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BOUNDEDNESS OF MARCINKIEWICZ INTEGRALS ON HARDY
SPACES H? OVER NON-HOMOGENEOUS METRIC MEASURE SPACES

HAOYUAN L1 AND HAIBO LIN

(Communicated by Y. Sawano)

Abstract. Under the assumption that (2", d, i) is a non-homogeneous metric measure space,

the authors prove that the Marcinkiewicz integral operator is bounded from the molecular Hardy

space I-NI":Ibqpys(u) (or the atomic Hardy space ﬁﬁl’f‘l’](u)) into the Lebesgue space LP(u). To

this end, some boundedness criteria on these Hardy spaces are established.

1. Introduction

It is known that the Marcinkiewicz integral, introduced by Marcinkiewicz [19] on
the one-dimensional Euclidean space R and by Stein [24] on the higher-dimensional
Euclidean space R", plays an important role in harmonic analysis and PDE. In the
classical Euclidean space equipped with the Lebesgue measure, there are lots of pa-
pers focus on the boundedness of the Marcinkiewicz integral operator on varieties of
function spaces; see, for example, [34, 31, 8, 18] and the references therein.

On the other hand, many theories of harmonic analysis on the classical Euclidean
spaces have been generalized into the metric measure spaces. One of them is the
space of homogeneous type in the sense of Coifman and Weiss [6, 7], that is, a met-
ric space (2", d) equipped with a non-negative measure y satisfying the following
measure doubling condition: there exists a positive constant C( n) such that, for all balls
B(x,r):={ye Z :d(x,y) <r} withx € 2 and r € (0, o),

.LL(B(X7 27‘)) SC(,u).u(B(x’ r)) (1.1)

Another generalized setting is the metric measure space with non-doubling measure.
To be precise, if 1 is a non-negative Radon measure on R" satisfying the polynomial
growth condition that there exist some positive constants Cy and x € (0, n] such that,
forall x € R” and r € (0, o),

u(B(x,r)) < Cor*, (1.2)
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then it may not satisfy the doubling condition (1.1). The analysis on such non-doubling
context has proved to play a striking role in solving the long-standing open Vitushkin’s
conjecture and Painlevé’s problem; see [29, 30]. Moreover, many classical results con-
cerning the usual operators (such as the Calderén-Zygmund operators) and function
spaces have been proved still valid for this setting; see, for example, [20, 27, 28, 29, 21,
22,23, 5,4, 12, 32] and the references therein.

However, the measure ¢ as in (1.2) is different from, not general than the doubling
measure as in (1.1); see Hytonen [13]. In [13], Hytonen introduced a new class of met-
ric measure spaces, which include both spaces of homogeneous type and metric spaces
with non-doubling measures as special cases. These new metric measure spaces are
assumed to satisfy both the so-called upper doubling condition and the geometrically
doubling condition (see, respectively, Definitions 1.1 and 1.2 below) and are called as
non-homogeneous metric measure spaces. In this new setting, Lin and Yang [17] estab-
lished the equivalent boundedness of Marcinkiewicz integral operators. Recently, Fu
et al. [9] introduced the Hardy spaces H?” and obtained the boundedness of Calderdén-
Zygmund operators on these spaces. More research on function spaces and the bound-
edness of various operators in this setting can be found in [14, 15, 10, 26, 25, 2, 3] and
the references therein. We refer the reader to the monograph [33] for more develop-
ments on harmonic analysis in this new context.

In this paper, we establish the boundedness of the Marcinkiewicz integral operator
on the Hardy space H” over non-homogeneous metric measure spaces.

In order to state our main results, we first recall the following notion of upper
doubling metric measure spaces originally introduced by Hytonen [13].

DEFINITION 1.1. A metric measure space (2, d, i) is said to be upper doubling
if u is a Borel measure on 2" and there exist a dominating function A : 2~ x (0, o0) —
(0, o) and a positive constant C(»)» depending on A, such that, foreach x € 27, r —
A(x, r) is non-decreasing and, for all x € 2" and r € (0, «),

p(B(x, 7)) < A(x, r) < CpyA(x, r/2). (1.3)

REMARK 1.1. (i) If we take A (x, r) := u(B(x, r)) forall x € 2" and r € (0, o),
then the upper doubling space goes back to the space of homogeneous type. Moreover,
let (2°,d, u)=(R" ||, u) with u be as in (1.2). By taking A(x, r) := Cor* for all
x€R" and r € (0, =), we see that it is also an upper doubling space.

(ii) Hytonen et al. in [16] proved that there exists another dominating function 4
such that A < A, C@) < C(p) and, forall x,y € 2 with d(x,y) <r,

I(x, r) < C(z)z(y, r). (1.4)

Based on this, in the whole paper, we always assume that A satisfies (1.4).

The following notion of geometrically doubling can be found in [6, pp. 66—67]
and is also known as metrically doubling (see [11, p. 81]). It should be pointed out
that Coifman and Weiss in [0, pp. 66—68] proved that spaces of homogeneous type are
geometrically doubling.
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DEFINITION 1.2. A metric space (£, d) is said to be geometrically doubling if
there exists some No € N:={1, 2, ...} such that, for any ball B(x, r) C 2" withxe€ 2~
and r € (0, o), there exists a finite ball covering {B(x;, 7/2)}; of B(x, ) such that the
cardinality of this covering is at most N .

Now we recall the definition of the discrete coefficient [?ép ;’p first introduced by

Bui and Duong [1] when p = 1. Before this we first give an assumption that, for any
two balls B,S C 2", if B=S, then cp = cs and rp = rg, here and hereafter, for any

ball B, we denote its center and radius, respectively, by cp and rp; see [11, pp. 1-2].

This shows that if B C S, then rp < 2rg, which guarantees that the definition of I?ép S)’p

makes sense; see [9, pp. 314-315] for the details.

DEFINITION 1.3. Forany p € (1, ), p € (0, 1] and any two balls BC S C 2,
let

NG Ip
{ K(p*B) r
2 LA (cB, p*rs) ’

here and hereafter, for any a € R, |a] represents the biggest integer which is not bigger

(p)
than a, and Nz(;l.) ; is the smallest integer satisfying pNBﬂS rp>Trs.

REMARK 1.2. (i) Obviously,

1/p
Ng?;Jr [log, 2]+1

~ k p
L R e W

k=1 CB;PkrB

(ii) Hytonen in [13] introduced the following coefficient Kp 5, which can be seen

as a continuous version of the I?l(f ;’p when p = 1: forany two balls BC S C 2,

1
Kgs:=1+ ) du(x). (1.5)

@s\B A(cp, d(x, cp

On (R", ||, u) with u asin (1.2), Kg s ~ Eg’)’l,but Kp s and Eg);’l are usually not
equivalent on non-homogeneous metric measure spaces; see [10] for the details.

DEFINITION 1.4. Let p € (1,00), 0 < p< 1< g< oo, p#g,and Y€ [1,00). A
function b in L?(u) when p € (0, 1) andin L' (1) when p=1iscalleda (p, g, 7, p) -
atomic block if

(i) there exists a ball B such that supp(b) C B;

(i) [ b(x)dp(x) = 0:

(iii) forany j € {1, 2}, there exist a function a; supported on a ball B; C B and
anumber A; € C such that b = A1a; + Aras and
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1] oy < [ (PB) T [A (e, o)) P[RS

Js
I} t b P47 = A’ + A’ .
VIOI'COVGI' le ‘ |H’[ ‘, ( ) | 1| | 2|

A function f is said to belong to the space ]ﬁlgtbq py( w) if there exists a sequence of

(P, q, v, p)a -atomic blocks, {b;}3 |, such that f =¥ b; in L?(u) when p € (0, 1)
andin L'(u) when p =1, and

bill, 0y, < oo
ZI‘ "Hzﬁif;](ﬂ)

Moreover, define

- I/p
=pay,,y i=inf bi|? ,
I [2 | "His?;,y(“’]
where the infimum is taken over all possible decompositions of f as above.

The atomic Hardy space Iflgi)ql’)y(u) is then defined as the completion of I-ngif;)y( )

with respect to the p-quasi-norm |- [|2,,, .
Hmb‘p (1)

DEFINITION 1.5. Let p € (I,), 0 < p <1< g<eo, p#¢q, Y€ [l,00) and
€ € (0,0). A function b in L?>(u) when p € (0, 1) andin L' (1) when p = 1 is called
a(p,q,7, € p)y-molecular block if

(i) [ b(x)du(x) =0;

(ii) there exist some ball B := B(cg, rg), with cg € 2" and rg € (0, =), and some
constants M, M € N such that, for all k € Z, and j € {l,---, M} with My =M
if k=0 and My =M if k € N, there exist functions my_; supported on some balls
By ; C Uk(B) forall k € Z. , where Up(B) := p?B and Uy(B) := p**?B\ p*~2B with
k€N, and A € C such that b = ¥ 1% A jmy. ; in L*(u) when p € (0, 1) and
in L'(u) when p=1,

el oy < P L PBr IV e, 2r) | PR T (L6)

and
w M,
bl = A i|P < oo
bligg e = 2 X el <=

A function f is said to belong to the space Iﬁl’;ﬁ ’g €

of (p,q, 7, €, p)y-molecular blocks, {b;}7 |, such that f =37 ,b; in L?>(u) when
p€(0,1)andin L'(u) when p =1, and

(u) if there exists a sequence

=

2 ‘bi|pﬁp‘4~7~5(”) < oo,

i=1 mb, p
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Moreover, define

= 1/p
. S R4
Pl e 2= nt [21 b"ﬁf;i;{ﬁm] ’

where the infimum is taken over all possible decompositions of f* as above.
The molecular Hardy space Hlf]if_’by’g(u) is then defined as the completion of

]ﬁpﬂ,%s

mb.p (H) with respect to the p-quasi-norm \\-\\%p#%g
mb, p

(w°

REMARK 1.3. (i) When p = 1, the atomic Hardy space I-Ialt’bq’py(u) and the molec-

ular Hardy space ﬁ;{f’py’g(u) were introduced by Fu et al. [10]. It was proved in [10]

that H;&;{g(u) = Hé{g g’s(u) and they are independent of the choices of p, ¢, ¥ and

€. Thus, in what follows, we denote ITI;t’b?’py(u) simply by H'(11).

(ii) When p € (0, 1), it is unclear whether the atomic Hardy space ﬁiﬁ,;qby(u) and

the molecular Hardy space ﬁlf]if_’by’g(u) are independent of the choices of p, g, ¥ and

. Moreover, H”:"Y(u) ¢ H”;*7*(11) in the sense that there exists a map T from

atb, p mb, p
HE V() to HYh (1) such that, for any f € Hly"Y(1t), there is a unique element

7z ryP-4,7:€ 1 1 — 7z 7 .
f € HII;b[{p (ou“) Satlelelg T(f) - f and Hf”ﬁ‘gbqpys(“) 5 Hf”ﬁ;bqpy(“) ; see [9]

Let K be a locally integrable function on (2" x 2 )\{(x,x): x € Z'}). Assume
that there exists a positive constant C such that, for all x, y € 2~ with x # y,

dix,y) |
A(x,d(x,y))’

and there exist positive constants 6 € (0, 1] and ¢k, depending on K, such that, for
all x,x,y € 2 with d(x,y) > cx)d(x, X),

[K(x,y)| <C (1.7)

[d(x, D)]°[d(x, )] °
Alx,d(x,y))

The Marcinkiewicz integral operator .# with kernel K satisfying (1.7) and (1.8) is
defined by setting, forall x € 2",

M (f) () = [ |

K (x, ) — KX, )|+ [K(y, x) = K(y,X)| <C (1.8)

5 112
dt] . (1.9)

5

| Ko
d(x,y)<t

REMARK 1.4. (i) In the classical Euclidean space R", where A (x, r) := Cr", let
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with Q being homogeneous of degree zero and Q € Lip,, (S"~!) for some « € (0, 1],
then K satisfies (1.7) and (1.8), and .Z (f) in (1.9) is just the Marcinkiewicz integral
introduced by Stein [24].

(i) If K satisfies (1.8), then it also satisfies the following Hormander type condi-
tion that there exists a positive constant C such that, for all y, y’ € 2",

[|K(x, y) = K(x, )|+ K (y, x) = K(Y, %)]] du(x) <C. (1.10)

/d(x,y)>2d(y,y’) d(x,y)
The Marcinkiewicz integral .# (f) associated to K satisfying (1.7) and (1.10) is just
the Marcinkiewicz integral on non-homogeneous metric measure spaces in [17].

In what follows, let v := log, C(;L) and & be as in (1.8). The main results of this
paper are stated as follows.

THEOREM 1.1. Let p € (1, ), <p<l<g<e, e>max{1,8}

v+ min{ Alf, o}
and y € [1,00). Assume that the Marcinkiewicz integral operator ./ , defined by (1.9),
associated with kernel K satisfying (1.7) and (1.8) is bounded on Lz([.t). Then A is

bounded from ﬁf;bqpys(u) into LP ().

THEOREM 1.2. Let p € (1, ) p<l<qg<ooandy€|l,eo).

, —————— <
v+min{}, 8}
Assume that the Marcinkiewicz integral operator # , defined by (1.9), associated with
kernel K satisfying (1.7) and (1.8) is bounded on Lz([.t). Then A is bounded from

HE Y (w) into L7 (u).

The paper is organized as follows. In Section 2, our major job is to establish the
boundedness criteria of the operator T on the Hardy spaces Hiﬁ,’fby(u) and Hg;jb“( )
with the assumption that T is sublinear when p = 1 and is non-negative sublinear when

p € (0, 1) (see Theorems 2.1 and 2.2 below). Section 3 is devoted to proving Theorems

1.1 and 1.2. To this end, we first recall the properties of the discrete coefficient [}ép ;’p

and show the boundedness of .#Z from the Hardy space H' (1) to the Lebesgue space
L'(u) (see Lemma 3.2 below), and then we prove Theorem 1.1 by using some ideas
from [9, Theorem 4.8] with much more complicated demonstrations. Theorem 1.2 can
be seen as a corollary of Theorem 1.1.

Throughout this paper, C denotes a positive constant that is independent of the
main parameters, but whose value may vary from line to line. We denote by C(y) a
positive constant depending on the parameter ¢. The expression ¥ < Z means that
there exists a positive constant C such that ¥ < CZ. The expression A ~ B means that
A <B<A.Givenany q € (0, ), its conjugate index is denoted by ¢’ :=q/(¢—1).
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2. Boundedness criteria

THEOREM 2.1. Let p,q € (1,), v € [l,00) and T be a sublinear operator
bounded from L'(u) to L“=(u). If there exists a positive constant C such that, for
all (1,q, Y, p)a -atomic blocks b,

ITBllL1 () < Clbl g1y

Ty 2D

then T is extended to be a bounded sublinear operator from H' (1) to L' (1).

Proof. The argument is almost the same as the one used in the proof of [32, The-

orem 1.13]. We will repeat it for the sake of completeness. Let f € H, dltbq py(u) and

f =37 ,bi, where, foreach i € N, b; isa (1,q,7,p), -atomic block. By the bounded-
ness of T from L!(u) to L(u), we have that, for any € > 0,

. - : 1 <
WA <{ ! <i=§'+1bi> I 8}> 51\1/13305 2 1Bl =0

i=N+1
This, via the Riesz theorem, shows that there exists a subsequence {T(X/, b;)}; of
{T(3!_,bi)}; such that, for p-a.e. x€ 2,

‘k71 oo
T (JEi bi> (x)|+|T (2 bi> (x)
i= i=jik

T (i bi) (x)

By the sublinearity of 7', we have that, for p-a.e. x€ 27, |T(f)(x)] <X [T (bi)(x)],
which together with (2.1), implies that

T <

~ TG

oo

1T ()2 ) 2 bi)ll L) <;|bi|gjﬂg(“)

From this, we conclude that T'(f) € L' (u) and 1T ()2 < ||fHﬁ1(“), which com-
plete the proof of Theorem 2.1. [J

THEOREM 2.2. Let p € (1,00), 0 < p <1< g< oo, Y€ I, ) and € € (0,0).
Let T be a non-negative sublinear operator. Assume that T is bounded on L*(1).

(i) If there exists a positive constant C such that, for all (p, q, v, €, p), -molecular
blocks b,

1T (B)lze(u) < C|b\§§‘~b¢v‘s( (2.2)

Nk

then T is extended to be a bounded operator from Hr’:lbq py f(u) 1o LP(u).
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(ii) If there exists a positive constant C such that, for all (p,q, Y, p), -atomic
blocks b,

1T ()| e u <C|b\HMV (2.3)

(1)’

then T is extended to be a bounded operator from Hgbqpy([.t) to LP(u).

Proof. To prove (i), we first claim that, for any f € HP: 4T £(u) with p € (0,1),

mb, p
1T S W 1Gpare -

mb, p

In fact, for any f € ]ﬁlﬁl’g’g’g(u) with p € (0, 1), there exists a sequence {b;};cny of

(p, q, 7, & p)s -molecular blocks such that f = ¥ b; in L?>(u) and

2| T

atb, p mb, p "1)

By the fact that T is a non-negative sublinear operator and is bounded on L?(u), we

see that, forany N € N,
N
T bi—f
i=1

((2)-

> bi—f
which further implies that, for all € (0,00),

i1
N
u ({ T (21171') (x) = T(f)(x)

From the Riesz theorem, we conclude that there exists a subsequence {T(Zﬁ\l 1 bi) }ie of
{T( ?lei)}N such that, for u-a.e. x € 2,

T(f)(x)=1lmT (Zb)

L2(u) L2(u)

<

~

—0
L2(n)

as N — oo,

)

>n}>—>0, as N — co. 2.4)

k—o0 =

which, together with the sublinearity of T, the assumption that p € (0, 1), the Fatou
lemma and (2.2), implies that

mb, p

Ny P Ne
1Ty = [[Jim T (zbl) < [ timsup 37 (b)) da ()
i=1 1P (n) o ke =1
llgglfz‘/ x)|Pdu(x) < hmmfZ\b ‘Hlf‘qpys(“)
§2|b |HP‘175 ||fHHP‘]78(
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This finishes the proof of our claim. By a standard density argument, we extend 7' to be
a bounded sublinear integral from Hlflif;)y’g(u) into L?(u), which completes the proof
of (D). ’

An argument similar to that used in the proof of (i) leads to (ii), which completes
the proof of Theorem 2.2. [

3. Proof of Theorems 1.1 and 1.2

To prove Theorems 1.1 and 1.2, we first recall the following useful properties of

IZ;’? S)’p proved in [9].

LEMMA 3.1. Let p € (0,1] and p € (1, ).
(i) For all balls BC R C S,

KSR < Cop KLYV, [REY) <o po) [KSEY)P

and
K571 < KT + €l (RS

where C(,) is a positive constant depending on p, c(, p vy and E(p%v) are positive
constants depending on p, p and V.

(ii) Let o € [1, ). For all balls B C S with rg < arg, [I?éps)’p]p < Clg,p), Where
C(a,p) Is a positive constant depending on o and p.

Recall that when p = 1, the Hardy spaces Iflitg’py(u) and ﬁé{lf_g’g(u) coincide
and are simply denoted by H' (1). By Theorem 2.1 and an argument similar to that
used in the proof Qf [17, Theorem 2.3], we obtain the following boundedness of .# on
the Hardy space H'!(u) and the Lebesgue space LP(u) with p € [1, ). We omit the
details here.

LEMMA 3.2. Let K satisfy (1.7) and (1.8), and A be as in (1.9). If A is
bounded on L*(u), then .4 is bounded from L'(u) to L (u) and from H'(u) to
L' (u), and is bounded on LP (1) for all p € (1, ).

Now we prove Theorem 1.1.

Proof of Theorem 1.1. The case of p = 1 has been showed in Lemma 3.2. It re-
mains to be proved the case of p € (0, 1). Let p, p, ¢, ¥ and € be as in the assumptions
of Theorem 1.2. For the sake of simplicity, we take p =2 and y = 1. With some slight
modifications, the arguments here are still valid for general cases. By Theorem 2.2(i),
we only need to show that, for all (p, ¢, 1, €, 2); -molecular blocks b,

H//f(b)”Ll’(u) S |b‘ﬁ£i;"21‘5( 3.1

u°

Now let b=737" 21;/1:"1 M, jmi,j bea (p,q, 1, €,2); —molecular block, where, for any
keZy and je{l,---, My}, supp (my j) C Bi j C Ui(B) for some balls B and By ; as
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in Definition 1.5. Without loss of generality, we may assume that M = M in Definition
1.5. Let £* :=min{¢—5, | £|}. Since .# is sublinear, we have

p
dp(x)

< M
(Z D lk,ﬂ”k.,j) (x)

k=0 j=1

+4 M
( Z lk,j’”k,j) (x)

k=0*+1j=1

RACTARED
P
dp(x)

+Z/

P
dp(x)

3 | (;z ak,,-mk,,) ()

2/ ()" du()
Uy(B
= I+1I+1I+1V.

We first estimate III. For x € Uy(B) and y € By ; C Ux(B) with k > (+5, we
have

) 1 1 1
d(x, CB) < 2k+2r3 = 5 <Z‘ﬂ’+3r3> S E <2k72r3> S E

which further implies that d(x, y) ~ d(y, cg). It then follows from (1.4) that

d(y7 CB)7 (32)

Alx,d(x,y)) ~A(x,d(y, cg)) = A(x,d(x, cg)) ~ A(cp, d(x, cg)).

From this, together with Minkowski’s inequality, (1.7), Holder’s inequality, (1.3) and
(1.6), we deduce that

I = / /m
2 Uy(B) |J0

2
dt
Izl

oo

M
/ 2 D Ay (0K (x y)du(y)
d(x,y)

W< f=0+5 j=1

oo 1 P

35S, |/ Km0 aut)| dut
)y
i+

M Imy,j ()] g
>t s, md“(”] e

dp(x)

(=5k=(+5 j=1
oo oo M /

2 / o B, 174 Mz
gk%—ijz{l‘ rilf Al(cp, d(x, cp)]P R ) (B )] Hmk?JHLq(”)
oo =) M 142

< .pM Npld P
Nggk:%”:zl\lk,ﬂ [1(0372/,‘—2,,3)}17[“(31@/)} Hmk~,1|‘Lq(u)
oo oo M
S Y D) (B )
(=5k=(+5 j=1

% 2_k8p[ll(23k,j)]_p/ql (A(cs, 2k+2r3)}p_1
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© o M M o k=5

SY X XGPS Y Y X2
(=5k=1+5 j=1 j=1k=10(=5
M o © M

SDIDNC RSNV L
J=1k=10 k=0 j=1 b W)

To estimate the term I, write

p¥* 2 17/2
X CB 2[ +2rB dl
IS Z/ / / Z Z/lk (K (x)duy)| 5| du(x)
d(x7)’)<fk 0j= t
2 (P2
y dt
- / / A jm K(x,y)d —| dux
/J:Z‘S Ug(B) |Jd(x,cp)+2""+2rp (Xy)<tkz{)jz’ b 0 Jdp(y) /3 w(x)

=1 +1.

Similar to (3.2), if x € Uy(B) and y € By ; C Ux(B) with 0 < k < ¢*, we then have
d(y, cg) < 3d(x, cg), which implies that

W

d(y7 CB) < d(x7 CB) < d(xay) < _d(xa CB)~ (3-3)

N =
NS}

This, together with a trivial computation, leads to that, for all x € Uy(B) and y € By ; C
Ur(B) with 0 <k < 07,

1 1 - 202y

[, ) [d(x, cp)+20+2rg)* |~ [d(x,cp)]

On the other hand, for p € ( 1) and & > max{}, 8}, we have v(1 —p)—

v
v+min{$,5}’
p/4<0and —ep—v(1—p) <0. From the above estimates, together with Minkowski’s
inequality, (1.7), (3.3), (1.4), Holder’s inequality, (1.6) and (1.3), we deduce that

o [*
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p
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p

o 0 M Z‘ﬂ’/er 1/2
SRS /Bkﬁj|mk,,-<y>|1<<x,y><ﬁ> an()| du(

(=5k=0j=1 (x, c5)

p

| m)ldu)
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2—p/4 J
o Tt e ey

o (Y M
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o (¥
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o (¥
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x 27keP [ (2B, ->]—p/q’w

o f*

<222Mk1‘pcf gL

(=5k=0 j=

o (¥

S 2 2 2 |Akj|p2
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1
u(B) [A(cp, 2=2rp)]P

( +ZB)

A (B ) [

[ (By )P
2k+2r3)}p—1

kspz Ip/4

p)—p/4]ty[—ep—v(1-p)lk

o M
,SZZMkJ‘p ‘b|Hpqle('u)

k=0 j=1

To estimate I, , write

L /
5223 Uy(B)

x [K(x,y)

+Z/

X

Now we deal with the term I ;. Notice that, for p € (

v(l—p)—

/d()@ ep)+28 2rp

~K(xen)ldn () G

/ch 420 42

[l(x,y)<t kz()j

=1+,

oM
3> A jmi ()

d(x,y)<t =0 j=1

p/2
dp(x)

M
2 Ak, jmic j(v)K (x, cg)dp(y)

v
v+min{},8}’

equality, (1.8), (1.4), (3.3), Holder’s inequality, (1.6) and (1.3), that

o (*

121<222W1|p/

(=5k=0 j=

o (*

<222Mk1‘p/
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du(y)

o) | [ e lant)|

A(cp, d(x, cg))]P

|mk,j<y>\mdu<y>

2o

1) and & > max{%, 8},
0p<0and 6p—¢ep—v(l—p)<0. It then follows from Minkowski’s in-

P
dp(x)

14
dp(x)
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2 (k=0)8p
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Then we turn to estimate I . If we fix x € Uy(B), then, for all y € By ; C Ux(B)
with 0 < k < /*, we have

d(x,y) <d(x,cp)+d(y,c) <d(x,cp)+2" rp

From this, together with the vanishing moment of b, Minkowski’s inequality, (1.7),
(1.4), Holder’s inequality, (1.6) and (1.3), we deduce that
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oo oo M 142
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which, together with the estimates for I; and I, 1, implies that I < [b]2 [IRAROE
mb,2
Now we estimate II. Write

o (+4 M

LEDNDIDNATL /2 [t )9

(=5k=0*+1 j:
(44

P2

=5k=0*+1 j=
=:1I; +1I,.

[ i)

By Lemma 3.1, we see that .# is bounded on L(u), which, together with Holder’s
inequality, (1.6) and (1.3), implies that

o (+4 M
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To estimate II,, we notice that, for x ¢ 2Byj and y € By ;,

1
Ed(x, CBy ;)

On the other hand, from Lemma 3.1, we deduce that, forall k € N,

Z(2).p P =(2).p p
|:KBk~j,22k+lB:| 5 k |:KBk.j72k+zBi| .

d(x,y) > d(x,cp, ;) —d(y,cp, ) >
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The above estimates, together with Minkowski’s inequality, (1.7), (1.4), (1.3), Holder’s
inequality and (1.6), show that

o & * 2 4 p/2
s Egk ;H,Zl//(zz )\2By. l/o /‘1()57}’) K(x,y)my j(y)du(y) t—3] du(x)
o (44 1 ,
S /Z*HJZM,P/ \23,”[/ Km0 y)dy(y)} ()

+4 M

. 1 )
SE X Sl G a0

(=5k="+1j=1

o (+4 M 1 »
S 2 2 2 )Lk’jp/zmax{k+5,2k+2}3\23k>j M’(CB/@]? d(x, CBkﬁj))}Pdu(x) Hmk’jHLl(IJ)

(=5k="+1j=1

)
NBk ,‘zmax{k+5.2k+l}3+l

oo (+4 s i+1
W(2™ By ;)
A{ p _ 3 J
N%k /E*‘HJZ‘ kj‘ Hmk /H Zé [A‘(CBk,j’erBk‘j)]p

+4 M

S X 2l el

(=5k="+1j=1

©)
N +2
x | <2 Bkr.,_rzmax{k+5.2k+l}3 Bk’j>

o (+4 M

ST X Xl el e (B )

(=5k=0"+1 j=1

Lu (Zmax{k+9 2k+5}3)}1 p |:K(2) P :|P

By pmax{k+5,2k+1} g

l—p

P
K@r
Bk‘j72max{k+5‘2k+l}3

o (+4 M

’ ~ P
S S <2 2B )] P e 2 R

(=5k=0"+1 j=1

p
/ X 2
X LLL (Bk,j)}p/q [.LL (2ma (k9. 2k+5}B)}1 b |:Kl(3k)1 pmax{k+5, 2k+1}3]
o (+4 M
2 S EkC Plpkep g, P
=5k=0*+1 j=

oo max{k+4,2k} M

52 2 Ekz[v )mErl 4y 1P
<5 e

k=0 j= kOJ

‘b| pqle(u)

where, in the second to the last inequality, we use the fact that, for p € (m, 1)
I

and € >max{%, o0}, v(1—p)—ep<0.
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Combining the estimates for I} and II,, we conclude that 1T < |b|2 [ITARE
mb,2 (M

Finally, we deal with IV. We further write

/+4 M P
/ > A me () || du)
k=0 j=1
M p
/ >3 A )| du)
k=(+5 j=1
= 1\/1 1V,

By some arguments similar to that used in the estimates for II and III, we respectively

obtain IV| < |b\ and IV, < |p|2 . We omit the details here.

pqzle(u) pqlsﬂ

(1)
mb 2
Combining the estimates for I to IV, we obtain the desired estimate (3.1), which

completes the proof of Theorem 1.1. [

Proof of Theorem 1.2. Let p, p,q and y be as in assumptions of Theorem 1.2.

For the sake of simplicity, we take p =2 and y= 1. By Theorem 2.2(ii), it suffices to
show that, for any (p, ¢, 1, 2), -atomic block b,

HTbHLI’(u) S |b‘ﬁ£if‘zl(ﬂ)’

which is an easy consequence of the facts that b is also a (p, ¢, 1, €, 2)-molecular
block and |b|p.qre,  S|blspat, , (see[9, (4.3)]), together with (3.1). We then finish
Hypy () ~ P (1)

the proof of Theorem 1.2. [
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