 ↘ + f3 ↗↘ −
a8 + f3 ↘ + f3 ↗ 0
(a8,∞) + f3 ↘ + f3 ↗ +

Making use of the monotonicity of f3 given in Table 1 and f3 (0) , f3 (1) and
f3 (xa) presented in (3.9), (3.10) and (3.13), respectively, we have the following

Table 2: the signs of f3
0 a f3 (0) sgn f3 (x) on (0,xa) f3 (xa) sgn f3 (x) on (xa,1) f3 (1)
1 (1,a10] � 0 f3 ↘↗ f3− − f3 ↘ f3− −
2 (a10,a21] + f3 ↘↗ f3 +− � 0 f3 ↘ f3− −
3 (a21,a22) + f3 ↘↗ f3 +(+)+ + f3 ↘ f3 +− −
4 a22 + f3 ↘ f3+ + f3 ↘ f3 +− −
5 (a22,a50) + f3 ↘ f3+ + f3 ↗↘ f3 +− −
6 [a50,a8) + f3 ↘ f3+ + f3 ↗↘ f3+ � 0
7 [a8,∞) + f3 ↘ f3+ + f3 ↗ f3 +− +

REMARK 1. From Table 2, when a ∈ (a21,a22) we see that f3 is decreasing then
increasing on (0,xa) and f3 (0) , f3 (xa) > 0. This contains two cases of sign of f3 ,
one of which is “+” on (0,xa) , another one is “+−+”. We guess that f3 (x) > 0 on
(0,xa) .

Now we are in a position to state and prove the monotonicity pattern of Qa .

THEOREM 1. Let a10 ≈ 1.177 , a21 ≈ 2.777 , a22 ≈ 2.817 , a50 ≈ 5.322 be defined
in (3.11), (3.12) and Lemma 8, respectively. For a ∈ [1,∞) , let Qa be defined on (0,1)
by (1.4).

(i) The function Qa is strictly increasing on (0,1) if and only if a ∈ [1,a10] , and
therefore, we have (

x2 +a
x+a

)(1−γ)(a+1)

< Γ(x+1) <

(
x2 +a
x+a

)γa

(3.19)

holds for all x ∈ (0,1) with the best constants (1− γ)(a+1) and γa.
(ii) When a ∈ (a10,a21]∪ [a22,a50) , there is a unique x01 ∈ (0,1) such that Qa is

decreasing on (0,x01) and increasing on (x01,1) , and therefore, the double inequality(
x2 +a
x+a

)α

< Γ(x+1) �
(

x2 +a
x+a

)β

(3.20)
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holds for all x ∈ (0,1) , where

α = max(γa,(1− γ)(a+1)) and β =
lnΓ(x01 +1)

ln
(
x2
01 +a

)− ln(x01 +a)

are the best constants, here x01 is the sole solution of the equation

d
dx

lnΓ(x+1)
ln(x2 +a)− ln(x+a)

= 0

on (0,1) . In particular, we have

Γ(x+1) >

(
x2 +a20

x+a20

)(1−γ)(a20+1)

=
(

x2 +a20

x+a20

)γa20

(3.21)

for x ∈ (0,1) , where

a20 =
1− γ
2γ −1

≈ 2.738. (3.22)

(iii) The function Qa is strictly decreasing on (0,1) if and only if a ∈ [a50,∞) ,
and consequently, the double inequality

(
x2 +a
x+a

)γa

< Γ(x+1) <

(
x2 +a
x+a

)(1−γ)(a+1)

(3.23)

holds for all x ∈ (0,1) with the best constants γa and (1− γ)(a+1).

Proof. (i) The necessary condition for the function Qa = f1/ f2 to be strictly in-
creasing on (0,1) follows from the following limit relation

lim
x→0+

Q′
a (x) = −π2−12γ

12

(
a− 6γ

π2−12γ

)
� 0.

When a∈ [1,a10] , by Line 1 in Table 2 with the sign relation (3.8), that is, sgn( f ′1/ f ′2)
′

= −sgn f3 , we have ( f ′1/ f ′2)
′ > 0 for x ∈ (0,xa) and x ∈ (xa,1) . Note that f1 (0+) =

f2 (0+) = 0, it follows from Lemma 1 that f1/ f2 is strictly increasing on (0,xa) . Sim-
ilarly, since f1 (1−) = f2 (1−) = 0, by Lemma 1 it follows that f1/ f2 is also strictly
increasing on (xa,1) .

In view of the continuity of f1/ f2 on (0,1) , it is obtained that f1/ f2 is strictly
increasing on (0,1) , which proves the sufficiency.

Therefore, we obtain

γa = lim
x→0+

f1 (x)
f2 (x)

<
f1 (x)
f2 (x)

< lim
x→1−

f1 (x)
f2 (x)

= (1− γ)(a+1) , (3.24)

which is equivalent to the double inutility (3.19).
(ii) When a ∈ (a10,a21]∪ [a22,a50) , we distinguish two cases:
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Case 1: a ∈ (a10,a21] . By Line 2 in Table 2 and sgn( f ′1/ f ′2)
′ = −sgn f3 , we see

that there is a x00a ∈ (0,xa) such that ( f ′1/ f ′2) is decreasing on (0,x00a) and increasing
on (x00a,xa) , and increasing on (xa,1) .

On the other hand, we have that

Hf1, f2 (x) =
f ′1 (x)
f ′2 (x)

f2 (x)− f1 (x)

=

(
x2 +a

)
(x+a)

x2 +2ax−a
ψ (x+1) ln

x2 +a
x+a

− lnΓ(x+1)

=

(
x2 +a

)
(x+a)

(x− xa)
(
x+a+

√
a(a+1)

)ψ (x+1) ln
x2 +a
x+a

− lnΓ(x+1)

→ − [sgn(x− xa)sgnψ (xa +1)]∞ as x → xa (3.25)

which in conjunction with the facts that ψ (xa +1) < 0 by (3.13) and f ′2 (x) < 0 for
x ∈ (0,xa) lead to sgn f ′2 (x) sgnHf1, f2 (x−a ) > 0. Note that f1 (0) = f2 (0) = 0, by part
(ii) of Lemma 2 it follows that there is a unique number x′0a ∈ (0,xa) such that f1/ f2
is decreasing on (0,x′0a) and increasing on (x′0a,xa) .

Also, the increasing property of ( f ′1/ f ′2) on (xa,1) and f1 (1−) = f2 (1−) = 0
imply, by Lemma 1, that f1/ f2 is increasing on (xa,1) .

Using the continuity of f1/ f2 at x = xa , we easily see that f1/ f2 is decreasing on
(0,x01) and increasing on (x01,1) , where x01 = x′0a ∈ (0,xa) . Therefore, we obtain

f1 (x01)
f2 (x01)

<
f1 (x)
f2 (x)

< lim
x→0+

f1 (x)
f2 (x)

= γa, for x ∈ (0,x01) ,

f1 (x01)
f2 (x01)

<
f1 (x)
f2 (x)

< lim
x→1−

f1 (x)
f2 (x)

= (1− γ)(a+1) for x ∈ (x01,1) ,

that is,

β =
f1 (x01)
f2 (x01)

� f1 (x)
f2 (x)

< max(γa,(1− γ)(a+1)) = α for x ∈ (0,1) , (3.26)

which proves (3.20).
Letting γa = (1− γ)(a+1) yields a = a20 = (1− γ)/(2γ −1)≈ 2.738∈ (a10,a21] ,

and the inequality (3.21) follows.
Case 2: a∈ [a22,a50) . By Line 5 in Table 2 and sgn( f ′1/ f ′2)

′ =−sgn f3 , it follows
that ( f ′1/ f ′2)

′ < 0 for x ∈ (0,xa) and there is a xa11 ∈ (xa,1) such that ( f ′1/ f ′2)
′ < 0 for

x ∈ (xa,xa11) and ( f ′1/ f ′2)
′ > 0 for x ∈ (xa11,1) .

Analogously, applying Lemma 1 to f1/ f2 on (0,xa) gives that f1/ f2 is decreasing
on the interval (0,xa) .

On the interval (xa,1) , we note that f1 (1−) = f2 (1−) = 0 and ( f ′1/ f ′2) is decreas-
ing on (xa,xa11) and increasing on (xa11,1) . And, from (3.13), (3.2) and (3.25), we see
that ψ (xa +1) > 0, f ′2 (x) > 0, Hf1, f2 (x+

a ) = −∞ , and then sgn f ′2 (x) sgnHf1, f2 (x+
a ) <

0. By part (ii) of Lemma 3 it is derived that there is a unique number x′a1 ∈ (xa,1) such
that f1/ f2 is decreasing on (xa,x′a1) and increasing on (x′a1,1) .
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Thus we get that f1/ f2 is decreasing on (0,x01) and increasing on (x01,1) , where
x01 = x′a1 ∈ (xa,1) , and the double inequality (3.20) follows similarly.

(iii) The necessary condition for the function Qa to be strictly decreasing on (0,1)
can be deduced by the inequality

lim
x→1−

Q′
a (x) = −18−π2−12γ

12

(
a− π2−6γ

(18−π2−12γ)

)
� 0,

which implies a � a50 .
If a ∈ [a50,∞) , then it follows from Lines 6 and 7 in Table 2 that ( f ′1/ f ′2) is

decreasing on (0,xa) and (xa,1) . Applying Lemma 1 to the ratio f1/ f2 on the two
intervals and noting that f1/ f2 is continuous at x = xa , we conclude that f1/ f2 is
decreasing on (0,1) , and the sufficiency follows. And, the double inequality (3.24) is
reversed, that is, inequality (3.23) holds true for x ∈ (0,1) .

This completes the proof. �

4. Sharp approximations for gamma function

For latter use, the following lemma is needed.

LEMMA 9. For a ∈ (0,∞) and x ∈ (0,1) , the functions

A(x,a) =
(

x2 +a
x+a

)a+1

and B(x,a) =
(

x2 +a
x+a

)a

are increasing and decreasing with respect to a on (0,∞) , respectively, and we have

lim
a→∞

A(x,a) = lim
a→∞

B(x,a) = e−x(1−x).

Proof. Logarithm differentiation yields

∂ lnA
∂a

= ln
x2 +a
x+a

+(a+1)
(

1
x2 +a

− 1
x+a

)
,

∂ 2 lnA
∂a2 = −x(x−1)2

2x2 +(a+1)x+2a

(x2 +a)2 (x+a)2
< 0,

which shows that a �→ ∂A/∂a is decreasing on (0,∞) . Hence, it is derived that

∂ lnA
∂a

> lim
a→∞

∂ lnA
∂a

= 0,

namely, A is increasing in a on (0,∞) .
Similarly, we have

∂ lnB
∂a

= ln
x2 +a
x+a

+a

(
1

x2 +a
− 1

x+a

)
,
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∂ 2 lnB
∂a2 = x2 (1− x)

2x2 +ax+a

(x2 +a)2 (x+a)2
> 0.

It follows that
∂ lnB

∂a
< lim

a→∞

∂ lnB
∂a

= 0,

which proves the monotonicity of B with respect to a on (0,∞) .
Straightforward computation leads to the desired limits. �

THEOREM 2. For a,b ∈ (0,∞) , the double inequality

(
x2 +a
x+a

)(1−γ)(a+1)

< Γ(x+1) <

(
x2 +b
x+b

)(1−γ)(b+1)

(4.1)

holds for all x ∈ (0,1) if and only if

0 < a � a20 =
1− γ
2γ −1

≈ 2.738 and b � a50 =
π2−6γ

18−12γ −π2 ≈ 5.322.

Proof. (i) The necessity for the first inequality in (4.1) can be obtained from the
limit relation

lim
x→0+

lnΓ(x+1)− (1− γ)(a+1)ln x2+a
x+a

x
= −(2γ −1)

(
a− 1− γ

2γ −1

)
� 0.

If a � a20 , then the inequality (3.21) and the increasing property of a �→ A(x,a)1−γ by
Lemma 9 reveal the sufficiency.

(ii) If the second inequality in (4.1) holds for all x ∈ (0,1) , then we have

lim
x→1−

lnΓ(x+1)− (1− γ)(b+1)ln x2+b
x+b

(1− x)2
= −(18−12γ−π2)(b− π2−6γ

18−12γ−π2

)
� 0.

Solving the inequality for b yields b � a50 =
(
π2−6γ

)
/
(
18−12γ−π2

)
, which proves

the necessity.
The sufficiency follows from part (iii) of Theorem 1.
The proof ends. �
Taking a = 0, 1,

(
1− γ2

)
/γ ≈ 1.155, γ/(1− γ)≈ 1.365, 2, (γ +2)/(1− γ)≈

2.548 and b = a51 = 2(1− γ)/(2γ −1)≈ 5.475, 6,∞ in Theorem 2 and using Lemma
9 we have the following corollary.

COROLLARY 1. For x ∈ (0,1) , we have

x1−γ <

(
x2 +1
x+1

)2(1−γ)

<

(
x2 +1/γ
x+1/γ

)(1−γ2)/γ

<
x2 + γ/(1− γ)
x+ γ/(1− γ)
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<

(
x2 +2
x+2

)3(1−γ)

<

(
x2 +(γ +2)/(1− γ)
x+(γ +2)/(1− γ)

)3/2

< Γ(x+1) (4.2)

<

(
x2 +2(1− γ)/(2γ −1)
x+2(1− γ)/(2γ −1)

)(1−γ)/(2γ−1)

<

(
x2 +6
x+6

)7(1−γ)

< e−(1−γ)(x−x2).

For ease of use, sometimes we prefer certain simpler bounds for the gamma func-
tion, such as

(
x2 +a

)
/(x+a) .

THEOREM 3. For a ∈ (0,∞) , the inequality

Γ(x+1) >
x2 +a
x+a

(4.3)

holds for all x ∈ (0,1) if and only if 0 < a � a11 = γ/(1− γ)≈ 1.365 .

Proof. The necessity follows from the limit relation

lim
x→1−

lnΓ(x+1)− ln x2+a
x+a

1− x
= γ −1+

1
a+1

� 0.

Since for x ∈ (0,1) ,
∂

∂a
x2 +a
x+a

=
x(1− x)

(x+a)2
> 0,

to prove the sufficiency, it suffices to prove the inequality (4.4) holds when a = a11 ,
which follows from (4.3).

This completes the proof. �

REMARK 2. Due to

lim
x→0+

lnΓ(x+1)− ln x2+a
x+a

x
=

1
a
− γ,

a possible best constant such that the reverse inequality (4.3) holds is a = 1/γ ≈ 1.732.
However, this guess is not valid.

THEOREM 4. For a,b ∈ (0,∞) , the double inequality

(
x2 +a
x+a

)γa

< Γ(x+1) <

(
x2 +b
x+b

)γb

(4.4)

holds for all x ∈ (0,1) if and only if

a � a20 =
1− γ
2γ −1

≈ 2.738 and 0 < b � a10 =
6γ

π2−12γ
≈ 1.177.
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Proof. (i) The necessary condition for the first inequality in (4.4) follows from the
limit relation

lim
x→1

lnΓ(x+1)− γa ln x2+a
x+a

1− x
=

2γ −1
a+1

(
a− 1− γ

2γ −1

)
� 0.

If a � a20 , then the inequality (3.21) and the decreasing property of a �→ B(x,a)γ given
in Lemma 9 imply the sufficiency.

(ii) Solving the inequality

lim
x→0

lnΓ(x+1)− γb ln x2+b
x+b

x2 =
π2−12γ

12b

(
b− 6γ

π2−12γ

)
� 0

for b gives b � a10 = 6γ/
(
π2−12γ

)
, which yields the necessity.

The sufficiency follows from part (i) of Theorem 1 and the decreasing property of
a �→ B(x,a)γ on (0,∞) .

Thus we finish the proof. �
Taking a = ∞,2/γ ≈ 3.465,3 and b = 1,1/(2γ)≈ 0.866 in Theorem 4 and using

Lemma 9 give the following corollary.

COROLLARY 2. For x ∈ (0,1) , we have

e−γ(x−x2) <

(
x2 +2/γ
x+2/γ

)2

<

(
x2 +3
x+3

)3γ

< Γ(x+1) <

(
x2 +1
x+1

)γ

<

√
2γx2 +1
2γx+1

.

(4.5)

COROLLARY 3. For a � a20 = (1− γ)/(2γ −1)≈ 2.738 , we have

Γ(x+1) > 2γa
(√

a(a+1)−a
)γa

for x ∈ (0,1) . Moreover, the lower bound is decreasing with respect to a, and

lim
a→∞

2γa
(√

a(a+1)−a
)γa

= e−γ/4.

In particular, we have that for x ∈ (0,1) ,

Γ(x+1) >

(
2

√
γ (1− γ)− (1− γ)

2γ −1

)γ(1−γ)/(2γ−1)

≈ 0.880 > e−γ/4 ≈ 0.866.

Proof. As shown previously, for f2 (x) = ln
(
x2 +a

)− ln(x+a) we have f ′2 (x) <

0 for x ∈ (0,xa) and f ′2 (x) > 0 for x ∈ (xa,1) , where xa =
√

a(a+1)−a . Hence, we
get that

x2 +a
x+a

� x2
a +a

xa +a
= 2

(√
a(a+1)−a

)
.
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It follows from Theorem 2 that for a � a20 ,

Γ(x+1) >

(
x2 +a
x+a

)γa

� 2γa
(√

a(a+1)−a
)γa

:= h(a) .

Logarithm differentiation leads us to

(lnh(a))′ = γ ln2+ γ ln
(√

a(a+1)−a
)

+
γ
2

√
a+1−√

a√
a+1

,

(lnh(a))′′ =
γ

4a(a+1)
√

a2 +a

(
2(a+1)

√
a2 +a−a(2a+3)

)
> 0,

where the inequality holds due to

[
2(a+1)

√
a2 +a

]2 − [a(2a+3)]2 = a(3a+4) > 0.

Therefore, it is derived that

(lnh(a))′ < lim
a→∞

(lnh(a))′ = 0,

which proves the corollary. �

REMARK 3. The above corollary gives a constant lower bound for gamma func-
tion Γ(x+1) on (0,1) .

5. Comparisons and remarks

Lastly, we compare our results with some known inequalities.

PROPOSITION 1. For x ∈ (0,1) , the inequalities

x2 +1
x+1

<

(
x2 +a
x+a

)(1−γ)/(a+1)

< Γ(x+1) <

(
x2 +b
x+b

)(1−γ)/(b+1)

<
x2 +2
x+2

hold if and only if a ∈ [a01,a20] and b ∈ [a50,a51] , where a01 = (1− γ)/γ ≈ 0.732 ,
a50 ≈ 5.322 is given in (3.11) and a51 = 2(1− γ)/(2γ −1) ≈ 5.475 .

Proof. By Theorem 2, it is enough to prove the first and last inequalities hold for
x ∈ (0,1) if and only if a � a01 and b � a51 , respectively. Denote by

g1 (x) : = (1− γ)(a+1)ln
x2 +a
x+a

− ln
x2 +1
x+1

,

g2 (x) : = (1− γ)(b+1)ln
x2 +b
x+b

− ln
x2 +2
x+2

.
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(i) If the first inequality holds for x ∈ (0,1) , then we have

lim
x→0+

g1 (x)
x

=
aγ − (1− γ)

a
� 0,

which implies that a � (1− γ)/γ = a01 .
Since a �→ A(x,a)1−γ is increasing on (0,∞) , to prove sufficiency, it suffices to

prove g1 (x) > 0 for x ∈ (0,1) when a = a01 . Differentiation yields

g1 (x) = − (2γ −1)x
γ2

q1 (x)
(x2 +1)(x+1)(x2 +a01)(x+a01)

,

where
q1 (x) = γx4 +2x3− (2γ −1)x2 − (1− γ) .

Since the polynomial q1 (x) satisfies the conditions for coefficients in Lemma 4 and
q1 (1)= 2 > 0, so there is a x0 ∈ (0,1) such that q1 (x)< 0 for x∈ (0,x0) and q1 (x) > 0
for x ∈ (x0,1) . This reveals that g1 is increasing on (0,x0) and decreasing on (x0,1) ,
which leads to g1 (x) > min(g1 (0) ,g1 (1)) = 0.

(ii) If the last inequality holds for x ∈ (0,1) , then we have

lim
x→0+

g2 (x)
x

=
(2γ −1)b−2(1− γ)

2b
� 0,

which reveals that b � 2(1− γ)/(2γ −1) = a51 . Similarly, it suffices to prove g2 (x) <
0 for x ∈ (0,1) when b = a51 . Differentiation yields

g2 (x) =
(2−3γ)x

(2γ −1)2
q2 (x)

(x2 +2)(x+2)(x2 +a51)(x+a51)
,

where
q2 (x) = (2γ −1)x4 +4γx3 +2(4−5γ)x2 −4(1− γ).

Due to the polynomial q2 (x) satisfies the conditions for coefficients in Lemma 4 and
q2 (1)= 3 > 0, so there is a x0 ∈ (0,1) such that q2 (x)< 0 for x∈ (0,x0) and q2 (x) > 0
for x ∈ (x0,1) . This reveals that g2 is decreasing on (0,x0) and increasing on (x0,1) ,
which leads to g2 (x) < max(g2 (0) ,g2 (1)) = 0.

This completes the proof. �

REMARK 4. From Corollaries 1 and 2 and Proposition 1, it is easily seen that our
Theorems 1 and 2 are refinements of Ivády’s and Zhao et al.’s results.

Alzer [2, Theorem 2] proved that

xθ(x−1)−γ < Γ(x) < xϑ (x−1)−γ (5.1)

with the best constants

θ = 1− γ ≈ 0.423 and ϑ =
1
2

(
π2

6
− γ
)
≈ 0.534, (5.2)
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and that if x ∈ (1,∞) , then (5.1) holds with the best possible constants

θ =
1
2

(
π2

6
− γ
)

and ϑ = 1.

PROPOSITION 2. For x ∈ (0,1) , the inequalities

x(1−γ)x <

(
x2 +a
x+a

)(1−γ)(a+1)

< Γ(x+1) <

(
x2 +b
x+b

)(1−γ)(b+1)

< xϑ (x−1)+1−γ

hold if and only if a ∈ [2,a20] and b = a50 , where a20 ≈ 2.738 and a50 ≈ 5.322 are as
in Theorem 2, ϑ is given in (5.2).

Proof. By Theorem 2, it suffices to prove the first inequality and the last one hold
if and only if a � 2 and b � a50 . For x ∈ (0,1) , let us define

g3 (x) = (a+1)ln
x2 +a
x+a

− x lnx,

g4 (x) = (1− γ)(b+1)ln
x2 +b
x+b

− (ϑ (x−1)+1− γ)lnx.

(i) We first prove that the first inequality holds for x ∈ (0,1) if and only if a � 2. The
necessity follows from the limit relation

lim
x→1−

g3 (x)
(1− x)2

=
1
2

a−2
a+1

� 0.

Since a �→ A(x,a) is increasing on (0,∞) by Lemma 9, to prove the sufficiency, it is
enough to prove g3 (x) > 0 for x ∈ (0,1) when a = 2. Differentiation yields

g′3 (x) =
3
(
x2 +4x−2

)
(x2 +2)(x+2)

− lnx−1,

g′′3 (x) =
1− x

x(x2 +2)2 (x+2)2
q3 (x) ,

where
q3 (x) = x5 +8x4 +40x3 +56x2 +28x−16.

Since q3 (1) = 117 > 0, by Lemma 4 it is deduced that there is a x0 ∈ (0,1) such
that q3 (x) < 0 for x ∈ (0,x0) and q3 (x) > 0 for x ∈ (x0,1) , which implies that g′3 is
decreasing on (0,x0) and increasing on (x0,1) . It follows that g′3 (x) < g′3 (1) = 0 for
x ∈ (x0,1) , which together with limx→0+ g′3 (x) = ∞ yields that there is a x1 ∈ (0,x0)
such that g′3 (x) > 0 for x ∈ (0,x1) and g′3 (x) < 0 for x ∈ (x1,1) . Therefore, we
conclude that g3 (x) > min(g3 (0+) ,g3 (1−)) = 0, which proves the sufficiency.

(ii) We now prove that the last inequality holds for x∈ (0,1) if and only if b � a50 .
The necessity can be obtained by solving the inequality

lim
x→1−

g4 (x)
(1− x)2

= −ϑ +
3b(1− γ)
2(b+1)

� 0
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for b , which gives b � 2ϑ/(3−2ϑ −3γ) = a50 .
Next we prove g4 (x) < 0 for x∈ (0,1) when b = a50 or ϑ = 3b(1− γ)/(2b+2).

Differentiation yields

g′4 (x)
1− γ

= (b+1)

(
x2 +2bx−b

)
(x2 +b)(x+b)

+
γ + ϑ −1
x(1− γ)

− ϑ
1− γ

− ϑ
1− γ

lnx

= (b+1)

(
x2 +2bx−b

)
(x2 +b)(x+b)

+
b−2

2(b+1)
1
x
− 3b

2(b+1)
− 3b

2(b+1)
lnx,

g′′4 (x)
1− γ

=
b

2(b+1)
1− x

x2 (x2 +b)2 (x+b)2
q4 (x) ,

where

q4 (x) = 3x6 +8(b+1)x5 +
(
11b2 +32b+12

)
x4 +4b

(
b2 +6b+5

)
x3

+b
(
2b2 +15b+4

)
x2 −4b2(b2−1

)
x−b3 (b−2).

Clearly, for b = a50 > 5, the polynomial q4 (x) satisfies the conditions for coeffi-
cients in Lemma 4 and q4 (1) =−(5b−23)(b+1)3 < 0, hence we have q4 (x) < 0 for
x ∈ (0,1) . This implies that g′′4 (x) < 0, which in turn indicates that g′4 (x) > g′4 (1) = 0
for x ∈ (0,1) , that is, g4 is strictly increasing on (0,1) . Then we obtain g4 (x) <
g4 (1) = 0 for x ∈ (0,1) .

The proposition is proved. �
Recently, Laforgia and Natalini [9, Theorem 2.1] presented a new lower bound for

gamma function, which states that for 0 � x � 1,

Γ(x+1) � e(1−γ)(x−1).

Now we prove

PROPOSITION 3. The inequalities

Γ(x+1) >

(
x2 +a
x+a

)(1−γ)(a+1)

> e(1−γ)(x−1)

hold for x ∈ (0,1) if and only if a ∈ [1/2,a20] , where a20 ≈ 2.738 is as in Theorem 2.

Proof. By Theorem 2, it suffices to prove the second inequality holds for x∈ (0,1)
if and only if a � 1/2. For x ∈ (0,1) , let g5 be defined by

g5 (x) = (a+1)ln
x2 +a
x+a

− (x−1) .

The necessity follows from

lim
x→1−

g5 (x)
(1− x)2

=
1
2

2a−1
a+1

� 0.
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Similarly, to prove sufficiency, it is enough to prove g5 (x) < 0 for x ∈ (0,1) when
a = 1/2. Differentiation leads to

g′5 (x) = − 4(x−1)2 (x+1)
(2x+1)(2x2 +1)

< 0,

which yields g5 (x) > g5 (1) = 0. �

REMARK 5. Clearly, our Theorem 2 is stronger than Alzer’s and Laforgia and
Natalini’s results.
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