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EXTENDED NORMALIZED JENSEN FUNCTIONAL RELATED TO
CONVEXITY, 1-QUASICONVEXITY AND SUPERQUADRACITY

SHOSHANA ABRAMOVICH

(Communicated by A. Vukelic)

Abstract. In this paper we extend results related to Normalized Jensen Functional in several
directions. We compare a specific Jensen functional with a sum of other functionals for convex
functions, and we also extend these results for 1-quasiconvex functions and for Superquadratic
functions.

1. Introduction

In this paper we extend and refine Jensen type inequalities appeared in [1], [2],
[4], [5] and [8] related to the Jensen functional

Jn(f,X,p) = pr x;) Zplxl
i=1
We start with some theorems, definitions and notations that appeared in these pa-
pers.

THEOREM 1. [5] Consider the normalized Jensen functional where f:C — R
is a convex function on the convex set C in a real linear space, X = (x1,...,x,) € C",

and p= (p1,---,pn), 4= (q1,--.,qn) are non-negative n-tuples satlsfyzng Z L pi=
1, Y 1qi=1,qi>0,i=1,...,n. Then

MJ, (f»X,Q) 2 Jn (f,X,P) = mly (faxvq)a

m = min (ﬁ), M = max <&>
I<i<n \ qi 1<i<n \ ¢gi

In [2] and in [4] a similar result is proved when f is a convex function on an
interval on the real line, while p and q satisfy the conditions for Jensen-Steffensen
inequality.
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DEFINITION 1. [3] A function f:[0,0) — R, 0 < b < oo, is superquadratic pro-
vided that for all 0 < x < b there exists a constant C(x) € R such that

JO) =fx) = fy==x[) =C(x)(y—x)
forall 0 <y <b.

COROLLARY 1. [3] Suppose that f is superquadratic. Let 0 < x; < b, i =
1,...,nandlet X =3}, aix;, where a; >0, i=1,...,n and ¥}_,a;=1. Then

n n
Yaif (xi) = f(®) = Y aif (|xi — 7).
i=1 i=1
If f is non-negative, it is also convex and the inequality refines Jensen’s inequality.

THEOREM 2. [2, Theorem 3] Under the same conditions and definitions on p, q,
x, m and M asin Theorem 1, if f:[0,b) — R, 0 < b < oo, is a superquadratic function,
2.};:1 pjXxj =X, and 2.};:1 gjxj =%y, X € [0,b)", then the following inequlities hold:

)

In (faxap) —mJy (faxaq) 2 mf(|xq _xp|) +2(pi_mqi)f(|xi_xp
i=1

and
n

Jn (f,X,p) _MJn(f7X7q> < —E(M%—Pi)fﬂxi—xq}) —f(}xq_)_cl’}) .
i=1

DEFINITION 2. [1] A real-valued function f defined on an interval [0,b) with
0 < b < o= is called y-quasiconvex if it can be represented as the product of a comvex
function and the power function x¥. For y=1, f is called 1-quasiconvex function.

COROLLARY 2. [I, Theorem 1] Let ¢ : [a,b) — R, a >0 be convex differen-
tiable function, and let y (x) be a 1-quasiconvex function where Y (x) = x@ (x). Let
pi=20, x; €lab), i=1,....n, X} pi=1, x=3" | pixi. Then a Jensen’s type
inequality holds:

Ja(w1.x,p) 2 @ (X)X pi(xi—%)7 = ¢ (X (%,x,p),
i=1

which is a refinement of Jensen Inequality if ¢ (X) > 0.

THEOREM 3. [l, Theorem 18] Suppose that yy : [a,b) — R, 0<a<b < oo,
is N -quasiconvex function, that is Wy = x" ¢ (x), N=1,2,..., when @ is convex on
la,b). Let p, q, X, m, M, Xp, X, and x;, i =1,...,n be as in Theorem 2. Then,

o (W, x1,p1) —mdy (Wn,X1,q)
o (x-x)
(pi—ma;) (xi — %)’ ( e @7))

>

=

-

i=1 Oxp \ Xi—Xp

-z
+m(fq—fp)2 ( I . Qo(xp)) )

Xqg—Xp
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and

o (Wn,x1,p1) —MJ, (Wy,X1,9q)

S o [V —x)
< g{(pi—M%’) (xi —)? o5 ( x,-—x,j (p()_cq)>
o [xN-x)
M(xq_xp)z &xq (%‘P(J_Cq)> .

For N =1 we get that
Jn (W1,%,p) —mJy (Y1,X,q)
> (5) (n (2. 0) ~ i (2.5.9))
and

Jn (W17X7p) _M‘] (Wlax q)

!

<o (%) (Ju (x27x7p) MJ, (x X,q)).
Let0<pi1<1,0<q; <1, ¥ pi1 =21 1qi=1.

Denote m; = mm(p[; ), i=1,...,n and s; the number of i-th for which m;
occur.
Define

] [)i‘kl,l 5 k:2, (11)

Pik—1
Pik—1 —Mi—19i, M1 # 'q—

Pik = o
M1, mi_ =

Sk—1 qi

: Pik—1
my_; = min (’—_),k:27...,

1<i<n i
and denote s;_; as the number of cases for which my;_; occurs.
Letalso x;; € (a,b), i=1,...,n and denote

Pik—1
Xik—1, Mgl # ==
Xk = 5 Pik-1 > (1.2)

n
i=1 4iXifk—1, M—1 = — -

i=1,...n,k=2,...,.
In [8] the author uses the notations (1.1) and (1.2) for the special case g; = %7
i=1,...,n and he proves:

THEOREM 4. [8, Theorem 1] Let f:1 — R, (I is an interval) be convex, and
let X1 = (x1,1,...,%1) CI", p1=(pi.1s---,pn1) C (0,1)" be such that ¥}, p;y = 1.
Then for every N € N we have

szlf (xi1) (sz 1x11>
—Zm(Z L (o) - (li%x,k>>>o,

k=1

where m; = min (M) and gi=1L, i=1,...,n, k=1,...,N.
1<i<n \ i n
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Using the theorems, notations and definitions stated above, and generalizing the
technique used in [8], in the next sections we extend in several directions Theorem 1
proved in [5] by S. Dragomir and Theorem 4 proved by M. Sababheh in [8].

In Theorem 1 Dragomir compares a specific Jensen functional with another Jensen
functional. In Theorem 5 and Theorem 6 in Section 2 we compare the specific Jensen
functional with a sum of other functionals, see also Sababheh in [8], where a particular
case is proved.

In Section 3, Theorem 7 we extend Theorem 1 and Theorem 5 for 1-quasiconvex
functions.

A particular case of Theorem 7 is proved in [1].
In Theorem 8 we extend Theorem | and Theorem 5 for Superquadratic functions.
A particular case of Theorem 8 is proved in [2].

We show in the sequel that Theorem 4 is included in our Theorem 5 and therefore
applications mentioned in [8] regarding inequalities of interest in Operator Theory —
Matrix Inequalities (see for instance [6], [7], [9], [10], and [11]) can be seen as derived
also from our theorems in this paper.

2. Convexity and extended normalized Jensen functional

We start with the following theorem:

THEOREM 5. Suppose that f: [a,b) — R, a < b < e is a convex function. Then,
for every integer N

N
J"(f7xlap1)_ka']n(f7xkaq)>0a (21)

k=1

where p1 = (p1,1,---,Pn1), 4=(q1,---,qn), Xk = (X17k,~~~7xn7k), k=1,....,N, and
Dik» Mk, X, are as denoted in (1.1) and (1.2), ¥ pi1 = X\ qi =1, and p;; >0,

. Pil
; i=1 N, = min (= ).
qi = 07 o = 1<i<n ( qi )

Proof. According to (1.1) and (1.2)

ipuf (xi,1) (qu xi1) (Z%m))

i=1
s1mqp n
(pin —miq;) (mHTf Y gixia
i=1

p12f x12

2
>
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Therefore, also

Zpllf Xi1) i k<ﬁqlf(x,k) <2qlxlk>> (2.2)

k=1 =1
n N n
= piaf (xiz) = > my (Z qif (xix) — (Z qixi, k) )
i-1 = \i=1

sz 2f (xi2) (iqlf (xi2) (Zqzm))

i=1

_ ka (2 aif (xix) = f (Z %xzyk))

=1

=

= ipm—lf(xi,zv—l) my-— 1<Zqu XiN-1) <2%sz 1))
i=1

i=1

—my (lziqz f(xin) (2611x1 N>>

= Epsz(sz) mn (2% [ (xiw) <quxlN>>

i=1 i=1

=

=

|

I
—_

(pin —mng:) f (xin) +SN< ) (ZW@N)

I
M=

Il
-

pin+1f (Xin+1),

which means that

||M2

N piif (xi1)— (2 I (xix) D fIixi,k) ) (2.3)
i=1

i=1

M-

—f
(pin —mngi) f (xiN) +SN f (2 qm,zv) = pinerf King1)-
-

i=1 i=1

Also it is clear that

Nopik=1, pix=0, i=1,....n, k=1, N+1, (2.4)
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Therefore as a result of (2.3) and (2.4), in order to prove (2.1) we have to show that

n N n n
Y pinf (xin)— Y, mk (Z%‘f (xix) = f (Z%‘M,k))
i=1 i=1 i=1

n
Epz N+1f Xi, N+1)

f (Z Pi,lxi,1> =f (Z pz)kxi,k) =f (Z Pi,N+1xi,N+1> ~
i-1 i-1 P

That is, we have to show that
21’; N+ f (Xint1) (2 PiN+1%i N+1> (2.5)
i=1 i=1
and (2.5) holds because it is given that the function f is a convex function
The proof of the theorem is complete. [
COROLLARY 3. Under the conditions of Theorem 5, if
(2.6)

p,-7N=q,-, i=1,...,n

we get an equality in (2.1).

=

Proof.
21’; o () = Y, my (2qu Xi) f(ZWG,k)) (2.7)
i=1

k=1 i=1

=3 pinf (xin) —my (iq;f XiN) f(iq%w))
1 =1

| i=1

=

=

=
N——
N——

n
S pinf (xin) — f (ZPi,NXi,N

i=1 i=1

- le xlN 1(
1

=

=f (2 Pi,in,N> .
i=1
Indeed, the first equality in (2.7) follows from the first equality in (2.3). The second
J n. Therefore from (2.7)

and third equalities hold as my = p{;_:v =1,i=1
n N n n n
> opinf i) = Yome | X aif (xig) = f | Daie | | —F | D pivxin | =0,
i=1 k=1 i=1 i=1 i=1

holds, and as according to (2.4)

n n
2 PiNXiN = Z Pi1Xi1
i=1 i=1
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holds, (2.1) follows with equality. The proof is complete. [J

Replacing ¢g;, i=1,...,n by % in Theorem 5 and Corollary 3 we get Theorem 4
(Theorem 1 in [8]) and Theorem 2 in [8].

We extend now the left hand-side inequality in Theorem 1.
We denote
= (pl,la"'vpl,n)7 q= (6117 »C]n)» (28)
(xl’k,...,x,,’k) s k= l N

n n
pll/07 C]i>07 i:l7'”7n7 ZPi,lZZQizla
i=1 i=1

M, = Max (’“):M, i=1,...n,
qi qj

where j is a fixed specific integer for which M| holds.
We also denote

* * .
Pil =Pi1s Xpp=Xi1, i=1,....n, (2.9)
*
* * * * ik—1
ka = pi,k*l _Mk_lqi7 .xl-7k :xl‘7k71, When Mk_l # — k: 27.. 7]V
1
*
* * * * i,k .
Pik = Pij—1 — Mr—14i, Xix = Xi 1, when My_y = ——, i # ji, k=2,....N
1
n p*
* * * Jkok—1
Pk = Mi—1, X = Y, qixj 1, when My = 25—
i=1 4jr1
* *
Dik DPj k
My = Max ( ) = &2 k=1,...,N,
1<i<n qi qjk

where ji is a specific index for which M; holds.
With the notations and conditions in (2.8) and (2.9) we get:

THEOREM 6. Let f:[a,b) — R, a < b < e, be a convex function, and let (2.8)
and (2.9) hold. Then, for every integer N

N
Jn(faxlvpl)_ZMkJn(f7Xkaq)gov (210)
k=1
and '
M=Pl k=1 N @2.11)
4j

J1»

hold, where ji is a fixed specific integer for which M| = Tl is satisfied.
1

pjl

Proof. As ji is a specific integer for which M} = Max <m> =Lt is easy
1<i<n \ i 9
to see that
p .
My | = Max 2L —Pivl - p o Ny 2.12)

I<isn  qi qfl
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because the only positive p},, k=2,... is p;‘.l 4> aS

i1 D;
when =1 < 2L £ i then pl, <0, xi,=x7|, (2.13)
o " a , 2 =X
Pi1 P
when —L = 2Lt then pl, =0, x, =x7,
qi qdj ) ’ ’

when i= ji, thenp/, >0, xj,>0,
and

n n

k% * _ .
Epi72xi,2 =1, xj,= Zqzxz,L.
i=1 i=1

Hence, also for k=2,...,N the only positive p},, i=2,...,n is p;‘.lik where j; is the

fixed integer that satisfies M; = %, and therefore we can replace in the last line of
J

1
(2.9) ji with j;, which means that (2.11) holds.
In order to complete the proof of the theorem, we proceed now with proving (2.10):
In a similar way as we get (2.2) we get

ipzylf (xi1) —éMk (é qif (xix) — f (é qixi,k)) (2.14)
i - S (Sas 0 (i) )

iip?:zf (x72) = Ms (ﬁ; aif (xi2) = f (ﬁi q,-x;2>>

L (2 af (53) ~ f <2q )

I
I M= |1

=1

=

zp;“,Nflf(x;f,Nfl) My-— 1(26]zf XiN— 1) (Zqix;:N1>>
i=1

i=1 i=1

iy (igqif(xz,v) (&))
pind (<)~ My (éqif(xzizv)—f@qixz,v))

(plN MNq,)f(xZN) +Mnf (2‘]1“%)

i=1

I
M=

I
™M=

i=1

n

= ZPZN-'rlf( 1N+1)

i=1
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<2q,-f (x1) — f <2q,-x;ik>> (2.15)
i=1 i=1

(i — M) f () + Mt (zqfsz)

i=1

which means that

il?;klf( 11)

i=1

I
Mx
EMz

—

I
M=

1N+1f( zN+l) .

—

Also it is clear that
p;jk<07 i=1,...,n, i#j, pjx>0, k=2,... . N+1, (2.16)
n

n n
Yrii=1 X pixii= 2 piXip, k=1, .N+1.
i1 i=1 i=1

From (2.15) it follows that we have to show that

n N n n
szlf (x51) — Y My (2 qif (x;:k) —f (2 %ﬁk))
=1 k=1 =1

- 2P1N+1f( zN+1 (2[71 1x,1>

again from (2.15) we have to show that
> (piv—Mngi) f (xiy) +Mnf (2 qz'X?,zv) <f (Z mem) -
=1 i=1 i=1
Using (2.12) in other words, we have to show that
n n n
f 2 Pin%in | + 2 (Mygi — P}k,zv) S (X;N) >Myf 2 qixin. |
i=1 i i i=1

holds, or that

1 n . . n ‘ p;kN . n .
ATNf (;; Pi,zvxm) +i:§# <Qz " My ) fin) > f (lzi ‘lei,N.) .

The last 1nequa11ty follows from the convexity of f because ¢; — A’41’VV >0,i=1,...,n,
i#j and ATN > 0, and the inequality (2.10) holds.
The proof of the theorem is complete. [l
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3. 1-quasiconvexity, superquadracity and normalized Jensen functional

In Theorem 7 we extend Theorem 3 and Theorem 5 for 1-quasiconvex functions,
and in Theorem 8 we extend Theorem 2 for superquadratic functions.

THEOREM 7. Let y; : [a,h) = R, 0 < a < b < e be a l-quasiconvex func-
tion where Wi (x) = x@ (x), and @ is a differentiable convex function. Let Xy, =
S PigXik and Xq, = X5 qixig, k=1,....N. Then under the same notations and

conditions as used in Theorem 5 for p;, Xix, Mg, 1, q, k=1,...,N, i=1,...n we
get:
N
Tn (W1,x1,p1) — X, midn (W1, %0, Q) (3.1)
k=1

’ 2 2
> ¢ (Xp,) <2p1N+1x1N+1 (xPN)>

i=1

!

=0 ()_Cpl)<f (¥, x1,p1) — i I (¥ X/n‘l))

If @ is also increasing then (3.1) refines Theorem 1 and Theorem 5.
In particular, for N =1 we get that

o (wi,x1,p1) —miJ, (W1,X1,9) (3.2)
>(Pl()_cp1)(1n(x27xlapl) ml-] ()C Xl7q))

Proof. As yj is 1-quasiconvex, therefore from Corollary 2 we get that

El?i,zvﬂ V1 (Xine1) — W1 ()_CpNH) (3.3)
i=1

n
>0 (Fors1) (zpi7N+lsz+l - (J_CpNH)z)

i=1

and as (2.3) and (2.4) hold, we get that

S pini 1w (inet) — Wi (Fpysy) (3.4)

i=1

n N n
=Y piawi (xi1) — >, my (Z%“I/l (xix) — w1 (qu)> — 1 (Tpyas)

i=1 k=1

n N n
= mel!ﬁ (xi1) — ka (ZCHWI (xi7k) -y ()_qu)> —y1 (Xp,)
i=1 '

holds.
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(3.3) and (3.4) lead to

n N n
ZP:‘,IWI (xz 1)— ¥ pr Z (Z qiy1 (xi.,k) - Vi (qu)>

i=1 k=1 i=1

n
> ¢ (Tpyr) (%Pi,NHxiz,NH - ()_szwl)z) :
i—
From this inequality and by using again (2.3) and (2.4) for the convex function f (x) =
x% we get that (3.1) holds.

In the case that ¢ is also non-decreasing, W is convex too, and as f (x) = x? is
convex, (3.1) refines (2.1).

Inequality (3.2) follows by inserting in (3.1) N = 1.

The proof is complete. []

Inequality (3.2) appears also in Theorem 3 ([ 1, Theorem 17]).
Similarly, we get for superquadratic functions (see Definition 1) the following
theorem which extends Theorem 2:

THEOREM 8. Ler f:[0,b) = R, 0 < b < oo be a superquadratic function. Let
Pik> Xig, My and sg, k=1,....N, i=1,....,n satisfy (1.1) and (1.2). Let Xp; =
2?=1Pi,jxi,j and xqj = Z?:Iqixi,ja J: 17"'aNa Pil P 07 qi > 07 i= 1,...,71, X =
(Xiy- . yxn) €[0,0)". Then

N n
In (fx0,01) = X, mudn (f%k,4) = Y, piverf (|xinve1 —Xp, |) (3.5)
k=1 k=1

If f is also non-negative then f is convex and (3.5) refines Theorem 4.
In particular for N = 1 we get that

In (faxhpl) —mJy (f7Xl7q mf(}xq_xpl|)+2 mql (}xi_xpl )a (3.6)
=1

Proof. From (2.3) we get the identity

n N n n
D pinf (i) — X, my (Z I (xix) — (qu)> =Y piniif iye1), 37
i=1 k=1

i— i=1
and because .,
PiN+1 20, i=1,...,n, Zpi,N+1:1
i=1
we get from the superquadracity of f that Corollary 1 holds, that is

n n
N pineif (xine1) = f Fpyar) = 2 pinvarf (Jxinve1r —Xpy, |) - (3.8)
i=1 i=1
Using (2.4) we can rewrite (3.8) as

n

N pineif Cinet) — f &py) = D pinvet f (vt —p,]) - (3.9)

i=1 i=1
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(3.7) and (3.9) lead to (3.5).

By inserting N = 1 in (3.5) and making simple calculations using (2.3) (for N = 1)

we get (3.6).

[1]
[2]

[3]

The proof of the theorem is complete. [l

REFERENCES

S. ABRAMOVICH, Jensen, Holder, Minkowski, Jensen-Steffensen and Slater-Pecari¢ inequalities de-
rived through 7y -quasiconvexity, Math. Inequal. Appl. 19 (2016), no. 4, 1203-1226.

S. ABRAMOVICH AND S. S. DRAGOMIR, Normalized Jensen Functional, Superquadracity and Re-
lated Inequalities, International Series of Numerical Mathematics, Birkhiduser Verlag 157, (2008),
217-228.

S. ABRAMOVICH, G. JAMESON AND G. SINNAMON, Refining Jensen’s Inequality, Bulletin Math-
ematique de la Societe des Sciences Mathematiques de Roumanie, (Novel Series) 47 (95), (2004),
3-14.

[4] J. BARIC, M. MATIC, J. PECARIC, On the bounds for the normalized Jensen functional and Jensen-
Steffensen inequality, Math. Inequal. Appl. 12 (2009), no. 2, 413-432.
[51 S.S. DRAGOMIR, Bounds of the normalised Jensen functional”, Bull. Austral. Math. Soc. 74 (2006),
471-478.
[6] F. KITTANEH AND Y. MANASRAH, Improved Young and Heinz inequalities for matrices, J. Math.
Anal. Appl. 36, (2010), 262-269.
[71 C. NICULESCU AND L.-E. PERSSON, Convex functions and their applications, a contemporary ap-
proach, CMS books in mathematics 23, Springer, New York, 2006.
[8] M. SABABHEH, Improved Jensen’s inequality, Math. Inequal. Appl. 20 (2017), no. 2, 389-403.
[91 M. SABABHEH AND D. CHOL, A complete refinement of Young’s inequality, J. Math. Anal. Appl. 440,
no. 1, (2016), 379-393.
[10] M. SABABHEH AND M. SAL. MOSLEHIAN, Advaned refinements of Young and Heinz inequalities, J.
Number Theory 172 (2017), 178-199.
[11] J. ZHAO AND J. WU, Operator inequalities involving improved Young and it’s reserved inequalities,
J. Math. Anal. Appl. 421 (2015), 1779-1789.
(Received June 11, 2017) Shoshana Abramovich

Department of Mathematics

University of Haifa

Haifa, Israel

e-mail: abramos@math.haifa.ac.il

Journal of Mathematical Inequalities

v.ele-math.com

jmi@ele-math.com



