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SOME INEQUALITIES RELATED TO p-SCHATTEN NORM

FUGEN GAO AND MENGYU TIAN

(Communicated by M. Fujii)

Abstract. In this paper, we investigate the known operator inequalities for the p-Schatten norm
and obtain some refinements of these inequalities when parameters taking values in different
regions. Let Ay,---,A,,B1,---,B, € B,(H) such that Z}szlAfBj =0.Thenfor 0<p<2, p>
A>0and u>2,
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For p>2, p< A and 0 < u < 2, the inequalities are reversed. Moreover, we get some
applications of our results.

1. Introduction

Let B(H) be the C*-algebra of all bounded linear operators acting on a complex

separable Hilbert space H. |A| = (X*X )% denotes the absolute value of an operator
A€B(H). If A€ B(H) is compact, let {s;(A)}7_, be the sequence of decreasingly

1
ordered singular values of A. For 0 < p <o, let [[Al, = (tr]A|P)? = (Z7; s7(A))7,
where 7r is the usual trace function. This defines the Schatten p-norm (quaéi-norm,
resp.) for 1 < p < (0 < p <1, resp.) on the set

By(H) ={X € B(H) : |[X[|, <},

which is called the p-Schatten class of B(H) (see [5]). The Schatten p-norms are
unitarily invariant and when p =1, ||A||; =tr|A| is called the trace norm of A.

There are some classical Clarkson’s inequalities for the Schatten p-norms of op-
erators in B,(H) (See [3]). If A, B € B,(H), then

277 1(||Al15 + [1BI15) < [|A = BI[b+ A+ Bl|5 < 2(||Al1L+ [|BI[5) (L.
for 0 < p <2 and
2(|All5+11BII%) < A= BI|b+ A+ Bl[5 < 2P~ ' (|A[1h+ || BI[%) (1.2)
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for 2 < p <eo. For p=2,by (1.1) and (1.2), we have
1A — BI3+ (1A + BIIZ = 2(||Al3 + |1 BI3),

which is called parallelogram law. When p # 2, the equality 2(||A[|5+ || B||5) = [|A —
B||h+ ||A + B||5 holds if and only if A*B = AB* = 0, or equivalently R(A) and R(B)
are orthogonal. (See [3]).

Hirzallah, Kittaneh and Moslehian etc. have obtained some generalizations of
(1.1) to n-tuples of operators and many different conclusions by using various methods
such as complex interpolation method, concavity and convexity of certain functions,
etc. (See [1,6,7,8]).

Recently, some refinements of some p-Schatten inequalities have been given by
Conde and Moslehian in [4].

THEOREM 1.1. ([4]) Let Ay,---,An,B1, - ,By € Bp(H) such that Zj'j ]
0,thenfor 0 <p<2, p<Aand 0<u<2,
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For 2 < p, 0< A < p and 2 < U, the inequalities are reversed.

THEOREM 1.2. ([4]) Let Ay,---,An,B1, - ,By € Bp(H) such that X \ABj =
O,thenf0r0<p<2,p<7t and 0 < u <2,
1l 1 1,11 & 1 1
Z 1A; £ B,[[5)E <n2 57 E (Y (AP + B2 13) % (1.4)

i=1
For 2<p,0< A < p and 2 < U, the inequality is reversed.

In this paper, motivated by the above conclusions, we consider some refinements
of p-Schatten norm inequalities when p, A and u taking values in different regions.

2. Main results

In this section we consider the p-Schatten norm inequalities of (1.3) and (1.4)
when parameters taking values in different regions. We start our works with the follow-
ing lemmas that we will use along the paper.

=

FACT 1. M(X) < My(x) for 0 < s <s', where M(X) = (137 x))5,
X = (x1,--+,x,) is an n-tuples of non-negative numbers.

FACT 2. HTH%, = |HT|2H§ forany T € B,(H) with p > 0.

2
Proof. By the definition of Schatten p-norm, we have HTH2 (¢r|T|P)? and
TP = (@r(TP) o = (r|T|?)? . O
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LEMMA 2.1. ([4]) Let Ay,---,A,,By1,---,B, € B(H) such that Zlf'jzlA;‘Bj =0,
then

dIAEBIP = Y AP+ [BIP £ Y AB+ BiA;
i.j=1 ij=1 ij=1
=Y AP +B 2D

LEMMA 2.2. ([2-3]) If Ay,---,A, € By(H) for some p >0, and Ay,---,A, are
positive, then for 0 < p < 1,

n n
nP =ty lAillp < Z [Aillp)" < | ZA 15 <Y llAdlp (2.2)
i=1 = i=1
and for 1 < p < o the inequalities are reversed.

They are a refinement of Lemma 2.1 in [7]. A commutative version of the previous
lemma for scalars is the following:
Let X = (x1,...,X,) be an n-tuples of non-negative numbers, then

n n n
Yl < (Y < Y 23)
i=1 i=1 i=1
forO<p<1and
n n n
Nl < (X x)P <Py AL 2.4)

i=1 i=1 i=1
for 1 < p < eo.

LEMMA 2.3. ([2]) If T1,---,T, are positive operators in B,(H) then

n n
I Till, = D 1T, (2.5)
i=1 i=1
foro<p<1.
THEOREM 2.4. Let Ay,---,A,,B1,-,B, € By(H) such that ¥};_|AiB; = 0.

Thenfor 0<p<2, p=A>0and u>2,
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For p > <A and 0 < u < 2, the inequalities are reversed.
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Proof. Let 0<p<2, p=>A >0, u>2.Itfollows from M, (X) < M,(%) that

1 2

21_ 1 2.1 &
7 ZHAiBII )i =n ( —22 1A £B1115)
i,j=1 J=1

ﬁl'—

Z [I14i £ B[[[7)7-

i,j=1

Applying the Fact 2, formula (2.3), Lemma 2.1 and Lemma 2.3, we get
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Using Lemma 2.2 and the convexity of the function f(x) =x* on [0, +e) for 1 < o <
oo, we obtain
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When p > < A and 0 < pu < 2, a similar argument shows that the equalities are
reversed. D

COROLLARY 2.5. Let Ay,---,A,,Bi,---,B, € Bp(H) such that 2 i1ABj=0.

Then
E |4; £ Bj||3 = n( ZHA Hz+ZHB 13).
i,j=1

Proof. Motivated by Theorem24,let A=pu=p=2. O

COROLLARY 2.6. Let Ay,---,A, € By(H) suchthat 3| A; =0. Then

Z 14i£A,; Hz—ZnZIIA [E2

i,j=1

Proof. ¥} | A; =0 implies that 37, | A7A; = 0. The statement is a consequence
of Corollary 2.5. [J

THEOREM 2.7. Let Ay,---,An,B1,---,B, € B,(H) such that i \AiB; = 0.
Thenfor 0<p<2,p=A>0and u =2,
1 i iy by 224 - 2 bt
n(-5 EIHA iEBjl[p) =0T l(EH(IM +1Bil7)2 ;)%
i,j= i=
For p > <A and 0 < u < 2, the inequality is reversed.
Proof. We suppose that 0 < p < > A >0 and u >2. Using Fact 2, formula

(2.3), (2.5)and Lemma 2.1 and Lemma 2.2, we get
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When p>2, p<A and 0 < u < 2, a similar argument shows that the inequalities are
reversed. [
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