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OPTIMAL BOUNDS FOR THE FIRST SEIFFERT MEAN

IN TERMS OF THE CONVEX COMBINATION OF

THE LOGARITHMIC AND NEUMAN–SÁNDOR MEAN

JIAN-JUN LEI, JING-JING CHEN AND BO-YONG LONG

(Communicated by E. Neuman)

Abstract. In this paper, we find the least value α and the greatest value β such that the double
inequality

αL(a,b)+(1−α)M(a,b) < P(a,b) < βL(a,b)+(1−β)M(a,b)

holds for all a,b > 0 with a �= b , where L(a,b),M(a,b) and P(a,b) are the logarithmic, the
Neuman-Sándor, and the first Seiffert means of two positive numbers a and b , respectively.

1. Introduction

For a,b > 0 with a �= b , the Neuman-Sándormean M(a,b) , the first Seiffert mean
P(a,b) , and the logarithmic mean L(a,b) are defined by

M(a,b) =
a−b

2sinh−1((a−b)/(a+b))
, (1.1)

P(a,b) =
a−b

4tan−1(
√

a/b)−π
,

L(a,b) =
b−a

logb− loga
,

respectively. It can be observed that the first Seiffert mean P(a,b) and the logarithmic
mean can be rewritten as (see as [12])

P(a,b) = a−b
2sin−1((a−b)/(a+b))

, (1.2)

L(a,b) = a−b
2 tanh−1((a−b)/(a+b))

, (1.3)

where sinh−1(x)= log(x+
√

x2 +1) , tanh−1(x)= 1
2 log[(1−x)/(1+x)] and sin−1(x)=

arcsinx are the inverse hyperbolic sine, inverse hyperbolic tangent and inverse sine
functions, respectively.
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Recently, the means L , M , and P and other means have been the subject of in-
tensive research. Many remarkable inequalities for means can be found in the literature
[2, 4, 6, 10, 15-18].

Let H(a,b)= 2ab/(a+b) , G(a,b)=
√

ab , I(a,b)= 1/e(bb/aa)1/(b−a) , A(a,b)=
(a+b)/2, S(a,b) =

√
(a2 +b2)/2, T (a,b) = (a−b)/[2tan−1((a−b)/(a+b))] and

Mp(a,b) =

{
( ap+bp

2 )1/p, p �= 0,
√

ab, p = 0

denote the harmonic, geometric, identric, arithmetic, root-square, second Seiffert and
the p -th power means of two positive numbers a and b with a �= b respectively. Then
it is well-known that the inequalities

H(a,b) < G(a,b) < L(a,b) < P(a,b) < I(a,b) < A(a,b) < M(a,b) < T (a,b) < S(a,b)

hold for a,b > 0 with a �= b .
Neuman and Sándor [12, 13] proved that inequalities

π
4log(1+

√
2)

T (a,b) < M(a,b) <
A(a,b)

log(1+
√

2)
,

π
4sinh−1(1)

T (a,b) < M(a,b) <
π

2sinh−1(1)
P(a,b),

√
A(a,b)T (a,b) < M(a,b) <

√
A2(a,b)+T2(a,b),

G(x,y)
G(1− x,1− y)

<
L(x,y)

L(1− x,1− y)
<

P(x,y)
P(1− x,1− y)

<
A(x,y)

A(1− x,1− y)
<

M(x,y)
M(1− x,1− y)

<
T (x,y)

T (1− x,1− y)

hold for all a,b > 0 and x,y ∈ (0,1/2] with a �= b and x �= y .
The following bounds for the Seiffert means P(a,b) and T (a,b) in terms of the

power mean were presented by Jagers in [8]

M 1
2
(a,b) < P(a,b) < M 2

3
(a,b)

for all a,b > 0 with a �= b . Hästö [7] improved the results of [8] and found the sharp
lower power mean bound for the Seiffert mean P(a,b) as follows

P(a,b) > M log2
logπ

(a,b)

for all a,b > 0 with a �= b .
In [1], Alzer and Qiu proved

Mc(a,b) � 1
2
L(a,b)+

1
2
I(a,b)
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for all a,b > 0 with the best possible parameter c = log2
1+log2 ,

[G(a,b)]A(a,b) < [L(a,b)]I(a,b) < [A(a,b)]G(a,b)

for a,b � e , and

[A(a,b)]G(a,b) < [I(a,b)]L(a,b) < [G(a,b)]A(a,b)

for 0 < a , b < e .

In [11] and [9], the authors proved that the double inequalities

Sα1(a,b)A1−α1(a,b) < M(a,b) < Sβ1(a,b)A1−β1(a,b),

α2A(a,b)+ (1−α2)G(a,b) < P(a,b) < β2A(a,b)+ (1−β2)G(a,b)

hold for all a,b > 0 with a �= b if and only if α1 � 1/3, β1 � 2(log(2 +
√

2)−
log3)/ log2, α2 � π/2, β2 � 2/3, respectively.

In [5], it was shown that

Hα3(a,b)L1−α3(a,b) � M 1−4α3
3

(a,b),

Hβ3(a,b)L1−β3(a,b) � M 1−4β3
3

(a,b)

hold for all a,b > 0 with a �= b if and only if α3 ∈ [ 1
4 ,1) , β3 ∈ (0, 3

√
5−5
40 ] .

In [14], the authors proved that

α4H(a,b)+ (1−α4)L(a,b) > M 1−4α4
3

(a,b),

β4H(a,b)+ (1−β4)L(a,b) < M 1−4β4
3

(a,b)

hold for all a,b > 0 with a �= b if and only if α4 ∈ [ 1
4 ,1) , β4 ∈ (0,3

√
345/80−11/16) .

The aim of this paper is to find the least value α and the greatest value β such
that the double inequality

αL(a,b)+ (1−α)M(a,b) < P(a,b) < βL(a,b)+ (1−β )M(a,b)

holds for all a,b > 0 with a �= b .
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2. Lemmas

To establish our main result, we need several lemmas, which we present in this
section.

LEMMA 2.1. It holds that

x+
2−β
6β

x3 +
36β 2−49a+40

360β 2 x5 > tanh−1 x, x ∈ (0,0.93), (2.1)

x+
1
3
x3 +

1
5
x5 < tanh−1 x, x ∈ (0,0.52), (2.2)

x2+
97
720

x6− 1
96

x8+
9

1600
x10 <

(
x−1

3
x3+

3
160

x5
)

tanh−1 x, x ∈ (0.52,0.72), (2.3)

where β = 1− 2
π sinh−1(1) ≈ 0.4389 .

Proof. Let

f (x) = tanh−1(x)−
(
x+

2−β
6β

x3 +
36β 2−49β +40

360β 2 x5
)
.

Then we can get

f ′(x) =
1

1− x2 −
(
1+

2−β
2β

x2 +
36β 2−49β +40

72β 2 x4
)

=
x2

1− x2 g(x), (2.4)

where

g(x) =
3β −2

2β
+

−72β 2 +121β −40
72β 2 x2 +

36β 2−49β +40
72β 2 x4.

It is easy to verify that there exist x0 ∈ (0,0.93) , x0 ≈ 0.8634, such that g(x) < 0 for
x ∈ (0,x0) , g(x0) = 0, and g(x) > 0 for x ∈ (x0,0.93) . Thus, equation (2.4) implies
that f (x) is decrease on (0,x0) and increase on (x0,0.93) . Therefore, f (x) < 0 for
x ∈ (0,0.93) follows from the fact that f (0) = 0, f (0.93) < 0 and the monotonicity of
f (x) . That means inequality (2.1) holds.

Observe that

tanh−1 x =
∞

∑
n=0

1
2n+1

x2n+1, −1 < x < 1.

So it is obvious that inequality (2.2) holds.
Let

h(x) =
(
x− 1

3
x3 +

3
160

x5
)

tanh−1 x−
(
x2 +

97
720

x6 − 1
96

x8 +
9

1600
x10

)
.
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Then direct computation leads to

h(x) =
(
x− 1

3
x3 +

3
160

x5
) ∞

∑
n=0

1
2n+1

x2n+1−
(
x2 +

97
720

x6 − 1
96

x8 +
9

1600
x10

)

= x6
(
− 13

480
+

13
140

x2 +
157
2548

x4− 1039
30240

x6 +
1

480
x8

)
+

(
x− 1

3
x3 +

3
160

x5
) ∞

∑
n=6

1
2n+1

x2n+1.

Noting that − 13
480 + 13

140x2 + 157
2548x4 − 1039

30240x6 + 1
480x8 > 0 and x− 1

3x3 + 3
160x5 > 0 for

x ∈ (0.52,0.72) , so h(x) > 0 for x ∈ (0.52,0.72) and the inequality (2.3) holds. �

LEMMA 2.2. The inequalities

x+
1
6
x3 +

3
40

x5 < sin−1 x, x ∈ (0,0.93), (2.5)

x+
1
6
x3 +

9
100

x5 > sin−1 x, x ∈ (0,0.52), (2.6)

x+
1
6
x3 +

9
80

x5 > sin−1 x, x ∈ (0.52,0.72) (2.7)

hold.

Proof. It is known that

sin−1 x = x+
∞

∑
n=1

(2n−1)!!
(2n)!!

x2n+1

2n+1
.

So it’s easy to see that inequality (2.5) holds.

Let hi(x) = fi(x)−g(x) , Fi(x)/x4 = ( f ′i (x)
g′(x) )

2−1, i = 1,2, where

f1(x) = x+
1
6
x3 +

9
100

x5,

f2(x) = x+
1
6
x3 +

9
80

x5,

and

g(x) = sin−1 x.

Then it follows that

f ′1(x) = 1+
1
2
x2 +

9
20

x4,

f ′2(x) = 1+
1
2
x2 +

9
16

x4,

g′(x) =
1√

1− x2
,
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and

F1(x) = − 81
400

x6 − 99
400

x4 − 7
10

x2 +
3
20

,

F2(x) = − 81
256

x6− 63
256

x4− 13
16

x2 +
3
8
.

It’s easy to see that there exists x1 ∈ (0,0.52) and x2 ∈ (0.52,0.72) , such that F1(x1) =
0, F2(x2) = 0, F1(x) and F2(x) are strictly decrease in (0,0.52) and (0.52,0.72) ,
respectively. Thus h1(x) and h2(x) are increase on (0,x1) and (0.52,x2) , respectively,
and decrease on (x1,0.52) and (x2,0.72) , respectively. Therefore, inequalities (2.6)
and (2.7) follow from the fact that h1(0)= 0, h1(0.52)> 0, h2(0.52)> 0, h2(0.72)> 0
and the monotonicity of h1(x) and h2(x) , respectively. �

LEMMA 2.3. It holds that

x− 1
6
x3 +

1
16

x5 < sinh−1 x, x ∈ (0,0.52), (2.8)

x− 1
6
x3 +

1
20

x5 < sinh−1 x, x ∈ (0.52,0.72), (2.9)

x− 1
6
x3 +

1
10

x5 > sinh−1 x, x ∈ (0,0.93). (2.10)

Proof. Let hi(x) = fi(x)−g(x) , Fi(x)/x4 = ( f ′i (x)
g′(x) )

2 −1, i = 1,2,3, where

f1(x) = x− 1
6
x3 +

1
16

x5,

f2(x) = x− 1
6
x3 +

1
20

x5,

f3(x) = x− 1
6
x3 +

1
10

x5,

g(x) = sinh−1(x).

Then direct computation lead to

f ′1(x) = 1− 1
2
x2 +

5
16

x4,

f ′2(x) = 1− 1
2
x2 +

1
4
x4,

f ′3(x) = 1− 1
2
x2 +

1
2
x4,

g′(x) =
1√

1+ x2
,



OPTIMAL BOUNDS FOR THE FIRST SEIFFERT MEAN 371

and

F1(x) =
25
256

x6 − 55
256

x4 +
9
16

x2− 1
8
,

F2(x) =
1
16

x6− 3
16

x4 +
1
2
x2 − 1

4
,

F3(x) =
1
4
x6 − 1

4
x4 +

3
4
x2 +

1
4
.

It can be verified that there exists x1 ∈ (0,0.52) such that F1(x) < 0 for x∈ (0,x1)
and F1(x) > 0 for x ∈ (x1,0.52) . So h1(x) is decrease on (0,x1) and increase on
(x1,0.52) . Therefore, inequality (2.8) follows from h1(0) = 0, h1(0.52) < 0 and the
monotonicity of h1(x) .

Observe that F2(x) < 0 and F3(x) > 0 for x ∈ (0.52,0.72) and x ∈ (0,0.93) ,
respectively. It imply that h2(x) and h3(x) are decrease on (0.52,0.72) and increase
on (0,0.93) , respectively. Furthermore, considering h2(0.52) < 0 and h3(0) = 0, one
has inequalities (2.9) and (2.10). �

LEMMA 2.4. Let

t(x) = (1−β )
√

1− x2 tanh−1 x+2(1−β )sin−1 x−2sinh−1 x.

Then t(x) > 0 for x ∈ (0.93,1) , where β = 1− 2
π sinh−1(1) .

Proof. Direct computation lead to that

t ′(x) =
φ(x)√
1− x4

, (2.11)

where
φ(x) = (1−β )

√
1+ x2(3− x tanh−1 x)−2

√
1− x2.

It follows that

φ ′(x) = − (1+ β )x2 tanh−1 x√
1+ x2

+(1−β )
√

1+ x2 α(x)+
x

1− x2 β (x), (2.12)

where

α(x) =
3x

(1+ x2)
− tanh−1 x,

β (x) = 2
√

1− x2− (1−β )
√

1+ x2.

Noting that α(0.93) < 0, β (0.93) < 0, and both

α ′(x) = 2
1−4x2 + x4

(1+ x2)2(1− x2)
< 0
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and

β ′(x) =
−2x[

√
1+ x2 +(1−β )

√
1− x2]√

1− x4
< 0

for x ∈ (0.93,1) , we can get both α(x) < 0 and β (x) < 0 for x ∈ (0.93,1) . Thus,
equation (2.12) implies that φ(x) is decrease on (0.93,1) . Considering that φ(0.93) >
0 and φ(1−) < 0, it is easy to see that there exist a point λ ∈ (0.93,1) , such that φ(x)
is increase on (0.93,λ ) and decrease on (λ ,1) . Equation (2.11) implies that φ(x)
and t(x) have same monotonicity on (0.93,1) . Therefore, t(x) > 0 for x ∈ (0.93,1)
follows from t(0.93) > 0, t(1−) = 0 and its monotonicity. �

LEMMA 2.5. For x ∈ (0.72,0.9) , the following inequalities hold:

1

sinh−1 x
< a1x+b1, (2.13)

2

tanh−1 x
<

9
2
x+

109
20

, (2.14)

3

sin−1 x
>

(9
2

+a1

)
x+

(109
20

+b1

)
, (2.15)

where a1 = 50
9 ( 1

sinh−1(0.9)
− 1

sinh1(0.72)
) and b1 = 5

sinh−1(0.72)
− 4

sinh−1(0.9)
.

Proof. Simple computation deduce that

( 1

sinh−1 x

)′′
=

2sinh−1 x+ x(sinh−1 x)2√
1+x2

(sinh−1 x)4(1+ x2)
> 0

for any x ∈ (0,1) . So 1/sinh−1 x is convex on (0.72,0.9) . Observe that the line
y = a1x+b1 intersects the curve y = 1/sinh−1 x at two points which abscissas are 0.72
and 0.9. Thus the geometric property of convex function deduce the inequality (2.13).

Let

f1(x) = tanh−1 x− 2
9
2x+ 109

20

,

f2(x) =
3

( 9
2 +a1)x+( 109

20 +b1)
− sin−1 x.

It follows that

f ′1(x) =
1

1− x2 +
9

( 9
2x+ 109

20 )2
> 0,

f ′2(x) = − 3( 9
2 +a1)

[( 9
2 +a1)x+( 109

20 +b1)]2
− 1√

1− x2
< 0.

Considering that f1(0.72) > 0 and f2(0.9) > 0, respectively, we can get inequalities
(2.14) and (2.15). �
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LEMMA 2.6. For x ∈ (0.9,1) , the following inequalities hold:

1

sinh−1 x
< a2x+b2, (2.16)

3

sin−1 x
> a3x+b3, (2.17)

2

tanh−1 x
< a4x+b4, (2.18)

where a2 = 10( 1
sinh−1(1)

− 1
sinh−1(0.9)

) , b2 = 10
sinh−1(0.9)

− 9
sinh−1(1)

, a3 = 30( 1
sin−1(1)

−
1

sin−1(0.9)
) , b3 = 30

sin−1(0.9)
− 27

sin−1(1)
, a4 = a3−a2 , b4 = b3−b2 .

Proof. The proof of inequality (2.16) is same as that of inequality (2.13).

Let g(x) = α(x)−β (x) and f (x) = (α ′(x)
β ′(x) )

2 −1, where

α(x) = sin−1 x,

β (x) =
3

a3x+b3
.

Then direct computation lead to

f (x) =
10a2

3x
2 +2a3b3x+b2

3−9a2
3

a2
3(1− x2)

.

Observe that 10a2
3x

2 + 2a3b3x + b2
3 − 9a2

3 is increase on (0.9,1) , f (0.9) < 0, and
f (1) > 0. Thus g(x) is decrease firstly and then increase on (0.9,1) . Furthermore,
it is clear that g(0.9) = g(1) = 0. Therefore, inequality (2.17) holds.

Let

h(x) = tanh−1 x− 2
a4x+b4

.

It follows that h(0.9) > 0 and

h′(x) =
1

1− x2 −
a4

(a4x+b4)2 =
(a2

4 +a4)x2 +2a4b4x+b2
4−a4

(1− x2)(a4x+b4)2 > 0.

Thus inequality (2.18) holds. �

LEMMA 2.7. Let

g(x) = [(1−β )sin−1 x− sinh−1 x] tanh−1 x,

where β = 1− 2
π sinh−1(1) . Then g(x) is increase on (0.93,1) .
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Proof. Direct computation deduce that

g′(x) =
( 1−β√

1− x2
− 1√

1+ x2

)
tanh−1 x+

(1−β )sin−1 x− sinh−1 x
1− x2 ,

g′′(x) =
( (1−β )x√

(1− x2)3
− x√

(1+ x2)3

)
tanh−1 x

+
2x

(1− x2)2 ((1−β )sin−1 x− sinh−1 x)

+
( 1−β√

1− x2
− 1√

1+ x2

) 2
1− x2

=
x[(1−β )

√
1− x2 tanh−1 x+2(1−β )sin−1 x−2sinh−1 x]

(1− x2)2

+
( 1−β√

1− x2
− 1√

1+ x2

) 2
1− x2 .

Observe that 1−β√
1−x2

− 1√
1+x2

> 0 for x ∈ (0.93,1) . Considering Lemma 2.4, we get

g′′(x) > 0 for x ∈ (0.93,1) . Noting g′(0.93) > 0, it is easy to see that g′(x) > 0 for
x ∈ (0.93,1) . �

3. Main result

THEOREM 3.1. The double inequality

αL(a,b)+ (1−α)M(a,b) < P(a,b) < βL(a,b)+ (1−β )M(a,b) (3.1)

holds for all a,b > 0 with a �= b if and only if α � 2
3 and β � 1− 2

π sinh−1(1) =
0.4389 . . ..

Proof. Because P(a,b) , M(a,b) and T (a,b) are symmetric and homogeneous of
degree 1, without loss of generality, we assume that a > b . Let p ∈ (0,1) , x = a−b

a+b ∈
(0,1) and λ = 1− 2

π sinh−1(1) . Then by (1.1), (1.2) and (1.3), direct computations
lead to

L(a,b)
A(a,b)

=
x

tanh−1 x
,

M(a,b)
A(a,b)

=
x

sinh−1 x
,

P(a,b)
A(a,b)

=
x

sin−1 x
.

Then

Dp(x) :=
pL(a,b)+ (1− p)M(a,b)−P(a,b)

A(a,b)

=
x

tanh−1 x
+(1− p)

x

sinh−1 x
− x

sin−1 x
. (3.2)
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From inequalities (2.2), (2.6) and (2.8), we can get

−3D 2
3
(x) =

3

sin−1 x
− 2

tanh−1 x
− 1

sinh−1 x

>
3

x+ 1
6x3 + 9

100x5
− 2

x+ 1
3x3 + 1

5x5
− 1

x− 1
6x3 + 1

16x5

=
31

1200 − 11
120x2 + 33

4000x4

(x+ 1
6x3 + 9

100x5)(x+ 1
3x3 + 1

5x5)(x− 1
6x3 + 1

16x5)
x6

> 0 (3.3)

for x ∈ (0,0.52) .
From inequalities (2.3), (2.7), and (2.9), we obtain

−3D 2
3
(x) =

3

sin−1 x
− 2

tanh−1 x
− 1

sinh−1 x

>
3

x+ 1
6x3 + 9

80x5
− 2

tanh−1 x
− 1

x− 1
6x3 + 1

20x5

=
(2x− 2

3x3 + 3
80x5) tanh−1 x− (x2 + 97

720x6 − 1
96x8 + 9

1600x10)

(x2 + 97
720x6 − 1

96x8 + 9
1600x10) tanh−1 x

> 0 (3.4)

for x ∈ (0.52,0.72) .
By Lemma 2.5, we get

−3D 2
3
(x) =

3

sin−1 x
− 2

tanh−1 x
− 1

sinh−1 x

>
(9

2
+a1

)
x+

109
20

+b1−
(9

2
x+

109
20

)
− (a1x+b1) = 0 (3.5)

for x ∈ (0.72,0.9) as well as Lemma 2.6 deduce that

−3D 2
3
(x) =

3

sin−1 x
− 2

tanh−1 x
− 1

sinh−1 x
> a3x+b3− [(a3−a2)x+b3−b2]− (a2x+b2) = 0. (3.6)

for x ∈ (0.9,1) .
Therefore, it follows from inequalities (3.3)–(3.6) that

2
3
L(a,b)+

1
3
M(a,b) < P(a,b) (3.7)

holds for all a,b > 0 with a �= b .
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From inequalities (2.1), (2.5), and (2.10), we have

Dλ (x) =
λ

tanh−1 x
+

1−λ
sinh−1 x

− 1

sin−1 x

>
λ

x+ 2−λ
6λ x3 + 36λ 249λ+40

360λ 2 x5
+

1−λ
x− 1

6x3 + 1
10x5

− 1

x+ 1
6x3 + 3

40x5

= x8
80−156λ+76λ 2

2160λ 2 + 111λ 2−71λ−40
14400λ 2 x2

(x+ 2−λ
6λ x3 + 36λ 249λ+40

360λ 2 x5)(x− 1
6x3 + 1

10x5)(x+ 1
6x3 + 3

40x5)
> 0 (3.8)

for x ∈ (0,0.93) .
Simple computation lead to

Dλ (x) =
F(x)

(tanh−1 x)(sinh−1 x)(sin−1 x)
, (3.9)

where

F(x) = λ sin−1 xsinh−1 x+[(1−λ )sin−1 x− sinh−1 x] tanh−1 x.

It is obvious that λ sin−1 xsinh−1 x is increase on (0.93,1). Considering Lemma 2.7, we
get that F(x) is increase on (0.93,1) . Noting that F(0.93) > 0. Thus equation (3.9)
implies that

Dλ (x) > 0 (3.10)

for x ∈ (0.93,1) .
Therefore, it follows from inequalities (3.8) and (3.10) that for x ∈ (0,1)

P(a,b) < βL(a,b)+ (1−β )M(a,b) (3.11)

holds for all a,b > 0 with a �= b .
Finally, by easy computations, equations(1.1), (1.2) and (1.3) lead to

P(a,b)−M(a,b)
L(a,b)−M(a,b)

=
x/sin−1(x)− x/sinh−1(x)
x/ tanh−1(x)− x/sinh−1(x)

, (3.12)

lim
x→0+

x/sin−1(x)− x/sinh−1(x)
x/ tanh−1(x)− x/sinh−1(x)

=
2
3
, (3.13)

lim
x→1−

x/sin−1(x)− x/sinh−1(x)
x/ tanh−1(x)− x/sinh−1(x)

= λ . (3.14)

Thus, we have the following claims.
Claims 1 . If α < 2

3 , then (3.12) and (3.13) imply that there exists σ ∈ (0,1) such
that αL(a,b)+ (1−α)M(a,b) > P(a,b) for all a,b with (a−b)/(a+b)∈ (0,σ) .

Claims 2 . If β > λ , then (3.12) and (3.14) imply that there exists ς ∈ (0,1) such
that βL(a,b)+(1−β )M(a,b) < P(a,b) for all a,b with (a−b)/(a+b) ∈ (1− ς ,1) .

Inequalities (3.7) and (3.11) in conjunction with the above two claims mean the
proof is completed. �
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