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TIME SCALE VERSIONS OF THE OSTROWSKI-GRUSS
TYPE INEQUALITY WITH A PARAMETER FUNCTION

EZE R. NWAEZE

(Communicated by A. C. Peterson)

Abstract. In this paper, we obtain two Ostrowski—Griiss type inequalities on time scales for
bounded differentiable mappings with a parameter function. Our result generalizes some known
results in this direction, for example, a result due to Ng6 and Liu [11]. In addition, we consider
the special cases where the time scale is chosen to be the set of real numbers and the set of
integers.

1. Introduction

In 1997, Dragomir and Wang [5] proved that if f: [a,b] — R is differentiable with
bounded derivative, then for all 7 € [a, D],

‘f(t)—bia/abf(s)ds—f(bl)]:i:(a) (t_cHz—b>

1
< Z(b—a)(l‘—y), ey

where v := inf,(y ) () and T := sup,c(, ;) f'(¢). The above inequality is known in
the literature as the Ostrowski—Griiss type inequality.

Ngb and Liu [11] proved the following Ostrowski—Griiss type inequality for time
scales (see Section 2 for definition) — which is a combination of both Griiss inequality
and Ostrowski inequality on time scales due to Bohner and Matthews [1, 2]. For more
results in this direction, see [0, 8, 9, 10, 7, 13, 12].

THEOREM 1. Let a,b,s,t € T with a <b and [ : [a,b] — R be differentiable. If
f2 is rd-continuous and y < f2(s) < T forall s € a,b], then we have

£ — — /abf"(s)As— f(b) ~ f(a) [hz (t,a)— h (t,b)] ‘

b—a (b—a)?

< F—)/ /h hZ(taa)_h2(tvb)
S 2(b—a)a b—a
where hy(t,s) is given in item (a) of Remark 1 and

_Js—a, sclap),
plst) = {s—b7 s € [t,b]. ©)

p(S,I) -

' As, 2
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In 2010, Tuna and Daghan [14] used a different version of (3) to obtain some
generalizations of the Ostrowski—Griiss type inequality. Our aim in this paper is to give
two new Ostrowski—Griiss type inequalities using a different generalization of (3) given
in [15]. Our first result generalizes Theorem 1, which in turn, unifies the continuous
and discrete known results.

This paper is organized as follows. In Section 2, we recall necessary results and
definitions in time scale theory. We outline the required lemmas, which will be used
in the proof of the main results, in Section 3. Finally, our results are formulated and
justified in Section 4.

2. Preliminaries

In this section, we only collect results and definitions that will play a crucial role
in what follows. For more on the theory of time scales, we refer the reader to the books
[3, 4]. We start with the following definition.

DEFINITION 1. A time scale T is an arbitrary nonempty closed subset of R. The
forward jump operator ¢ : T — T is defined by o(¢) :=inf{s € T:s >} fort € T,
and o(supT) :=supT. Clearly, we see that o(¢) >t forall r € T. For a,b € T with
a < b, we define the interval [a,b] in T by [a,b] = {r € T :a <t < b}. Open intervals
and half-open intervals are defined in the same manner.

DEFINITION 2. Let f: T — R and ¢ € T*. Then we define f(¢) to be the num-
ber (provided it exists) with the property that for any given &€ > O there exists a neigh-
borhood U of ¢ such that

Fo(0) ~ ()~ A0 [o(t) ~ )| <elot) ~s|, VseU.

We call f2(t) the delta derivative of f at 1. Moreover, we say that f is delta differ-
entiable (or in short: differentiable) on TX provided f2(z) exists for all ¢ € T*. The
function f2: T¥ — R is then called the delta derivative of f on T*.

Inthe case T =R, fA(t) = %gt). Inthecase T=7, f2(t)=Af(t)=f(t+1)—
f(t), which is the usual forward difference operator.

THEOREM 2. Assume f,g:T — R are differentiable at t € TX. Then the product
fg: T — R is differentiable at t with

(£8)" (1) = fA(1)g(1) + f(0(1))g*(1)-
DEFINITION 3. The function f° : T — R is defined as f°(t) = f(o(¢)).
DEFINITION 4. The function f: T — R is said to be rd-continuous on T pro-

vided it is continuous at all right-dense points # € T and its left-sided limits exist at all
left-dense points t € T.
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DEFINITION 5. Let f be a rd-continuous function. Then g: T — R is called the
antiderivative of f on T if it is differentiable on T and satisfies g*(t) = f(t) for any

t € TX. In this case, we have
b
| 16185 = g(b) - g(a).
a

Next, we state the following known properties of the A—integral.

THEOREM 3. If a,b,c € T with a<c<b, oo € R and f,g are rd-continuous,
then

Q) S UF(0) +g(@)]Ar = [7 F()A+ [7 g(1)A
(i) 7 of ()& =7 ()M

(i) [7 f(1)At == [ f(1)Ar

(V) [ (A = [ ()M + [ f()Ar

< JP1F0)|Ar

Vi) J7 F(0)g (0)Ar = (f8) (b) = (fg) (a) = [ fA(£)g® (1) Ar.

DEFINITION 6. The polynomials 4 : T?> — R, k € N are functions that are re-
cursively defined as

v)

h()(hS) =1
and
heyr(2,s) /hk s)At, forall s, t€T.

In view of the above definition, we make the following remarks (see [3, Example
1.102]) that will come handy in the sequel.

REMARK 1. (a). Using the fact that for all s,z € T, hy(z,s) =t —s, we get that
t
ho(t,s) = / (7—s)AT.

(b). When T =R, then for all s,z € T,

t—s)k
k'

hk(l‘,S) = (

(¢c). When T = Z, then for all s,z € T,

r—s kp—s+1—i
o= (1) = f=s 1
i=1
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3. Lemmas

The following lemmas will be used in the proof of the main results. The first
lemma is due to Xu and Fang [15].

LEMMA 1. (Generalized Montgomery Identity) Suppose that a,b,s,t € T, a <
b, f:a,b] — R is differentiable, and  is a function of [0, 1] into [0,1]. Then

Lry(1-2)—w(R), . y(Af(a)+(1— y(1-2)f(b)

: £+ -
b b
= bia/a f"(s)As—l—ﬁ/a K(s,1) f2(s)As,
where
s—(a—|—l[/(7t)}ﬂ), SE[(I,Z‘),
K(s,t) = (4)

It is important to note that Relation (4) boils down to (3) if we take (1) = A and
thereafter, in particular, choose A = 0.

LEMMA 2. Let v and K(-,-) be given as in Lemma | above. Then for all
A €[0,1] such that a+w(A)’5% and a+ (1+y(1—21))2%5% are in T, and
1€ [a+ l//(?t)bz;“7a+ (I+wy(1 —k))"z;“] , we have
(1).

/ub|K(S,t)|As =h (a,a+ V/()L)b;a) Sy (t,a+ W(?L)b_a>

2 2
+hy <t7a+(l +y(l —x))b;a) +hy <b7a—|—(1 +y(l —x))b;a) .
2).
/abK(s,t)As — (t,a—i— w(l)b;a> ~hy (a,a+ w(x)b;“>
+hy (b,a+(1+l//(1 —A))bzi> iy (t,a+(1+l{/(1 —A))b;a) .

Proof. The proof of item 1 is somewhat embedded in the proof of Theorem 1 in
[15]. For the sake of completeness, we present the proof here. Using Theorem 3, one
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gets
/a " |K(s.0)|As
:/t |K(s7t)|As+/b\K(s,t)|As
—/ s—<a+l// A)— ) As+/ s—(a+(1+w(1—k))b;a> As
:/aaﬂf )iyt (a-i-l!f ) As -+ a;wz)"zﬂ _<a+q/(x)b2;a> As

b—

at+(1+y(1-2))>5¢
+/ §—

oL
+(14y(1-2) bT

= b_[ a+y(A
2

a+l[/
“f
a+(14y(1-2)) e

b
+/ [ (a—l— (I+y(1—-2
at(1+y(1-1))b5¢
a

—h (a,a—!—l//(?t)bz >+h2 (z aty(A

I
Q
~

<a+(1+w(1—/1))

<a—|—(1+l[/(1—7t))b;a)

Pl Lo

[ (a—I— (I+y(1—-2

N|

b— —
+hy (t,a+(1 Fy(l-2)= ) +hy (b at(1+y(i—a)2 . a) .
The proof of item 2 follows from the same line of reasoning. [J

LEMMA 3. ([11]) Let a,b,s €T, f,g rd-continuousand f,g: [a,b] — R. Ifthere
exist ¥, T € R such that y< g(s) <T forall s € [a,b], then we have

1 b
As——/ f(s As/ g(s / f(T)AT|As
b—ala
4. Statement and proof of the main results
Inspired by the papers [1 1, 14], we formulate and prove the following results.

THEOREM 4. Let a,b,s,t € T, a <b, f:[a,b] — R be differentiable, and v a
function of [0,1] into [0,1]. If f* is rd-continuous and there exist y,T’ € R such that
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y< fA(t) <T forall t € [a,b], then the following inequality holds

L+y(l1-21)—y(l) v(A)f(a)+ (1 —w(1—21))f(D) 1,

’ £+ . — [ s
_f(b> J;() hg(ta+l//(7t)b; )—hz<a,a+w(7t)b_
+h2<ba+ 1+w1—x))b_a) hy (ta+(1+w(l—7t)) _a)H

Sl

S 257_—7:1)/a

+hy (b a+(1+y(1—2))

[h2<ta+l// b;a>—h2<a,a+w(l)?)
b- ") hy (ta+(1+u/(l—7t))b;a)]

for all A €[0,1] such that a+ y(A)25% and a+ (1+y(1—1))%5% are in T, and
t€lat+y(A)5%a+ (1+y(l1—2))54].

As  (5)

Proof. We now present the proof of Theorem 4. For this, we define the function

{s—(aw(x)’%),se[ 1),
K(s,t) =
s—(a+ 1+ w(1-24))k59), sefr,b],

and then put f(¢) = K(s,¢) and g(¢) = f*(¢) in Lemma 3 to obtain

/Kst As——/KstAs/f

1 b
— K(1,t)A
b—a/u (z.1)a7

As. (6)

S,

From item 2 of Lemma 2, we have
b— b—
lhz (t,a+l//(/l) 2a>—h2<a7a+l//(7t) 2“)

K(s,1)A
ba/ (s
b

+hy (b,a+(1+l//(1 ~1) ;“) “hy (t,a+(1+l//(1 _A))b;“)]. )

Also, from Definition 5, we have

[ 768 = 10) -~ s(@) ®)
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Substituting Equation (7) in the right hand side of Equation (6), we get
r—vy /b
2 Ja
_Iy /h
==/
b—a

+ho (b,a+(1+w(1—k))7) — (z,a+(1+w(1_x))b_“)]

1 b
K(s.1) - — / K(1,1)AT|As

b—a

K(S’t)—blTa h2<t,a+‘//(7L) 5 )—hz(a,a+v/(k)b;a)

Relation (6) becomes

[ Kenroas 2 [(kenas [ Aons

_ b

<7 7/

2 Ja
b—a

+hy (b,a+(1+l//(1 —M)T> —hy (t,a—l-(H—l//(l —)L))b_a>

K1) - bia [hz (t’a+ ‘V(A)%) —hy (a,a+ l//(l)bga>

> As. (10)

From Lemma 1, we have

| Lby(-2) - vid),
2

/a " K(s.) /2 (s)As b—a)f(1)

ORISR S O /a” £o(s)as. (1)

Substituting Equations (7), (8) and (11) into (10), we arrive at

L y(l—2) - y(h)
2

_/abfc(s)As_w[h2<;,a+w(/1)”21’)_h2<w _’_W(A)b;a)

K(s,1) — 5 [hz (t,a—i— w(l)b;a) n (a’a +lW)b;a)

y(A)f(@)+ (1 - w(l-2))f(b)
2

(b—a)f(t)+

(b—a)

iy (b,a+(1+w(1—/l))b;a> —hy (z,a+(1+w(1—/l))b;a>

_ b
<7 y/
2 .

hy (b,a—l—(H—l//(l _;L))l’2;“> —hy (t,a+(1—|—‘//(1 —/l))bz;a>

As. (12)
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1+wu—w—wmyw+w@vw+u—wu—wvwxw1a/gqmm

) hy (a a+y(d)

—hy (ta+ (1+y(1-1)) )H

)—hg (a,a+l//(7t)b;a>

iy (: at 1+w(1—z))b2i>

hy (z a+y(A)

+h2<b a+(1+y(l1-2

_ b
< y/
2(b—a) Ja

+h2<ba+(1+l//1—

-~
Q

_ 1
S
LIS}

Q

As. (13)

That completes the proof. [

COROLLARY 1. Under the assumption of Theorem 4 with w(1) = A%, we have
that

221 (a)+ (24 =22)f o
(1=)f()+ . oy

_f((b) f)( )[hz(ha—i—kzb;a)—h2<a7a+x2b
+h2<ba—|—2 214‘1
r—y [t
g2(19—51)/51

iy (ba+(2 24+ A2

;“)
) (ta+2 2402 )H
[M(t,cﬂ—lz )_h2<a,a+lzb—a>

(ta—l—Z 27L+7Lz) 5 ) As  (14)

K(s,1

for all A € [0,1] such that a+A*2%5% and a+ (2 —2A +A%)%5% are in T, and t €
[a+A254% a+(2-24+2%)554].

Corollary 14 generalizes Theorem 1. This is evident by substituting A = 0 in the
above inequality.

COROLLARY 2. Under the assumption of Corollary 1 with A = 1 such that # €
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T, we have that

f(@)+ f(b) (51 )= 1@
Tho a/f i

2 2
a+b 1 a+b a+b
K )= _ - -
(+43) e o (5 oo 32)

_ b
< /
2(b—a) Ja
We now state and prove our second result.

15)

THEOREM 5. Let a,b,s,t € T, a <b, f:[a,b] — R be differentiable, and v a
function of [0,1] into [0,1]. If f* is rd-continuous and there exist y,T" € R such that
y< fAt) <T forall t € [a,b], then the following inequality holds

Ly =)= y(),  VAF@+(—y(=ADFB) 1,
: fo)+ - — o [ r7wns

“hy (a,a+ u/(/m)b;“)

)
n (b ot (Lwl 1—7L))b;a) —hy <t7a+(l+w(l—7t))b—a)H

—7
(b)

hy (l a+y(A)

-

Y b—a
<
2(b—a)

s (a aty() >+h2 (La—l—l]l(k)b;a)

_a> +hy (b,a+(1+w(1—/l))b_“)]

+hy (t,a+(l+l//(l—/l))

2

Sforall A €0, 1] such that a+y(A)25% and a+ (1+ y(1 —1))25% are in T, and
t€ [a+y(d) 5% a+ (1+w(1-2)54.

r
Proof. We start by letting 0= %/ Since, ¥ < f4(s) < T forall s € [a,b], it
implies that y—© < f2(s) —© < T'—© for all s € [a,b]. This further implies that
|f2(s) — 0] < Y forall s [a7b]. Hence,

Iy

A

~0|< —. 16
Jmax |[F7(5) ~ Ol < — (16)

Now, recall the following function used in Theorem 4.

{s—(aw(x)’%), s€ ),
K(s,t) =
s—(a+(1+y(1 ))}%), s € [t,D].
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Using Lemma 1, we have
b _2) —
b_a/a K(s,0) A (s)as = YU ;) V) fy
L YDf @+ (1 -y =A)fB) 1 /”fa(s)m

Also, from item 2 of Lemma 2, we have

b— a/ K(s,0A lh2<ﬁa+w(%)b;a)—h2<a,a+w(/1)b;“>

iy (ha—i—(l—kw(l—k))b;a) —hy (l,a—i—(l—kw(l—l))b;a)]. (18)

From Equations (17) and (18), we get

) —©)As

1—|—l// I—JL)—V/(?L)
2

b _
_ ﬁ/ £ (s)As — bTGa l/n (t,a+ w2 . “)

—he (“7” ‘I’(Ml)z;a) +hy (b,a+ (1+w(l —A))b;“>

—hy (t,a—i—(l—H//(l—l))b;a)]. (19)

The absolute value of the left hand side of (19) is estimated as follows

< A o bKtA 20
< max P9 0l [ K(nlas. o)

bia/ubK(s,t)(fA(s) —©)As

Also, from item 1 of Lemma 2, we get

1 b 1 b—a b—a
EL K(S,I)AS—E[hz(a,a+w<l)7>+h2<t,a+u/(l) 5 )

+hy (t,a+(1—|—l//(1 41))”%“) +h (b,a—l—(H—l//(l _;L)>b;“)]. Q1)

Using Relation (16) in (20), gives

bia/abl((s,t)(fA(s)—@)A

< K(s,1)|A 22
2b_/lstls 22)




OSTROWSKI-GRUSS TYPE INEQUALITY

541

Substituting Relations (19) and (21) into (22) amounts to the desired result. [J

Applying Theorem 5 to the continuous and discrete case, we obtain

COROLLARY 3. (Continuous case) Let T = R.

I+y(l-2)—y(A) vy fl@+ (1 —y(-2A)f(b) 1 P
2 f(0)+ 3 ~3 a/ f(s)ds

-y

B (1= (a+y(1)59)"  v(A)(b—a)
2(b—a)

2 8

+<b—<a+(1+w(1—l))b;a>)2_(t—<a+(1+l[/(1— ]
2 2

v (A)(b—a)? N (t—(a+ w(l)’%)) +(r—(a+(1+y(1l-
8 2

) (b— <a+(1+w(1x))b2“>)2]

2

-y
~2(b—a)

2

for all A €[0,1] such that a+ w(A)?5% and a+ (1 +y(1—1))%5% are in R, and
tela+yA) 5% a+ (1+y(l—2))54].

Proof. This follows from the fact that o(s) =s, f*

— f and ha(t,s) = 2
(from item (b) of Remark 1). [

2

COROLLARY 4. (Discrete case) Let T=7, a=0, b=n, s=j, t =1, and
f(k) =xy. Then
1 1—4)— 1 —y(l— 1
+y( 21) l//(Mxi+ w(A)xo 4 ( . v( _Z Z)ﬁ

FZ_Y[h (12 (o,%W)
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forall A €10,1] such that "Wél) and "(Hl’/z(l_)m areinZ, and i€ [%W, W] ,
where

Iy (o, l//(;t)n) _ % [l//z(it)n2 N W(;)n] ’

Iy (i, A+l =A))n _M)"> = %[# —i(n(1+y(1-2))+1)

(L+y(L-A) (L y(1—A)n
R s

and

hy (n,w) = %[nz— (n2(1 +y(l —l)) —n

(I+w(l —l))zn2 (I+y(l—A))n
+ - n : }

Proof. This follows from the fact that o(s) = s+ 1. Also, from item (c) of Remark
1, we have Iy (t,s5) = S(t—s)(t—s—1). O

REMARK 2. More results can be obtained, from Theorem 5, by choosing appro-
priate w(A) and considering some specific values of A, for example, A =0, % and 1
or by taking a different time scale like T = ¢™0, with ¢ > 1. For this case,

o(t) =qt,
b log, (b)—1 ' .
[res=6a-1 % @),
“ Jj=log,(a)
_ (1=9)(t—gs)
Rl =TT
and
_ _ Sfla) - 1)
FA(8) = Dyf (1) = NS
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