Explicit bounds of unknown function of some new weakly singular retarded integral inequalities with applications

Ricai Luo, Wu-Sheng Wang and Zongyi Hou

(Communicated by Q.-H. Ma)

Abstract. Some new retarded weakly singular integral inequalities of Gronwall-Bellman type are established, which generalized some known weakly singular inequalities and can be used in the analysis of various problems in the theory of certain classes of singular differential equations, singular integral equations and singular evolution equations. Using the modification of Medved’s method, the explicit estimations of unknown function in the inequalities are obtained. Finally, we give a examples to illustrate applications of our results.

1. Introduction

Gronwall [1] and Bellman [2] established the integral inequality

\[u(t) \leq c + \int_a^t f(s)u(s)ds, \quad t \in [a,b], \]

for some constant \(c \geq 0 \), obtained the estimation of unknown function

\[u(t) \leq c \exp \left(\int_a^t f(s)ds \right), \quad t \in [a,b]. \] (1)

In 2016, Abdeldaim[3] discussed the following nonlinear integral inequality

\[u(t) \leq u_0 + \int_0^{\alpha(t)} f(s) \left[u^2 - p(s) + \int_0^s g(\tau)u^q(\tau)d\tau \right]^p ds, \quad p \in [0,1), \] (2)

\[u(t) \leq n(t) + \int_0^{\alpha(t)} f(s) \left[u(s) + \int_0^s g(\tau)u(\tau)d\tau \right]^p ds, \quad p \in [0,1). \] (3)

Being an important tool in the study of qualitative properties of solutions of differential equations and integral equations, various generalizations of Gronwall-Bellman integral inequalities have been studied in recent years.

Keywords and phrases: Integral inequality, delay, weakly singular, explicit bounds, singular integral equation.

This research was supported by National Natural Science Foundation of China (Project No. 11561019), Guangxi Natural Science Foundation (Project No. 2016GXNSFAA380090, 2016GXNSFAA380125).

The corresponding author: Wu-Sheng Wang.
inequality and their applications have attracted great interests of many mathematicians (such as \([3–12]\)). Usually, this type integral inequalities have regular or continuous integral kernels, but some problems of theory and practicality require us to solve integral inequalities with singular kernels. For example, to prove a global existence and an exponential decay result for a parabolic Cauchy problem; Henry \([13]\) investigated the following linear singular integral inequality

\[u(t) \leq a + b \int_0^t (t - s)^{\beta - 1} u(s) ds. \]

Sano and Kunimatsu\([14]\) generalized Henry’s type inequality to

\[0 \leq u(t) \leq c_1 + c_2 t^{\alpha - 1} + c_3 \int_0^t u(s) ds + c_4 \int_0^t (t - s)^{\beta - 1} u(s) ds, \]

and gave a sufficient condition for stabilization of semilinear parabolic distributed systems. Ye at el. \([15]\) discussed the linear singular integral inequality

\[u(t) \leq a(t) + b(t) \int_0^t (t - s)^{\beta - 1} u(s) ds, \]

and used it to study the dependence of the solution on the order and the initial condition to a certain fractional differential equation with Riemann-Liouville fractional derivatives. All this type inequalities are proved by an iteration argument and the estimation formulas are expressed by a complicated power series which are sometimes not very convenient for applications. To avoid the weakness, Medveď\([16]\) presented a new method to solve integral inequalities of Henry-Gronwall type, then he got the explicit bounds with a quite simple formula, similar to the classic Gronwall-Bellman inequalities. Furthermore, he also obtained global solutions of the semilinear evolutions in \([17]\). In 2008, Ma and Pečarić\([18]\) used the modification of Medveď’s method to study a new weakly singular integral inequality

\[u^p(t) \leq a(t) + b(t) \int_0^t (t^{\beta - s^{\beta}})^{\gamma - 1} s^{\gamma - 1} f(s) u^q(s) ds, \quad t \in [0, +\infty). \] \((4)\)

Besides the results mentioned above, various investigators have discovered many useful and new weakly singular integral inequalities, mainly inspired by their applications in various branches of fractional differential equations; see \([19-28]\) and the references cited therein.

However, only a few papers studied the delay weakly singular integral inequalities, as far as we know. In order to achieve a diversity of desired goals, in this paper, based on the works of \([3, 16, 18]\), we discuss a class of retarded integral inequalities with
Let \(\alpha \) be continuous, differentiable and increasing functions on \(\mathbb{R}^+ \), then
\[
\int_0^\infty (\alpha(t) - s^\gamma - 1) A_1(s) u(s) ds = u(t) \leq a(t) + b(t) \int_0^\infty (\alpha(t) - s^\gamma - 1) A_1(s) u(s) ds + b(t) \int_0^\infty (\alpha(t) - s^\gamma - 1) A_2(s) \int_0^s A_3(\tau) u(\tau) d\tau ds, \quad t \in \mathbb{R}^+, \quad (5)
\]
\[
u(t) \leq d(t) + b(t) \int_0^\infty (\alpha(t) - s^\gamma - 1) f(s) [u^m(s) + \int_0^s g(\tau) u(\tau) d\tau] q ds, \quad t \in \mathbb{R}^+, \quad (6)
\]
which generalize the inequality (2) in [3] to the weakly singular integral inequality, and (4) in [18] to the retarded inequality. We use the modification of Medveď’s method to obtain the explicit estimations of unknown function in the inequality (6). Finally, we give an example to illustrate applications of our results.

2. Main result

Lemma 1. (Hölder’s inequality [16]) Suppose that \(f(x) \) and \(g(x) \) are nonnegative and continuous functions on \([c, d]\). Let \(p > 1, \frac{1}{q} + \frac{1}{p} = 1 \). Then
\[
\int_c^d f(s) g(s) ds \leq \left(\int_c^d f^p(s) ds \right)^{1/p} \left(\int_c^d g^q(s) ds \right)^{1/q}. \quad (7)
\]
Let \(\alpha(t) \) be continuous, differentiable and increasing functions on \([t_0, +\infty)\) with \(\alpha(t) \leq t, \alpha(t_0) = t_0 \), then
\[
\int_{\alpha(t_0)}^{\alpha(t)} f(s) g(s) ds \leq \left(\int_{\alpha(t_0)}^{\alpha(t)} f^p(s) ds \right)^{1/p} \left(\int_{\alpha(t_0)}^{\alpha(t)} g^q(s) ds \right)^{1/q}. \quad (8)
\]
Proof. We prove the inequality (8). Using the inequality (7), we obtain
\[
\int_{\alpha(t_0)}^{\alpha(t)} f(s) g(s) ds = \int_0^t f(\alpha(s)) g(\alpha(s)) \alpha'(s) ds = \int_{t_0}^t f(\alpha(s)) (\alpha'(s))^{1/p} g(\alpha(s)) (\alpha'(s))^{1/q} ds \leq \left(\int_{t_0}^t f^p(\alpha(s)) (\alpha'(s)) ds \right)^{1/p} \left(\int_{t_0}^t g^q(\alpha(s)) (\alpha'(s)) ds \right)^{1/q} = \left(\int_{\alpha(t_0)}^{\alpha(t)} f^p(s) ds \right)^{1/p} \left(\int_{\alpha(t_0)}^{\alpha(t)} g^q(s) ds \right)^{1/q}. \quad (9)
\]

Lemma 2. (Discrete Jensen inequality [29]) Let \(A_1, A_2, \cdots, A_n \) be nonnegative real numbers, \(l > 1 \) is a real number, and \(n \) is a natural number. Then
\[
(A_1 + A_2 + \cdots + A_n)^l \leq n^{l-1}(A_1^l + A_2^l + \cdots + A_n^l). \quad (10)
\]
LEMMA 3. (see [30, 18]) Let \(a \geq 0, \ p \geq q \geq 0 \) and \(p \neq 0 \), then
\[
\frac{q}{p^q} \leq \frac{q}{p^q} K^\frac{q-p}{p} a + \frac{p-q}{p} K^\frac{q}{p}
\]
(11)
for any \(K > 0 \).

LEMMA 4. (see [20, 18]) Let \(\beta, \gamma, \xi \) and \(p \) be positive constants. Then
\[
\int_0^t (t^\beta - s^\beta)^{p(\gamma-1)} s^p(\xi-1) ds = \frac{t^\theta}{\beta} B \left[\frac{p(\xi-1)+1}{\beta}, p(\gamma-1) + 1 \right], \ t \in [0, +\infty). \tag{12}
\]
Let \(\alpha(t) \) be continuous, differentiable and increasing functions on \([t_0, +\infty)\) with \(\alpha(t) \leq t, \ \alpha(t_0) = t_0 \), then
\[
\int_{\alpha(t_0)}^{\alpha(t)} (\alpha^\beta(\gamma-1) \gamma^p(\xi-1)) ds \leq \frac{\alpha^\theta(t)}{\beta} B \left[\frac{p(\xi-1)+1}{\beta}, p(\gamma-1) + 1 \right], \ t \in [0, +\infty), \tag{13}
\]
where \(B[x, y] = \int_0^1 s^{x-1} (1-s)^{y-1} ds \) \((x > 0, y > 0)\) is the well-known B-function and \(\theta = p[\beta(\gamma-1)+\xi-1] + 1 \).

LEMMA 5. (see [20, 18]) Suppose that the positive constants \(\beta, \gamma, \xi, p_1 \) and \(p_2 \) satisfy conditions:
1. if \(\beta \in (0, 1], \gamma \in (1/2, 1) \) and \(\xi \geq 3/2 - \gamma \), \(p_1 = 1/\gamma \);
2. if \(\beta \in (0, 1], \gamma \in (0, 1/2] \) and \(\xi > (1-2\gamma^2)/(1-\gamma^2) \), \(p_2 = (1+4\gamma)/(1+3\gamma) \),
then
\[
B \left[\frac{p_1(\xi-1)+1}{\beta}, p_1(\gamma-1) + 1 \right] \in [0, +\infty), \tag{14}
\]
and \(\theta_i = p_i[\beta(\gamma-1)+\xi-1] + 1 \geq 0 \) are valid for \(i = 1, 2 \).

LEMMA 6. Let \(u(t), a(t), b(t) \) and \(h(t) \) be nonnegative continuous functions on \(\mathbb{R}_+ \), and let \(\alpha(t) \) be continuous, differentiable and increasing functions on \(\mathbb{R}_+ \) with \(\alpha(t) \leq t, \ \alpha(0) = 0 \). If \(u(t) \) satisfies the following inequality
\[
u(t) \leq a(t) + b(t) \int_0^{\alpha(t)} h(s) u(s) ds, \ t \in \mathbb{R}_+. \tag{15}
\]
Then
\[
u(t) \leq a(t) + \frac{b(t)}{e(\alpha(t))} \int_0^{\alpha(t)} h(s) a(s) e(s) ds, \ t \in \mathbb{R}_+, \tag{16}
\]
where
\[
e(t) = \exp \left(- \int_0^t h(s) b(s) ds \right). \tag{17}
\]
Proof. Define a function \(v(t) \) on \(\mathbb{R}_+ \) by

\[
v(t) = e(\alpha(t)) \int_0^{\alpha(t)} h(s)u(s)ds,
\]
we have \(v(0) = 0 \). Differentiating \(v(t) \) with respect to \(t \) and using (15) and (17), we have

\[
v'(t) = \alpha'(t)h(\alpha(t))u(\alpha(t))e(\alpha(t)) - \alpha'(t)h(\alpha(t))b(\alpha(t))e(\alpha(t))\int_0^{\alpha(t)} h(s)u(s)ds \\
\leq \alpha'(t)h(\alpha(t))a(\alpha(t))e(\alpha(t)) + \alpha'(t)h(\alpha(t))e(\alpha(t))b(\alpha(t))\int_0^{\alpha(t)} h(s)u(s)ds \\
- \alpha'(t)h(\alpha(t))b(\alpha(t))e(\alpha(t))\int_0^{\alpha(t)} h(s)u(s)ds \\
\leq \alpha'(t)h(\alpha(t))a(\alpha(t))e(\alpha(t)).
\]

Integrating both sides of the inequality (19) from 0 to \(t \), since \(v(0) = 0 \) we get

\[
v(t) \leq \int_0^t \alpha'(s)h(\alpha(s))a(\alpha(s))e(\alpha(s))ds = \int_0^{\alpha(t)} h(s)a(s)e(s)ds.
\]

From (18) and (20), we obtain

\[
\int_0^{\alpha(t)} h(s)u(s)ds \leq \frac{1}{e(\alpha(t))\int_0^{\alpha(t)} h(s)a(s)e(s)ds}.
\]

Substituting the inequality (21) into (15) we get the required estimation (16). The proof is completed. \(\square \)

Theorem 1. Let \(a(t), b(t), A_1(t), A_2(t) \) and \(A_3(t) \) be nonnegative continuous functions on \(\mathbb{R}_+ \), and both \(a(t) \) and \(b(t) \) are nondecreasing functions, and let \(\alpha(t) \) be continuous, differentiable and increasing functions on \(\mathbb{R}_+ \) with \(\alpha(t) \leq t, \alpha(0) = 0 \). Let \(\beta, \gamma, \xi \) be positive constants. Suppose that \(u(t) \) satisfies the inequality (5).

(1) If \(\beta \in (0, 1], \gamma \in (1/2, 1) \) and \(\xi \geq 3/2 - \gamma \); then for any \(K > 0 \), we have

\[
u(t) \leq \left(\tilde{a}_1(t) + \frac{\tilde{b}_1(t)}{e_1(\alpha(t))} \int_0^{\alpha(t)} \tilde{h}_1(s)\tilde{a}_1(s)e_1(s)ds \right)^{1-\gamma}, \quad t \in \mathbb{R}_+,
\]

(22)
where
\[
\begin{align*}
\tilde{a}_1(t) &= (3M_1 \alpha \theta_1(t))^{\frac{1}{1-\gamma}} a^{\frac{1}{1-\gamma}}(t), \\
\tilde{b}_1(t) &= (3M_1 \alpha \theta_1(t))^{\frac{1}{1-\gamma}} b^{\frac{1}{1-\gamma}}(t), \\
\tilde{h}_1(t) &= A_1^{\frac{1}{1-\gamma}}(t) + \left(A_2(t) \int_0^t A_3(\tau)d\tau\right)^{\frac{1}{1-\gamma}}, \\
\tilde{e}_1(t) &= \exp\left(-\int_0^t \tilde{h}_1(s)\tilde{b}_1(s)ds\right), \\
M_1 &= \frac{1}{\beta} B\left[\frac{\gamma + \xi - 1}{\beta \gamma}, \frac{2\gamma - 1}{\gamma} \right], \\
\theta_1 &= \frac{1}{\gamma} [\beta(\gamma - 1) + \xi - 1] + 1.
\end{align*}
\]

(2) If \(\beta \in (0, 1], \gamma \in (0, 1/2] \) and \(\xi > (1 - 2\gamma^2)/(1 - \gamma^2) \), then for any \(K > 0 \), we have
\[
w(t) \leq \left(\tilde{a}_2(t) + \frac{\tilde{b}_2(t)}{\tilde{e}_2(\alpha(t))} \int_0^{\alpha(t)} \tilde{h}_2(s)\tilde{a}_2(s)\tilde{e}_2(s)ds \right)^{\frac{\gamma}{1-\gamma}}, \quad t \in \mathbb{R}_+,
\]
where
\[
\begin{align*}
\tilde{a}_2(t) &= (3M_2 \alpha \theta_2(t))^{\frac{1+3\gamma}{\gamma}} a^{\frac{1+3\gamma}{\gamma}}(t), \\
\tilde{b}_2(t) &= (3M_2 \alpha \theta_2(t))^{\frac{1+3\gamma}{\gamma}} b^{\frac{1+3\gamma}{\gamma}}(t), \\
\tilde{h}_2(t) &= A_1^{\frac{1+4\gamma}{\gamma}}(s) + \left(A_2(s) \int_0^s A_3(\tau)d\tau\right)^{\frac{1+4\gamma}{\gamma}}, \\
\tilde{e}_2(t) &= \exp\left(-\int_0^t \tilde{h}_2(s)\tilde{b}_2(s)ds\right), \\
M_2 &= \frac{1}{\beta} B\left[\frac{\xi (1 + 4\gamma) - \gamma}{\beta (1 + 3\gamma)}, \frac{4\gamma^2}{1 + 3\gamma^2} \right], \\
\theta_2 &= \frac{1 + 4\gamma}{1 + 3\gamma} [\beta(\gamma - 1) + \xi - 1] + 1.
\end{align*}
\]

Proof. If \(\beta \in (0, 1], \gamma \in (1/2, 1) \) and \(\xi \geq 3/2 - \gamma \), let \(p_1 = 1/\gamma, q_1 = 1/(1 - \gamma) \); if \(\beta \in (0, 1], \gamma \in (0, 1/2] \) and \(\xi > (1 - 2\gamma^2)/(1 - \gamma^2) \), let \(p_2 = (1 + 4\gamma)/(1 + 3\gamma) \), \(q_2 = (1 + 4\gamma)/\gamma \), then \(1/p_i + 1/q_i = 1 \) for \(i = 1, 2 \). Using Hölder’s inequality in Lemma 1 to (5), we have
\[
u(t) \leq a(t) + b(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta)^{p_i(\gamma - 1)} s^{p_i(\xi - 1)} ds \right]^{1/p_i} \left[\int_0^{\alpha(t)} (A_1^q(s) u^{q_i}(s)) ds \right]^{1/q_i}
\]
\[
+ b(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta)^{p_i(\gamma - 1)} s^{p_i(\xi - 1)} ds \right]^{1/p_i} \times \left[\int_0^{\alpha(t)} (A_2(s) \int_0^s A_3(\tau) u(\tau) d\tau)^{q_i} ds \right]^{1/q_i}.
\]

(36)
Define a function \(z(t) \) by the right hand side of the inequality (36), i.e.

\[
z(t) = a(t) + b(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) p_i(\gamma-1) s p_i(\xi-1) ds \right]^{1/p_i} \left[\int_0^{\alpha(t)} A_1^{q_i}(s) u^{q_i}(s) ds \right]^{1/q_i}
+ b(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) p_i(\gamma-1) s p_i(\xi-1) ds \right]^{1/p_i}
\times \left[\int_0^{\alpha(t)} \left(A_2(s) \int_0^s A_3(\tau)d\tau \right)^{q_i} z^{q_i}(s) ds \right]^{1/q_i}.
\]

Then, \(z(t) \) is a nondecreasing function, and \(u(t) \leq z(t) \), we have

\[
z(t) \leq a(t) + b(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) p_i(\gamma-1) s p_i(\xi-1) ds \right]^{1/p_i} \left[\int_0^{\alpha(t)} A_1^{q_i}(s) z^{q_i}(s) ds \right]^{1/q_i}
+ b(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) p_i(\gamma-1) s p_i(\xi-1) ds \right]^{1/p_i}
\times \left[\int_0^{\alpha(t)} \left(A_2(s) \int_0^s A_3(\tau)d\tau \right)^{q_i} z^{q_i}(s) ds \right]^{1/q_i}.
\]

Using discrete Jensen inequality (10) in Lemma 2 with \(n = 3, l = q_i \), we obtain

\[
z^{q_i}(t) \leq 3^{q_i-1} a^{q_i}(t) + 3^{q_i-1} b^{q_i}(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) p_i(\gamma-1) s p_i(\xi-1) ds \right]^{q_i/p_i}
\times \int_0^{\alpha(t)} A_1^{q_i}(s) z^{q_i}(s) ds
+ 3^{q_i-1} b^{q_i}(t) \left[\int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) p_i(\gamma-1) s p_i(\xi-1) ds \right]^{q_i/p_i}
\times \int_0^{\alpha(t)} \left(A_2(s) \int_0^s A_3(\tau)d\tau \right)^{q_i} z^{q_i}(s) ds.
\]

Using Lemmas 4 and 5, the inequality (39) can be rewritten as

\[
z^{q_i}(t) \leq 3^{q_i-1} a^{q_i}(t) + 3^{q_i-1} b^{q_i}(t) \left(M_i \alpha_i(t) \right)^{q_i/p_i}
\times \int_0^{\alpha(t)} \left[A_1^{q_i}(s) + \left(A_2(s) \int_0^s A_3(\tau)d\tau \right)^{q_i} \right] z^{q_i}(s) ds,
\]

for \(t \in \mathbb{R}_+ \), where

\[
M_i = \frac{1}{\beta} B \left[p_i(\xi-1) + 1, p_i(\gamma-1) + 1 \right],
\]

\[
\theta_i = p_i [\beta(\gamma-1) + \xi - 1] + 1 \geq 0,
\]

for \(i = 1, 2 \). Applying Lemma 6 to (40), we obtain

\[
u^{q_i}(t) \leq z^{q_i}(t) \leq \tilde{a}_i(t) + \frac{\tilde{b}_i(t)}{\tilde{e}_i(\alpha(t))} \int_0^{\alpha(t)} \tilde{h}_i(s) \tilde{a}_i(s) \tilde{e}_i(s) ds, \quad t \in \mathbb{R}_+,
\]
where
\begin{align*}
\tilde{a}_i(t) &= 3^{q_i-1} a^{q_i}(t), \\
\tilde{b}_i(t) &= 3^{q_i-1} b^{q_i}(t) (M_i \alpha^{q_i}(t))^{q_i/p_i}, \\
\tilde{h}_i(t) &= A_1^{q_i}(s) + \left(A_2(s) \int_0^s A_3(\tau) d\tau \right)^{q_i}, \\
\tilde{e}_i(t) &= \exp \left(- \int_0^t \tilde{h}_i(s) \tilde{b}_i(s) ds \right).
\end{align*}

Substituting $p_1 = 1/\gamma$, $q_1 = 1/(1 - \gamma)$ and $p_2 = (1 + 4\gamma)/(1 + 3\gamma)$, $q_2 = (1 + 4\gamma)/\gamma$ to (43) respectively, we can get the desired estimations (22) and (29). The proof is completed. □

Theorem 2. Let $u(t)$, $d(t)$, $b(t)$ and $f(t)$ be nonnegative continuous functions on \mathbb{R}_+, and $b(t)$ is a nondecreasing function, and let $\alpha(t)$ be continuous, differentiable and increasing functions on $[0, \infty)$ with $\alpha(t) \leq t$, $\alpha(0) = 0$. Let p, q, m, n, β, γ, ξ be positive constants with $p \geq m$, $p \geq n$, m, n, $q \in [0, 1)$. If $u(t)$ satisfies the inequality (6).

(1) If $\beta \in (0, 1]$, $\gamma \in (1/2, 1)$ and $\xi \geq 3/2 - \gamma$; then for any $K > 0$, we have
\begin{equation}
\begin{aligned}
u(t) &\leq \left[d(t) + \left(\bar{a}_1(t) + \frac{\tilde{b}_1(t)}{\tilde{e}_1(\alpha(t))} \int_0^{\alpha(t)} \tilde{h}_1(s) \bar{a}_1(s) \tilde{e}_1(s) ds \right)^{1-\gamma} \right]^{1/p}, \quad t \in \mathbb{R}_+, \end{aligned}
\end{equation}
where $\bar{b}_1(t)$, $\tilde{h}_1(t)$, $\tilde{e}_1(t)$ are the same as in Theorem 1.

\begin{align*}
\bar{a}_1(t) &= (3M_1 \alpha^{q_i}(t))^{-\frac{\gamma}{1-\gamma}} a^{1-\gamma}(t), \\
A(t) &= f(t) \left[(1-q)K^q + qK^{q-1} \left(\frac{m}{p} K^{\frac{m-p}{p}} d(t) + \frac{p-m}{p} K^{\frac{p}{p}} \right) \right] \\
&\quad + qK^{q-1} f(t) \left[\frac{n}{p} K^{\frac{n-p}{p}} d(t) + \frac{p-n}{p} K^{\frac{p}{p}} \right] d\tau, \\
A_1(t) &= \frac{mq}{p} K^{\frac{m}{p}+1} f(t), A_2(t) = qK^{q-1} f(t), A_3(t) = \frac{n}{p} K^{\frac{n-g}{p}} g(t).
\end{align*}

(2) If $\beta \in (0, 1]$, $\gamma \in (0, 1/2]$ and $\xi \geq (1 - 2\gamma^2)/(1 - \gamma^2)$, then for any $K > 0$, we have
\begin{equation}
\begin{aligned}
u(t) &\leq \left[d(t) + \left(\bar{a}_2(t) + \frac{\tilde{b}_2(t)}{\tilde{e}_2(\alpha(t))} \int_0^{\alpha(t)} \tilde{h}_2(s) \bar{a}_2(s) \tilde{e}_2(s) ds \right)^{\gamma/p} \right]^{1/p}, \quad t \in \mathbb{R}_+, \end{aligned}
\end{equation}
where $\bar{a}_2(t)$, $\tilde{b}_2(t)$, $\tilde{h}_2(t)$, $\tilde{e}_2(t)$ are the same as in Theorem 1.

Proof. By Lemma 3, for any $K > 0$ we have
\begin{equation}
\begin{aligned}
\left[u^m(s) + \int_0^s g(\tau) u^n(\tau) d\tau \right]^{q} \leq qK^{q-1} \left[u^m(s) + \int_0^s g(\tau) u^n(\tau) d\tau \right] + (1-q)K^q, \end{aligned}
\end{equation}
Substituting (53) to (6), we have

\[
{u^p}(t) \leq d(t) + b(t) \int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) \gamma^{-1} s^{\xi-1} f(s) \times qK^{q-1} \left(u^m(s) + \int_s^0 g(\tau) u^n(\tau) d\tau \right) + (1 - q)K^q \right] ds,
\]

(54)

Define a function \(w(t) \) by

\[
w(t) = b(t) \int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) \gamma^{-1} s^{\xi-1} (1 - q)K^q f(s) ds \\
+ b(t) \int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) \gamma^{-1} s^{\xi-1} qK^{q-1} f(s) u^m(s) ds \\
+ b(t) \int_0^{\alpha(t)} (\alpha^\beta(t) - s^\beta) \gamma^{-1} s^{\xi-1} qK^{q-1} f(s) \int_s^0 g(\tau) u^n(\tau) d\tau ds, \quad t \in \mathbb{R}_+.
\]

(55)

We have

\[
{u^p}(t) \leq d(t) + w(t), \quad \text{or} \quad u(t) \leq \left(d(t) + w(t) \right)^{1/p}, \quad t \in [t_0, +\infty).
\]

(56)

By Lemma 3 and (56), for the above \(K > 0 \), we obtain

\[
u^m(t) \leq \left(d(t) + w(t) \right)^{m/p} \leq \frac{m}{p} K^{\frac{m-p}{p}} \left(d(t) + w(t) \right) + \frac{p-m}{p} K^{\frac{m}{p}}, \quad t \in \mathbb{R}_+,
\]

(57)

\[
u^n(t) \leq \left(d(t) + w(t) \right)^{n/p} \leq \frac{n}{p} K^{\frac{n-p}{p}} \left(d(t) + w(t) \right) + \frac{p-n}{p} K^{\frac{n}{p}}, \quad t \in \mathbb{R}_+.
\]

(58)
Substituting the inequality (57) and (58) into (55) we have

\[
w(t) \leq b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} (1 - q)K^q f(s) ds
\]
\[
+ b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} qK^{q - 1} f(s) \times \left[\frac{m}{p} K^{\frac{m}{p}} (d(s) + w(s)) + \frac{p - m}{p} K^{\frac{m}{p}} \right] ds
\]
\[
+ b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} qK^{q - 1} f(s) \int_{0}^{s} g(\tau) \times \left[\frac{n}{p} K^{\frac{n}{p}} (d(\tau) + w(\tau)) + \frac{p - n}{p} K^{\frac{n}{p}} \right] d\tau ds
\]
\[
\leq b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} f(s)
\]
\[
\times \left[(1 - q)K^q + qK^{q - 1} \left(\frac{m}{p} K^{\frac{m}{p}} d(s) + \frac{p - m}{p} K^{\frac{m}{p}} \right) \right] ds
\]
\[
+ b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} qK^{q - 1} f(s) \int_{0}^{s} g(\tau) \left[\frac{n}{p} K^{\frac{n}{p}} d(\tau) + \frac{p - n}{p} K^{\frac{n}{p}} \right] d\tau ds
\]
\[
+ b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} qK^{q - 1} f(s) \int_{0}^{s} \frac{n}{p} K^{\frac{n}{p}} g(\tau) w(\tau) d\tau ds
\]
\[
\leq b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} A(s) ds + b(t) \int_{0}^{\alpha(t)} (t^\beta - s^\beta)^{\gamma - 1} s^{\xi - 1} A_1(s) w(s) ds
\]
\[
+ b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} A_2(s) \int_{0}^{s} A_3(\tau) w(\tau) d\tau ds, \quad t \in \mathbb{R}_+
\]
\[
= a(t) + b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} A_1(s) w(s) ds
\]
\[
+ b(t) \int_{0}^{\alpha(t)} (\alpha^\beta (t) - s^\beta)^{\gamma - 1} s^{\xi - 1} A_2(s) \int_{0}^{s} A_3(\tau) w(\tau) d\tau ds, \quad t \in \mathbb{R}_+. \quad (59)
\]
where

\[a(t) = b(t) \int_0^\alpha (\alpha^\beta(t) - s^\beta)^{\gamma-1}s^{\xi-1}A(s)ds, \quad (60) \]

\[A(t) = f(t) \left[(1 - q)K^q + qK^{q-1} \left(\frac{m}{p} K^{\frac{m-p}{p}} d(t) + \frac{p-m}{p} K^{\frac{m}{p}} \right) \right] + qK^{q-1}f(t) \int_0^t g(\tau) \left[\frac{n}{p} K^{\frac{n-p}{p}} d(\tau) + \frac{p-n}{p} K^{\frac{n}{p}} \right] d\tau, \]

\[A_1(t) = \frac{mq}{p} K^{\frac{m}{p}+q-2} f(t), \]

\[A_2(t) = qK^{q-1} f(t), \]

\[A_3(t) = \frac{n}{p} K^{\frac{n-p}{p}} g(t). \]

Since (59) have the same form of (5) and the functions of (59) satisfy the conditions of Theorem 1, applying Theorem 1 to (59), considering the relation (54), we can get the desired estimations (48) and (52). The proof is completed. \(\square \)

3. Application

Consider the following Volterra type retarded weakly singular integral equations

\[y^p(t) - \lambda t^{-\beta \delta} \int_0^{\alpha(t)} \frac{(\alpha^\beta(t) - s^\beta)^{\gamma-1}}{\Gamma(\gamma)} s^{\beta(1+\delta)-1} \left[y(s) + \int_0^s g(\tau)y(\tau)d\tau \right]^q ds = h(t) \]

(61)

which arises very often in various problems, especially describing physical processes with aftereffects. Ma and Pečarić [18] discussed the case \(\alpha(t) = t, g(t) \equiv 0 \) in (61).

Theorem 3. Let \(y(t), g(t) \) and \(h(t) \) be continuous functions on \([0, +\infty)\), and let \(\alpha(t) \) be continuous, differentiable and increasing functions on \([0, +\infty)\) with \(\alpha(t) \leq t, \alpha(0) = 0 \). Let \(p, q, \beta, \gamma, \delta \) be positive constants with \(p \geq q \). If \(y(t) \) satisfies the equation (61).

(i) If \(\beta \in (0,1], \gamma \in (1/2,1) \) and \(\beta(1+\delta) \geq 3/2 - \gamma \); then for any \(K > 0 \), we have

\[|y(t)| \leq \left[|h(t)| + \left(\bar{a}_1(t) + \frac{\bar{b}_1(t)}{\bar{e}_1(\alpha(t))} \int_0^{\alpha(t)} \bar{h}_1(s) \bar{a}_1(s) \bar{e}_1(s)ds \right)^{1-\gamma} \right]^{1/p}, \quad t \in \mathbb{R}_+, \quad (62) \]

where

\[\bar{a}_1(t) = (3M_1 \alpha^\theta_1(t))^{\frac{\gamma}{\Gamma(\gamma)}} \left(\frac{\lambda}{\Gamma(\gamma)} t^{-\beta \xi} \right)^{\frac{\gamma}{\Gamma(\gamma)}} \int_0^{\alpha(t)} A_1^{\frac{\gamma}{\Gamma(\gamma)}}(s)ds, \]

\[\bar{b}_1(t) = (3M_1 \alpha^\theta_1(t))^{\frac{\gamma}{\Gamma(\gamma)}} \left(\frac{\lambda}{\Gamma(\gamma)} t^{-\beta \xi} \right)^{\frac{\gamma}{\Gamma(\gamma)}}, \]

\[\bar{h}_1(t) = A_2^{\frac{\gamma}{\Gamma(\gamma)}}(t) + \left(A_3(t) \int_0^t A_4(\tau)d\tau \right)^{\frac{1}{\gamma}}, \]
\[\tilde{e}_1(t) = \exp \left(- \int_0^t \tilde{h}_1(s) \tilde{b}_1(s) ds \right) , \]

\[M_1 = \frac{1}{\beta} B \left[\frac{\gamma + \xi - 1}{\beta \gamma}, \frac{2\gamma - 1}{\gamma} \right] , \]

\[\theta_1 = \frac{1}{\gamma} [\beta(\gamma - 1) + \xi - 1] + 1 , \]

\[A_1(t) = (1 - q)K^q + qK^{q-1} \left(\frac{1}{p} K^{\frac{1-p}{p}} |h(t)| + \frac{p-1}{p} K^{\frac{1}{p}} \right) + qK^{q-1} \int_0^t |g(\tau)| \left[\frac{1}{p} K^{\frac{1-p}{p}} |h(\tau)| + \frac{p-1}{p} K^{\frac{1}{p}} \right] d\tau , \]

\[A_2(t) = \frac{q}{p} K^{\frac{1}{p} + q - 2} , A_3(t) = qK^{q-1} , A_4(t) = \frac{1}{p} K^{\frac{1-p}{p}} |g(t)| . \]

(2) If $\beta \in (0, 1]$, $\gamma \in (0, 1/2]$ and $\xi > (1 - 2\beta^2)/(1 - \gamma^2)$, then for any $K > 0$, we have

\[w(t) \leq \left| h(t) \right| + \left(\frac{a_2(t)}{e_2(t)} \right) \left(\int_0^t \tilde{h}_2(s) \tilde{a}_2(s) \tilde{e}_2(s) ds \right)^{\frac{\gamma}{1+\beta}} , \quad t \in \mathbb{R}_+ , \quad (63) \]

where

\[a_2(t) = (3M_2 \alpha^{\theta_2}(t))^{\frac{1+3\gamma}{\gamma}} \left(\frac{\lambda}{\Gamma(\gamma)} t^{-\beta \xi} \right)^{\frac{1+4\gamma}{\gamma}} \int_0^t \alpha(t) \frac{1+4\gamma}{A_1(t)} \gamma^\gamma(s) ds , \]

\[\tilde{b}_2(t) = (3M_2 \alpha^{\theta_2}(t))^{\frac{1+3\gamma}{\gamma}} \left(\frac{\lambda}{\Gamma(\gamma)} t^{-\beta \xi} \right)^{\frac{1+4\gamma}{\gamma}} , \]

\[\tilde{h}_2(t) = A_2^{\frac{1+4\gamma}{\gamma}}(s) + \left(A_3(s) \int_s^t A_4(\tau) d\tau \right)^{\frac{1+4\gamma}{\gamma}} , \]

\[\tilde{e}_2(t) = \exp \left(- \int_0^t \tilde{h}_2(s) \tilde{b}_2(s) ds \right) , \]

\[M_2 = \frac{1}{\beta} B \left[\frac{\xi (1 + 4\gamma) - \gamma}{\beta (1 + 3\gamma)} , \frac{4\gamma^2}{1 + 3\gamma} \right] , \]

\[\theta_2 = \frac{1+4\gamma}{1+3\gamma} [\beta(\gamma - 1) + \xi - 1] + 1 . \]

Proof. From (61), we have

\[|y(t)|^p \leq |h(t)| + \frac{|\lambda|}{\Gamma(\gamma)} t^{-\beta \xi} \int_0^t \alpha(t) (\alpha(t) - s^\beta) \gamma^\gamma(s^\beta(1+\xi) - 1) \times \left[|y(s)| + \int_0^s |g(\tau)||y(\tau)| d\tau \right]^q ds . \]

Applying the Theorem 1 (with $m = n = 1$, $a(t) = |h(t)|$, $b(t) = |\lambda| t^{-\beta \delta} / \Gamma(\gamma)$, $\xi = \beta(1 + \delta)$) to (64), we obtain the desired estimations (48) and (52).

Acknowledgements. The authors are very grateful to the editor and the referees for their careful comments and valuable suggestions on this paper!
REFERENCES

(Received May 7, 2016)

Ricai Luo
School of Mathematics and Statistics
Hechi University
Guangxi, Yizhou 546300, P. R. China

Wu-Sheng Wang
School of Mathematics and Statistics
Hechi University
Guangxi, Yizhou 546300, P. R. China
e-mail: wang48968126.com

Zongyi Hou
School of Mathematics and Statistics
Hechi University
Guangxi, Yizhou 546300, P. R. China

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com