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ESTIMATES FOR THE FIRST EIGENVALUE FOR

p–LAPLACIAN WITH MIXED BOUNDARY CONDITIONS

KUI WANG
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Abstract. In this article, we consider eigenvalue problems on domains with an interior hole.
Precisely, we show a Cheng-type inequality on manifolds, and certain Faber-Krahn inequalities
on space forms. Besides, we obtain upper and lower bounds of the eigenvalue through the classic
Dirchlet eigenvalue, implying convergence of the eigenvalue as the hole tends to /0 .

1. Introduction and main results

Let D1 and D2 be bounded smooth domains in a complete Riemannian manifold
(Mn,g) satisfying D1 ⊂ D2 , and Ω = D2 \D1 . Denote by ∂D1 and ∂D2 the inner
boundary and the outer boundary of Ω respectively. For each 1 < p < +∞ , one define
(see for example [9])

DEFINITION 1. (Inner Neumann and outer Dirichlet boundary)

λ(p)(Ω) = inf

{∫
Ω |∇u|p dx∫
Ω |u|p dx

: u ∈W 1,p(Ω)\ 0 with u|∂D2
= 0

}
; (1.1)

DEFINITION 2. (Inner Dirichlet and outer Neumann boundary)

μ(p)(Ω) = inf

{∫
Ω |∇u|p dx∫
Ω |u|p dx

: u ∈W 1,p(Ω)\ 0 with u|∂D1
= 0

}
. (1.2)

It has been shown in [8, 10, 13] that there exists a unique minimizer u (up to a
multiple) solving (1.1), and λ(p) > 0. Moreover u does not change sign in Ω , satisfying
elliptic equation

−div(|∇u|p−2∇u) = λ(p)|u|p−2u (1.3)

in the weak sense, which means for any φ ∈C∞(Ω) with φ = 0 on ∂D2 ,∫
Ω
|∇u|p−2〈∇φ ,∇u〉 dx = λ(p)

∫
Ω
|u|p−2u φ dx,

see for example Section 6.5 in [8]. Besides, we see from [1, 18] that u(x) ∈ C1,α(Ω)
for some α ∈ (0,1) and u(x) satisfies u(x) = 0 on ∂D2 and ∂

∂ν u = 0 on ∂D1 , where
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ν denotes the unit normal vector field. Throughout the paper, we call u the normalized
eigenfunction if it is positive in Ω with

∫
Ω |u|p dx = 1.

Similarly, one can show μ(p) is simple and positive, and the corresponding nor-

malized minimizer v(x) ∈C1,α(Ω) , satisfying

−div(|∇v|p−2∇v) = μ(p)|v|p−2v (1.4)

in the weak sense with Dirichlet condition on ∂D1 and Neumann condition on ∂D2 .
When D1 is empty, there are several classic estimates on eigenvalues of Dirichlet

and Neumann Laplace operators. In 1923 and 1924, G. Faber and E. Krahn proved that
the round balls minimize the smallest eigenvalue of Dirichlet Laplace operator among
all the domains with the same volume in R

n . More precisely,

THEOREM 1.1. (Faber-Krahn inequality, see for example [5]) Let Ω be a smooth,
bounded domain in R

n . Then
λ (Ω) � λ (Ω∗),

where Ω∗ is a round ball in R
n with the same volume as that of Ω , and λ (Ω) is the

smallest eigenvalue of Dirichlet Laplace operator. The equality holds if only if Ω is a
round ball.

Faber-Krahn inequality was extended to the smallest eigenvalues of Dirichlet p -
Laplacian by H. Takeuchi in [17] and A.-M. Matei in [14]. For the eigenvalues λ(p)
and μ(p) characterized in Definition 1 and 2, we proved the following estimates.

THEOREM 1.2. Let D1 ⊂ D2 in R
n and p > 1 . Then

λ(p)(D2 \D1) � λ(p)(D
∗
2 \D∗

1), (1.5)

and
μ(p)(D2 \D1) � μ(p)(D

∗
2 \D∗

1), (1.6)

where D∗
1 and D∗

2 are the round balls in R
n centered at the origin with volume equal

to that of D1 and D2 respectively. The equality holds if only if D2 \D1 is isometric to
D∗

2 \D∗
1 .

In fact, Theorem 1.2 is also true in space forms Mn
κ by similar proofs. For man-

ifolds with positive Ricci curvature, Berard and Meyer [3] obtained a Faber-Krahn in-
equality for the first nonzero Dirichlet eigenvalue for the Laplacian on bounded do-
mains, and later generalized to the p -Laplacian by Matei [14]. Here we get the fol-
lowing Faber-Krahn inequality on positive manifolds similarly as in [14], extending the
result in [14].

THEOREM 1.3. Let (Mn,g) be a Riemannian manifold. Assume that the Ricci
curvature of (Mn,g) is bounded from below by (n−1) . Denote by S

n the n-dimensional

unit round sphere in R
n+1 . Let β = |Sn|

|M| . Then for each p > 1 ,

λ(p)(D2 \D1) � λ(p)(D̃2 \ D̃1), (1.7)
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and
μ(p)(D2 \D1) � μ(p)(D̃2 \ D̃1), (1.8)

where D̃1 and D̃2 are geodesic balls in S
n with volume equal to β |D1| and β |D2|

respectively.

On Rimannian manifolds, S.-Y. Cheng in 1975 proved the following comparison
on the first nonzero eigenvaule of the Dirichlet Laplace operator.

THEOREM 1.4. (Cheng inequality [6]) Let M be an n-dimensional complete Rie-
mannian manifold.

(1) If the Ricci curvature is bounded from below by (n−1)κ , then for each x0 ∈M,

λ (Br0(x0)) � λ (Vr0,κ).

(2) If the sectional curvature is bounded from above by κ , then for each x0 ∈ M,

λ (Br0(x0)) � λ (Vr0,κ).

Moreover if the equality holds, then Br0(x0) is isometric to Vr0,κ . Here and there-
after, Br0(x0) denotes the geodesic ball of radius r0 with center x0 , Vr0,κ denotes the
geodesic ball of radius r0 on a space form Mn

κ with constant sectional curvature κ .
λ (Ω) stands for the first nonzero eigenvalue of Dirichlet Laplace operator on Ω .

This result was extended to the smallest eigenvalues of Dirichlet p -Laplacian by
H. Takeuchi in [17]. Motivated by the above results, we consider the case as the hole
D1 is non-empty, and prove the following comparisons.

THEOREM 1.5. Assume Br2(0) is an injective ball in Mn , and 0 < r1 < r2 .
(1) If the Ricci curvature of (M,g) is bounded from below by (n−1)κ , then

λ(p)(Br2(0)\Br1(0)) � λ(p)(Vr2,κ \Vr1,κ), (1.9)

and
μ(p)(Br2(0)\Br1(0)) � μ(p)(Vr2,κ \Vr1,κ). (1.10)

(2) If the sectional curvature of (M,g) is bounded from above by κ , then

λ(p)(Br2(0)\Br1(0)) � λ(p)(Vr2,κ \Vr1,κ), (1.11)

and
μ(p)(Br2(0)\Br1(0)) � μ(p)(Vr2,κ \Vr1,κ). (1.12)

Moreover if the equality holds, then Br2(0)\Br1(0) is isometric to Vr2,κ \Vr1,κ .

In 1984, S. Y. Cheng, P. Li and S. T. Yau proved a eigenvalue estimates for the
Laplace operator on minimal submanifolds, see [7]. Here we prove a similar result for
the eigenvalue μ(2) we mentioned above. We obtained the following theorem.
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THEOREM 1.6. Let Mn be a minimally immersed submanifold of R
n+l , l > 1 .

Then for each x0 ∈ M and 0 < r1 < r2 ,

μ(2)(Dr2(x0)\Dr1(x0)) � μ(2)(Vr2,0 \Vr1,0), (1.13)

where Dr(x0) := Bn+l
r (x0)

⋂
M, and Bn+l

r (x0) denotes the (n + l)-dimensional round
ball with center x0 and radius r in R

n+l , and Vr,0 stands for the ball of radius r ,
centered at the origin in R

n . Moreover if the equality holds, then Dr2(x0)\Dr1(x0) is
isometric to Vr2,0 \Vr1,0 .

Recall that the Dirichlet eigenvalue of p -Laplacian is defined as

λ(p),0(D2) = inf

{∫
D2

|∇u|p dx∫
D2

|u|p dx
: u ∈W 1,p(D2)\ 0 with u|∂D2

= 0

}
. (1.14)

Finally, we also study the relationships between the Dirichlet eigenvalue λ(p),0(D2)
and λ(p)(D2 \D1) . We obtain certain estimates on λ(p)(D2 \D1) via λ(p),0(D2) , im-
plying the convergence result as the hole goes to vanishing.

THEOREM 1.7. (1) As the volume of D1 goes to vanishing, we have the following
sharp estimate

λ(p)(D2 \D1) � λ(p),0(D2)+C1 Vol(D1). (1.15)

(2) Assume that D1 is star-shaped. Then as the diameter of D1 goes to zero,

λ(p),0(D2) � λ(p)(D2 \D1)+C2 Area(∂D1). (1.16)

Where C1 and C2 are constants independent of D1 .

REMARK 1.8. We can see from (1.15) and (1.16) that as D1 goes to vanishing,
λ(p)(D2 \D1) converges to the Dirichlet eigenvalue of λ(p),0(D2) . Thus by taking a
limit, we see easily that Theorem 1.2, 1.3, 1.5 and 1.6 all generalize the classic eigen-
value comparisons: Faber-Krahn, Cheng-type inequalities. For μ(p) , it can be checked
similarly that μ(p)(D2 \D1) tends to zero as D1 goes to vanishing, which is the zero
eigenvalue of Neumann Laplace operator.

2. Eigenfunctions on space forms

2.1. Notations

One purpose of this paper is to give certain comparisons on eigenvalues for p -
Laplace operator on manifolds. We start by setting up the notations.

Let (M,g) be an n-dimensional Riemannian manifold, and ∇ be the Levi-Civita
connection corresponding to the metric g . If we denote S(TM) to be the set of smooth
vector fields on M , the curvature tensor of the Riemannian metric is then given by

Rm(X ,Y )Z = −∇X∇Y Z + ∇Y ∇XZ + ∇[X ,Y ]Z
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for X ,Y,Z ∈ S(TM) . The sectional curvature of the 2-plane section spanned by a pair
of orthonormal vectors X and Y are defined by

Sectg(X ,Y ) = 〈Rm(X ,Y )X ,Y 〉.
If we take {e1,e2, · · · ,en} to be an orthonormal basis of the tangent space of M , then
the Ricci curvature is defined to be the symmetric 2-tensor given by

Ri j =
n

∑
k=1

〈Rm(ei,ek)e j,ek〉.

2.2. Volume elements

On Riemannian manifold (Mn,g) it is convenient to use the polar coordinate (t,θ )
at the center o , where θ is the standard parametrization of S

n−1 . For θ ∈ S
n−1 , l(θ )

is so defined that geodesics γ(s) = expo(sθ ) are minimizers up to s = l(θ ) . In terms
of polar coordinates (t,θ ) , we write the volume element as

dx = J(r,θ ) dr∧dθ .

Denote by Mn
κ the space form, which is a complete and simply connected Riemannian

manifold with constant sectional curvature κ (for example, Hyperbolic space H
n with

κ =−1, Euclidean space R
n with κ = 0 and Euclidean sphere S

n with κ = 1). Denote
by dx the volume element in Mn

κ at x , then it is well-known that

dx = Jκ(r(x)) dr∧dθ = sn−1
κ (r) dr∧dθ ,

where r(x) denotes distance away from the fixed center o , and sκ(r) is given by

sκ(t) =

⎧⎪⎨⎪⎩
1√
κ sin

√
κt, κ > 0,

t, κ = 0,
1√
|κ | sinh

√|κ |t, κ < 0.

Now we collect two well-known comparisons on the volume elements those will be
used in this paper.

THEOREM 2.1. Let (M,g) be a complete Riemannian manifold with Ricg � (n−
1)κg. Then

∂rJ(r,θ )
J(r,θ )

� J′κ(r)
Jκ(r)

within the cut-locus of the origin o in M .

THEOREM 2.2. Let (M,g) be a complete Riemannian manifold with Sectg � κ .
Then

∂rJ(r,θ )
J(r,θ )

� J′κ(r)
Jκ(r)

within the cut-locus of the origin o in M .

The above two theorems are direct consequences of Bishop-Gromov comparison
and Hessian comparison respectively, see for example [12].
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2.3. Eigenfunctions on space forms

It is known that the first Dirichlet eigenfunction for p -Laplace operator on the
geodesic ball Vr,κ is a radial function, since the first eigenspace is simple [4, 13, 14]
and Vr,κ is radially symmetric. Then we denote by R(r(x)) and Q(r(x)) the normalized
eigenfunctions corresponding to λ(p)(Vr2,κ \Vr1,κ) and μ(p)(Vr2,κ \Vr1,κ) respectively.
For R(r) and Q(r) , we have the following properties.

PROPOSITION 2.1. For functions R(r) and Q(r) mentioned above, we have fol-
lowing properties.

(1) R′(r) < 0 for r ∈ (r1,r2] , and

− (p−1)(−R′)p−2R′′(r)− cκ(r)
sκ(r)

(−R′)p−2R′(r) = λ(p)(Vr2,κ \Vr1,κ) Rp−1(r) (2.1)

in (r1,r2) with R′(r1) = 0 and R(r2) = 0 .
(2) Q′(r) > 0 for r ∈ [r1,r2) , and

− (p−1)(Q′)p−2Q′′(r)− cκ(r)
sκ (r)

(Q′)p−2Q′(r) = μ(p)(Vr2,κ \Vr1,κ) Qp−1(r) (2.2)

for r ∈ (r1,r2) with Q(r1) = 0 and Q′(r2) = 0 . Where

cκ(t) =

⎧⎨⎩
cos

√
κt, κ > 0,

1, κ = 0,

cosh
√|κ |t, κ < 0.

Proof. In polar coordinates, it follows from PDE (1.3) that

−(p−1)(−R′)p−2R′′(r)− cκ(r)
sκ (r)

(−R′)p−2R′(r) = λ(p)(Vr2,κ \Vr1,κ) Rp−1(r).

Now we are in position to show R′(r) < 0 for r ∈ (r1,r2] . Assume by contradiction
that there exists r0 ∈ (r1,r2] such that R′(r0) = 0, then we define a testing function R
on Vr2,κ \Vr1,κ by

R(r) = R(r), for r ∈ [r0,r2),

and
R(r) = R(r0), for r ∈ [r1,r0).

It follows that ∫
Vr2,κ\Vr1,κ

|∇R|p dx∫
Vr2,κ\Vr1,κ

|R|p dx
=

∫
Vr2,κ\Vr0,κ |∇R|p dx∫
Vr2,κ\Vr1,κ

|R|p dx

<

∫
Vr2,κ\Vr0,κ

|∇R|p dx∫
Vr2,κ\Vr0,κ

|R|p dx

= λ(p)(Vr2,κ \Vr1,κ), (2.3)
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where last equality follows from equation (2.1), and boundary condition R′(r0) =
R(r2) = 0. Then we get a contradiction with the definition of λ(p)(Vr2,κ \Vr1,κ) , hence
R′(r) < 0 holds for r ∈ (r1,r2] .

To prove that Q′(r) > 0 for r ∈ [r1,r2) , we assume by contradiction that there
exists r0 ∈ (r1,r2) such that Q′(r0)= 0. On one hand from equation (2.2) and boundary
conditions Q′(r0) = 0 and Q(r1) = 0, it follows∫

Vr0,κ\Vr1,κ |∇Q|p dx∫
Vr0,κ\Vr1,κ

|Q|p dx
= μ(p)(Vr2,κ \Vr1,κ),

which immediately implies

μ(p)(Vr0,κ \Vr1,κ) � μ(p)(Vr2,κ \Vr1,κ).

On the other hand, it follows from the simlar argument as (2.3) that

μ(p)(Vr0,κ \Vr1,κ) > μ(p)(Vr2,κ \Vr1,κ),

giving the contradiction. Thus Q′(r) > 0 for r ∈ [r1,r2) .

REMARK 2.3. In fact, λ(p)(Vr2,κ \Vr1,κ) and μ(p)(Vr2,κ \Vr1,κ) are given by roots
of some Bessel equations, see [9, Section 3.2].

3. Proof of Theorem 1.2

In this section, we make use of Schwartz spherical rearrangement argument and
co-area formula (see also [10, 15]) to prove Theorem 1.2. The proof is similar to that of
the classic Faber-Krahn inequality. But for the completeness, we give the details here.

Proof of Theorem 1.2. Suppose u is the normalized eigenfunction corresponding
to the eigenvalue λ(p)(Ω) , where Ω = D2 \D1 . Let

a0 = max
C(Ω)

u > 0,

Ω(t) = {x ∈ Ω : u(x) > t},
and

Γt = {x ∈ Ω : u(x) = t}.
For t ∈ [0,a0] , let D∗(t) be the ball centered at the origin such that

Vol(D∗(t)) = Vol(Ω(t))+Vol(D1), (3.1)

and define a radial function h(x) on Ω∗ = D∗(0)\D∗(a0) by

h(x) = sup{t : x ∈ D∗(t)}.
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Denote Ω∗(t) = {x ∈ Ω∗ : h(x) > t} and Γ∗
t = ∂D∗(t) . From the definition of Ω∗(t) ,

we see that
Vol(Ω∗(t)) = Vol(Ω(t)).

Using the co-area formula, we rewrite the above identity as∫ a0

t

∫
Γr

1
|∇u| dArdr =

∫ a0

t

∫
Γ∗

r

1
|∇h| dA∗

r dr,

where dAr and dA∗
r denote the area element of Γr and Γ∗

r respectively. Taking the
derivative of t yields ∫

Γt

1
|∇u| dAt =

∫
Γ∗

t

1
|∇h| dA∗

t . (3.2)

Using the co-area formula again, we obtain∫
Ω

up dx =
∫ a0

0
t p

∫
Γt

1
|∇u| dAtdt

=
∫ a0

0
t p

∫
Γ∗

t

1
|∇h| dA∗

t dt

=
∫

Ω∗
hp dx. (3.3)

It follows from (3.1) and the isoperimetric inequality that

Area(Γ∗
t ) � Area(Γt). (3.4)

Using Hölder inequality, we have

Area(Γt ) =
∫

Γt

dAt � (
∫

Γt

1
|∇u| dAt)

p−1
p (

∫
Γt

|∇u|p−1 dAt)
1
p . (3.5)

Since h is a radial function, we conculde

Area(Γ∗
t ) =

∫
Γ∗

t

dA∗
t = (

∫
Γ∗

t

1
|∇h| dA∗

t )
p−1
p (

∫
Γ∗

t

|∇h|p−1 dA∗
t )

1
p . (3.6)

Putting (3.2), (3.4–3.6) together, we arrive at∫
Γ∗

t

|∇h|p−1 dA∗
t �

∫
Γt

|∇u|p−1 dAt ,

giving ∫
Ω∗

|∇h|p dx �
∫

Ω
|∇u|p dx. (3.7)

Hence by (3.3) and (3.7), we get

λ(p)(Ω∗) �
∫

Ω∗ |∇h|p dx∫
Ω∗ hp dx

�
∫

Ω |∇u|p dx∫
Ω up dx

= λ(p)(Ω).
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When equality holds, we see from (3.4) that Γt is a round sphere for each t . Hence Ω
is isometric to Ω∗ .

One can follow the same argument as above to show

μ(p)(Ω∗) � μ(p)(Ω),

and we omit the details here. �

REMARK 3.1. The proof of Theorem 1.3 is using the Gromov’s isoperimetric in-
equality [2] and following the similar process as that of Theorem 1.2, and we omit it
here.

4. Proof of Theorem 1.5

In this section, we combine Cheng’s argument of transplanting and applying the
comparison theorems, Theorem 2.1 and 2.2, to show Cheng-type eigenvalue compari-
son theorems.

4.1. Proof of (1.9)

For 0 < r1 < r2 , denote by u0 the normalized eigenfunction with respect to eigen-
value λ(p)(Vr2,κ \Vr1,κ) . For the sake of convenience, we denote λ(p)(Vr2,κ \Vr1,κ)
by λ(p),κ . Recall from (1) of Proposition 2.1 that u0 = R(r(x)) is a radial function
satisfying

−div(|∇u0|p−2∇u0) = λ(p),κ |u0|p−2u0

for r ∈ (r1,r2) and boundary conditions

R′(r1) = 0, R(r2) = 0, and R′(r) < 0 with r ∈ (r1,r2].

We define a trial function u(x) on Br2(0)\Br1(0) as

u(x) = R(d(x)), (4.1)

where d(x) is the distance function originated from o in M .
To prove (1.9), it suffices to check that for the testing function u∫

Br2 (0)\Br1 (0)
|∇u|p dx � λ(p),κ

∫
Br2 (0)\Br1(0)

|u|p dx.

Observing that

J(r,θ )∇u = ∇
(Ju

Jκ

)
Jκ − ∇J

Jκ
Jκu+

∇Jκ
Jκ

Ju, (4.2)
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we have that∫
Br2 (0)\Br1(0)

|∇u|p dx =
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
|∇u|pJ(r,θ ) drdθ

=
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
|∇u|p−2

〈
∇u,∇

(Ju
Jκ

)〉
Jκ drdθ

+
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
|∇u|p−2

(
−ur

(∂rJ
J

− J′κ
Jκ

))
uJ drdθ

(4.3)

where l(θ ) is defined in Section 2.2.
Since Ricg � (n−1)κg , Theorem 2.1 gives

∂rJ(r,θ )
J(r,θ )

� J′κ(r)
Jκ(r)

, (4.4)

combining with ur = R′(r) < 0, we see

−ur

(∂rJ
J

− J′κ
Jκ

)
� 0. (4.5)

It follows from (4.3–4.5) that∫
Br2 (0)\Br1 (0)

|∇u|p dx �
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
|∇R|p−2

〈
∇R,∇

(JR
Jκ

)〉
Jκ drdθ

=
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
|∇u0|p−2

〈
∇u0,∇

(Ju0

Jκ

)〉
dx

=
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
−div(|∇u0|p−2∇u0)

Ju0

Jκ
dx

+
∫
{θ :r1<l(θ)<r2}

|∇u0|p−2 ∂u0

∂ r
(l(θ ),θ )u0(l(θ ),θ )J(l(θ ),θ )dθ .

From Proposition 2.1, it follows that for l(θ ) ∈ (r1,r2)

∂u0

∂ r
(l(θ ),θ ) = R′(l(θ )) � 0,

then it follows that∫
Br2 (0)\Br1(0)

|∇u|p dx �
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
−div(|∇u0|p−2∇u0)

Ju0

Jκ
dx

=
∫

Sn−1

∫ min{r2,l(θ)}

min{r1,l(θ)}
λ(p),κ |R|pJ drdθ

= λ(p),κ

∫
Br2 (0)\Br1(0)

|u|p dx,

proving the claim, hence the inequality (1.9).

When equality holds, from (4.4) we know that ∂rJ(r,θ)
J(r,θ) = J′κ (r)

Jκ (r) . Hence we get that

Br2(0) is isometric to Vr2,κ (see for example [15]).
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4.2. Proof of (1.11)

Now we assume that sectional curvature of M is bounded from above by κ , then
Theorem 2.2 gives that

∂rJ(r,θ )
J(r,θ )

� J′κ(r)
Jκ(r)

. (4.6)

To prove the theorem, we claim firstly for u given by (4.1) that

−div(|∇u|p−2∇u) � λ(p),κup−1

in Br2(0) \ Br1(0) in the weak sense, that is for each nonnegative function
η ∈W 1,p(Br2(0)\Br1(0)) with η = 0 on ∂Br2(0)

∫
Br2 (0)\Br1(0)

|∇u|p−2〈∇u,∇η〉 dx � λ(p),κ

∫
Br2 (0)\Br1(0)

|u|p−1η dx. (4.7)

Using (4.2) again, we calculate that∫
Br2 (0)\Br1(0)

|∇u|p−2〈∇u,∇η〉 dx =
∫ r2

r1

∫
Sn−1

|∇u|p−2〈∇u,∇η〉J(r,θ ) dθdr

=
∫ r2

r1

∫
Sn−1

|∇u|p−2
〈

∇u,∇
(Jη

Jκ

)〉
Jκ dθdr

+
∫ r2

r1

∫
Sn−1

|∇u|p−2
(
−ur

(∂rJ
J

− J′κ
Jκ

))
ηJ dθdr

�
∫ r2

r1

∫
Sn−1

|∇u|p−2
〈

∇u,∇
(Jη

Jκ

)〉
Jκ dθdr

=
∫
Vr2,κ\Vr1,κ

|∇u0|p−2
〈

∇u0,∇
(Jη

Jκ

)〉
dx

= λ(p),κ

∫
Vr2,κ\Vr1,κ

|u0|p−1η
J
Jκ

dx

= λ(p),κ

∫
Br2 (0)\Br1(0)

|u|p−1η dx,

where we used that (4.6) and ∂
∂ r u = R′(r) < 0, which proves (4.7), hence the claim.

Now we turn to prove (1.11). Let g(x) be the normalized eigenfunction with
respect to eigenvalue λ(p)(Br2(0)\Br1(0)) and choose a testing function as

η(x) =
gp

up−1 ,

which is clearly nonnegative in W 1,p(Br2(0)\Br1(0)) with η = 0 on ∂Br2(0) , see [16,
Appendix A].
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Substituting η(x) to inequality (4.7), we deduce

λ(p),κ

∫
Br2 (0)\Br1(0)

gp dx �
∫

Br2 (0)\Br1(0)
|∇u|p−2

〈
∇u,∇

gp

up−1

〉
dx

= −(p−1)
∫
Br2 (0)\Br1(0)

|∇u|p gp

up dx

+p
∫

Br2 (0)\Br1(0)
|∇u|p−2〈∇u,∇g〉g

p−1

up−1 dx. (4.8)

Using Young inequality, we have that∫
Br2 (0)\Br1 (0)

|∇g|p dx+(p−1)
∫
Br2 (0)\Br1(0)

|∇u|p gp

up dx

� p
∫

Br2 (0)\Br1 (0)
|∇u|p−2〈∇u,∇g〉g

p−1

up−1 dx. (4.9)

Putting (4.8) and (4.9) together, we conclude that

λ(p),κ

∫
Br2 (0)\Br1 (0)

gp dx �
∫

Br2 (0)\Br1(0)
|∇g|p dx,

which gives (1.11).

4.3. Proof of (1.10)

The proof of (1.10) is similar to that of (1.11). Let v0 be the normalized eigenfunc-
tion with respect to eigenvalue μ(p)(Vr2,κ \Vr1,κ) . For the sake of convenience, we de-
note μ(p)(Vr2,κ \Vr1,κ) by μ(p),κ . Recall from (2) of Proposition 2.1 that v0 = Q(r(x))
is a radial function satisfying

−div(|∇v0|p−2∇v0) = μ(p),κ |v0|p−2v0

for r ∈ (r1,r2) and boundary conditions

Q(r1) = 0, Q′(r2) = 0, and Q′(r) > 0 with r ∈ (r1,r2].

Define a trial function v(x) on Br2(0)\Br1(0) as

v(x) = Q(d(x)), (4.10)

where d(x) is the distance function originated from o in M .
Firstly, we show for v given by (4.10) that

−div(|∇v|p−2∇v) � μ(p),κvp−1

in Br2(0) \ Br1(0) in the weak sense, that is for each nonnegative function
η ∈W 1,p(Br2(0)\Br1(0)) with η = 0 on ∂Br1(0)∫

Br2 (0)\Br1(0)
|∇v|p−2〈∇v,∇η〉 dx � μ(p),κ

∫
Br2 (0)\Br1(0)

|v|p−1η dx. (4.11)
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In fact, using (4.2) again, we calculate that∫
Br2 (0)\Br1 (0)

|∇v|p−2〈∇v,∇η〉 dx =
∫ r2

r1

∫
Sn−1

|∇v|p−2〈∇v,∇η〉J(r,θ ) dθdr

=
∫ r2

r1

∫
Sn−1

|∇v|p−2
〈

∇v,∇
(Jη

Jκ

)〉
Jκ dθdr

+
∫ r2

r1

∫
Sn−1

|∇v|p−2
(
−vr

(∂rJ
J

− J′κ
Jκ

))
ηJ dθdr

�
∫ r2

r1

∫
Sn−1

|∇v|p−2
〈

∇v,∇
(Jη

Jκ

)〉
Jκ dθdr

=
∫
Vr2,κ\Vr1,κ

|∇v0|p−2
〈

∇v0,∇
(Jη

Jκ

)〉
dx

= μ(p),κ

∫
Vr2,κ\Vr1,κ

|v0|p−1η
J
Jκ

dx

= μ(p),κ

∫
Br2 (0)\Br1(0)

|v|p−1η dx,

where we used that (4.4) and ∂
∂ r v = Q′(r) > 0, which proves (4.11).

Now we turn to prove (1.10). Let h(x) be the normalized eigenfunction with
respect to eigenvalue μ(p)(Br2(0)\Br1(0)) and choose a testing function as

η(x) =
hp

vp−1 ,

which is nonnegative in W 1,p(Br2(0) \Br1(0)) with η = 0 on ∂Br1(0) . Substituting
η(x) to inequality (4.11), we deduce

μ(p),κ

∫
Br2 (0)\Br1(0)

hp dx �
∫

Br2 (0)\Br1(0)
|∇v|p−2

〈
∇v,∇

hp

vp−1

〉
dx

= −(p−1)
∫
Br2 (0)\Br1(0)

|∇v|p hp

vp dx

+p
∫

Br2 (0)\Br1(0)
|∇v|p−2〈∇v,∇h〉h

p−1

vp−1 dx. (4.12)

Using Young inequality, we have that∫
Br2 (0)\Br1(0)

|∇h|p dx+(p−1)
∫
Br2 (0)\Br1(0)

|∇v|p hp

vp dx

� p
∫

Br2 (0)\Br1(0)
|∇v|p−2〈∇v,∇h〉h

p−1

vp−1 dx. (4.13)

From (4.12) and (4.13) we deduce that

μ(p),κ

∫
Br2 (0)\Br1(0)

hp dx �
∫

Br2 (0)\Br1(0)
|∇h|p dx,

which gives (1.10).
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REMARK 4.1. Since the proof of (1.12) is almost the same as that of (1.9), we
omit the details here.

5. Proof of Theorem 1.6

In this section, we assume that Mn is a minimally immersed manifold of R
n+l ,

l > 1. For fixed o ∈ Mn , we denote by do(x) = |o− x| the distance function in R
n+l .

Denote by ∇ and 
 the covariant derivative and Laplace operator on Mn respectively.
A comparison inequality of Dirichlet eigenvalue was proved by Cheng, Li and Yau, see
[7, Corollary 3]. Now we use Cheng’s argument of transplanting to prove the analogous
inequality for μ2 . By minimality of M in R

n+l , we observe that (c.f. [7])


d2
o(x) = 2n, (5.1)

for any x ∈ M . Now we prove Theorem 1.6.

Proof of Theorem 1.6. Recall that D(o,r) = {x ∈ M,do(x) < r} . Define a trial
function u(x) on D(o,r2)\D(o,r1) by

u(x) = Q(do(x)),

where Q(x) is the normalized eigenfunction for Vr2,0 \Vr1,0 in R
n , characterized in

Proposition 2.1. We see from (5.1) that


u(x) = Q′′(do(x))|∇do(x)|2 +Q′(do(x))
do(x)

=
(
Q′′ − Q′

do(x)

)
|∇do(x)|2 +n

Q′

do(x)
.

Now we claim that f (r) := Q′′ − Q′
r � 0 for r ∈ (r1,r2) . Then from the fact |∇d| � 1,

we deduce that


u(x) �
(
Q′′ − Q′

do(x)

)
+n

Q′

do(x)
= −μ(2)(Vr2,0 \Vr1,0) u(x),

where we used equation (2.2) for the case p = 2. Then we conclude that

μ(2)(D(o,r2)\D(o,r1)) � μ(2)(Vr2,0 \Vr1,0),

proving the theorem. When equality holds, we see that |∇do| = 1. Combining with
(5.1), we get that D(o,r2)\D(o,r1) is totally in R

n .
Now we prove the claim. If f (t) � 0, then

−μ(2)(Vr2,0 \Vr1,0) Q � n
t
Q′.

Then we deduce

f ′(t) = −μ(2)(Vr2,0 \Vr1,0) Q′ +
n
t2

Q′ − n
t
Q′′

= −μ(2)(Vr2,0 \Vr1,0) Q′ +
n
t2

Q′ +
n
t

(n−1
t

Q′ + μ(2)(Vr2,0 \Vr1,0) Q
)

� −μ(2)(Vr2,0 \Vr1,0) Q′

� 0.
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Observing f (r1) = − n
r1

Q′(r1) < 0, then we conclude f (r) � 0 for r ∈ (r1,r2) . This
proves the claim. �

6. Proof of Theorem 1.7

Let Dε ⊂ D2 in R
n . In this section, we denote λ(p)(D2 \Dε) and μ(p)(D2 \Dε)

by λ(p)(ε) and μ(p)(ε) respectively.

6.1. Proof of estimate (1.15)

Let uε be the corresponding normalized eigenfunction of D2 \Dε with eigenvalue
λ(p)(ε) and Dε goes to empty as ε → 0. Denote by u0 the normalized eigenfunction on
D2 with respect to the first Dircichlet eigenvalue λ(p),0 defined in (1.14). It is obviously
that

|u0|C1(D2) � C.

Using u0 as a trial function for λ(p)(ε) , we get

λ(p)(ε) �
∫
D2\Dε

|∇u0|p dx∫
D2\Dε

|u0|p dx

�
∫
D2

|∇u0|p dx∫
D2

|u0|p dx− ∫
Dε

|u0|p dx

�
λ(p),0

1−C Vol(Dε )
� λ(p),0 +C Vol(Dε ), (6.1)

where C is a constant independent of ε .

6.2. The uniform bound for uε

To prove the lower bound of λ(p)(ε) , we need that uε is uniformly bounded, which
means the bound is independent of ε as ε → 0. More precisely, we prove the following
lemma.

LEMMA 6.1.
max
x∈∂Dε

uε � C, (6.2)

where C is a constant which is independent of ε .

Proof of Lemma 6.1. Choose a fixed small ball B2η(x0) ⊂ D2 centered at x0 with
radius 2η such that Dε ⊂ Bη(x0) and λ(p),0(B2η(x0)) � λ(p)(ε)+1. This can be done
due to (1.15).

Let w(x) be the corresponding normalized Dirichlet eigenfunction. Define a func-
tion h(x) in B2η(x0)\Dε by

h(x) =
uε
w

.
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First we claim that h(x) can not attain the maximum in the interior of Bη(x0) \Dε .
Assume by contradiction that h(x) attains a maximum at x1 ∈ Bη (x0)\Dε . Then at x1

we have that
∇uε
uε

=
∇w
w

�= 0.

Thus in a small neighborhood of x1 , equation (1.3) is strictly elliptic. That means in a
neighborhood of x1 , uε is twice differentiable and satisfies

−〈∇|∇uε |p−2,∇uε〉− |∇uε |p−2
uε = λ(p)(ε) up−1
ε .

Using ∇h(x1) = 0, we have that at x1

−div(|∇w|p−2∇w)h−|∇w|p−2w

(

h+(p−2)∇2h

( ∇w
|∇w| ,

∇w
|∇w|

))
= λ(p)(ε)hwp−1.

Since λ(p),0(Bo(2η)) > λ(p)(ε) , then we have


h+(p−2)∇2h

(
∇w
|∇w| ,

∇w
|∇w|

)
> 0,

contradicting with the assumption that x1 is a maximum point of h . Hence the claim
comes true.

Now we use the maximum principle to prove the lemma. Let ν be the outward
normal direction of Dε . Then on ∂Dε taking the normal derivative of h yields

∂
∂ν

h = − h
w

∂
∂ν

w = − h
w

〈
ν,

∂
∂ r

〉 ∂
∂ r

w > 0,

where the last inequality we used that the star-shapeness and w is a radial function
satisfying ∂

∂ rw < 0 for r > 0 (see for example [14]). Then we conclude that h can not
achieve the maximum on ∂Dε , and therefore

max
Bη (x0)\Dε

uε
w

� max
∂Bη (x0)

uε
w

.

The standard Moser’s iteration argument (see for example [12]) gives that

max
∂Bη (x0)

uε � C.

Therefore, we complete the proof of the lemma. �

6.3. Proof of (1.16)

Similar computations as (4.7) and (4.8) give that

λ(p),0

∫
D2\Dε

up
ε dx = −

∫
∂Dε

up
ε

up−1
0

|∇u0|p−2 ∂u0

∂ν
dAε+

∫
D2\Dε

〈
∇

up−1
ε

up−1
0

, |∇u0|p−2∇u0

〉
dx

�
∫

∂Dε

up
ε

up−1
0

|∇u0|p−1 dAε +
∫

D2\Dε
|∇uε |p dx

= O(|∂Dε |)+
∫
D2\Dε

|∇uε |p dx,



EIGENVALUE COMPARISON 301

where we used fact uε is bounded from Lemma 6.1. Then we conclude

λ(p)(ε) � λ(p),0−O(|∂Dε |).

6.4. Proof of the sharpness of (1.15)

We now explain that inequality (1.15) is sharp in the decay rate of the volume of
Dε . By direct calculations, one can show the following variational formula for λ(p)(ε)
(see for example [11, Section 6])

λ̇(p)(ε) =
∫

∂Dε
(|∇uε |p−λ(p)(ε)up

ε )〈X ,ν〉dA, (6.3)

where uε is the normalized eigenfunction, λ(p)(ε) is the eigenvalue of D2 \Dε and
X is the variation field of ∂Dε . We consider D2 as the round unit ball centered at
the origin and Dε as the round ball centered at the origin with radius ε . We see from
Proposition 2.1 that uε is radial with Neumann condition on ∂Dε , and then |∇uε | = 0
on ∂Dε . Consequently it follows from (6.3) that

λ̇(p)(ε) =
∫

∂Dε
(−λ(p)(ε)up

ε )〈X ,ν〉dA = O(|∂Dε |) = O(εn−1).

Here in the second equality we used the lower bound of λ(p)(ε) given in (1.16). Thus,
by elementary calculus we have

λ(p)(ε) = λ(p)(0)+O(εn) = λ(p),0 +O(|Dε |),

which gives the sharpness of (1.15). Where we have used equality λ(p)(0) = λ(p),0 ,
deduced from estimates (1.15) and (1.16).
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Norm. Sup. (4) 15 (1982), no. 3, 513–541, MR690651 (84h:58147).

[4] TILAK BHATTACHARYA, Radial symmetry of the first eigenfunction for the p-Laplacian in the ball,
Proc. Amer. Math. Soc. 104 (1988), no. 1, 169–174, MR958061 (89k:35177).

[5] ISAAC CHAVEL, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Aca-
demic Press, Inc., Orlando, FL, 1984, Including a chapter by Burton Randol, With an appendix by
Jozef Dodziuk, MR768584 (86g:58140).



302 KUI WANG

[6] SHIU YUEN CHENG, Eigenvalue comparison theorems and its geometric applications, Math. Z. 143
(1975), no. 3, 289–297, MR0378001 (51 #14170).

[7] SHIU YUEN CHENG, PETER LI AND SHING-TUNG YAU, Heat equations on minimal submanifolds
and their applications, Amer. J. Math. 106 (1984), no. 5, 1033–1065, MR761578 (85m:58171).

[8] LAWRENCE C. EVANS, Partial differential equations, Graduate Studies in Mathematics, vol. 19,
American Mathematical Society, Providence, RI, 1998, MR1625845 (99e:35001).

[9] H. P. W. GOTTLIEB, Eigenvalues of the Laplacian with Neumann boundary conditions, J. Austral.
Math. Soc. Ser. B 26 (1985), no. 3, 293–309, MR776318 (86h:65171).

[10] ANTOINE HENROT, Minimization problems for eigenvalues of the Laplacian, J. Evol. Equ. 3 (2003),
no. 3, 443–461, MR2019029 (2005a:49078).

[11] DAVID JERISON AND NIKOLAI NADIRASHVILI, The “hot spots” conjecture for domains with two
axes of symmetry, J. Amer. Math. Soc. 13 (2000), no. 4, 741–772, MR1775736 (2001f:35110).

[12] PETER LI, Geometric analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge
University Press, Cambridge, 2012, MR2962229.

[13] PETER LINDQVIST, On the equation div (|∇u|p−2∇u)+ λ |u|p−2u = 0 , Proc. Amer. Math. Soc. 109
(1990), no. 1, 157–164, MR1007505 (90h:35088).

[14] ANA-MARIA MATEI, First eigenvalue for the p-Laplace operator, Nonlinear Anal. 39 (2000), no. 8,
Ser. A: Theory Methods, 1051–1068, MR1735181 (2001a:58041).

[15] TAKASHI SAKAI, Riemannian geometry, Translations of Mathematical Monographs, vol. 149, Amer-
ican Mathematical Society, Providence, RI, 1996, translated from the 1992 Japanese original by the
author, MR1390760 (97f:53001).

[16] I. M. SINGER, BUN WONG, SHING-TUNG YAU AND STEPHEN S.-T. YAU, An estimate of the gap
of the first two eigenvalues in the Schrödinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 12
(1985), no. 2, 319–333, MR829055 (87j:35280).

[17] HIROSHI TAKEUCHI, On the first eigenvalue of the p-Laplacian in a Riemannian manifold, Tokyo J.
Math. 21 (1998), no. 1, 135–140, MR1630155 (99j:58217).

[18] K. UHLENBECK, Regularity for a class of non-linear elliptic systems, Acta Math. 138 (1977), no. 3–4,
219–240, MR0474389 (57 #14031).

(Received October 23, 2016) Kui Wang
School of Mathematic Sciences

Soochow University
Suzhou, 215006, China

e-mail: kuiwang@suda.edu.cn

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


