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EXTENDED NORMALIZED JENSEN FUNCTIONAL RELATED TO

CONVEXITY, 1–QUASICONVEXITY AND SUPERQUADRACITY
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(Communicated by A. Vukelić)

Abstract. In this paper we extend results related to Normalized Jensen Functional in several
directions. We compare a specific Jensen functional with a sum of other functionals for convex
functions, and we also extend these results for 1-quasiconvex functions and for Superquadratic
functions.

1. Introduction

In this paper we extend and refine Jensen type inequalities appeared in [1], [2],
[4], [5] and [8] related to the Jensen functional

Jn ( f ,x,p) =
n

∑
i=1

pi f (xi)− f

(
n

∑
i=1

pixi

)
.

We start with some theorems, definitions and notations that appeared in these pa-
pers.

THEOREM 1. [5] Consider the normalized Jensen functional where f : C −→ R

is a convex function on the convex set C in a real linear space, x = (x1, . . . ,xn) ∈Cn,
and p = (p1, . . . , pn) , q = (q1, . . . ,qn) are non-negative n-tuples satisfying ∑n

i=1 pi =
1, ∑n

i=1 qi = 1, qi > 0, i = 1, . . . ,n. Then

MJn ( f ,x,q) � Jn ( f ,x,p) � mJn ( f ,x,q) ,

provided

m = min
1�i�n

(
pi

qi

)
, M = max

1�i�n

(
pi

qi

)
.

In [2] and in [4] a similar result is proved when f is a convex function on an
interval on the real line, while p and q satisfy the conditions for Jensen-Steffensen
inequality.
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DEFINITION 1. [3] A function f : [0,b) → R , 0 < b � ∞, is superquadratic pro-
vided that for all 0 � x < b there exists a constant C(x) ∈ R such that

f (y)− f (x)− f (|y− x|) � C (x)(y− x)

for all 0 � y < b.

COROLLARY 1. [3] Suppose that f is superquadratic. Let 0 � xi < b, i =
1, . . . ,n and let x = ∑n

i=1 aixi, where ai � 0, i = 1, . . . ,n and ∑n
i=1 ai = 1. Then

n

∑
i=1

ai f (xi)− f (x) �
n

∑
i=1

ai f (|xi− x|) .

If f is non-negative, it is also convex and the inequality refines Jensen’s inequality.

THEOREM 2. [2, Theorem 3] Under the same conditions and definitions on p, q,
x, m and M as in Theorem 1, if f : [0,b)→R, 0 < b � ∞, is a superquadratic function,
∑n

j=1 p jx j = xp and ∑n
j=1 q jx j = xq , x ∈ [0,b)n , then the following inequlities hold:

Jn ( f ,x,p)−mJn ( f ,x,q) � mf
(∣∣xq − xp

∣∣)+ n

∑
i=1

(pi −mqi) f
(∣∣xi− xp

∣∣) ,
and

Jn ( f ,x,p)−MJn ( f ,x,q) � −
n

∑
i=1

(Mqi− pi) f
(∣∣xi − xq

∣∣)− f
(∣∣xq− xp

∣∣) .
DEFINITION 2. [1] A real-valued function f defined on an interval [0,b) with

0 < b � ∞ is called γ -quasiconvex if it can be represented as the product of a comvex
function and the power function xγ . For γ = 1, f is called 1-quasiconvex function.

COROLLARY 2. [1, Theorem 1] Let ϕ : [a,b) → R, a � 0 be convex differen-
tiable function, and let ψ1 (x) be a 1 -quasiconvex function where ψ1 (x) = xϕ (x) . Let
pi � 0, xi ∈ [a,b) , i = 1, . . . ,n, ∑n

i=1 pi = 1, x = ∑n
i=1 pixi . Then a Jensen’s type

inequality holds:

Jn (ψ1,x,p) � ϕ
′
(x)

n

∑
i=1

pi (xi− x)2 = ϕ
′
(x)Jn

(
x2,x,p

)
,

which is a refinement of Jensen Inequality if ϕ ′
(x) > 0 .

THEOREM 3. [1, Theorem 18] Suppose that ψN : [a,b) → R, 0 � a < b � ∞,
is N -quasiconvex function, that is ψN = xNϕ (x) , N = 1,2, . . . , when ϕ is convex on
[a,b) . Let p, q, x, m, M, xp, xq and xi , i = 1, . . . ,n be as in Theorem 2. Then,

Jn (ψN ,x1,p1)−mJn (ψN ,x1,q)

�
n

∑
i=1

(pi−mqi)(xi− xp)2 ∂
∂xp

(
xN
i − xN

p

xi − xp
ϕ (xp)

)

+m(xq− xp)2

(
xN
q − xN

p

xq− xp
ϕ (xp)

)
,
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and

Jn (ψN ,x1,p1)−MJn (ψN ,x1,q)

�
n

∑
i=1

(pi −Mqi) (xi− xq)2 ∂
∂xq

(
xN
i − xN

q

xi− xq
ϕ (xq)

)

−M (xq− xp)
2 ∂

∂xq

(
xN
q − xN

p

xq − xp
ϕ (xq)

)
.

For N = 1 we get that

Jn (ψ1,x,p)−mJn (ψ1,x,q)

� ϕ
′
(xp)

(
Jn
(
x2,x,p

)−mJn
(
x2,x,q

))
and

Jn (ψ1,x,p)−MJn (ψ1,x,q)

� ϕ
′
(xq)

(
Jn
(
x2,x,p

)−MJn
(
x2,x,q

))
.

Let 0 � pi,1 � 1, 0 < qi � 1, ∑n
i=1 pi,1 = ∑n

i=1 qi = 1.

Denote m1 = min
(

pi,1
qi

)
, i = 1, . . . ,n and s1 the number of i-th for which m1

occur.
Define

pi,k =

{
pi,k−1 −mk−1qi, mk−1 �= pi,k−1

qi
1

sk−1
mk−1, mk−1 = pi,k−1

qi

, k = 2, . . . (1.1)

mk−1 = min
1�i�n

(
pi,k−1

qi

)
, k = 2, . . . ,

and denote sk−1 as the number of cases for which mk−1 occurs.
Let also xi,1 ∈ (a,b) , i = 1, . . . ,n and denote

xi,k =

{
xi,k−1, mk−1 �= pi,k−1

qi

∑n
i=1 qixi,k−1, mk−1 = pi,k−1

qi

, (1.2)

i = 1, . . .n , k = 2, . . . , .
In [8] the author uses the notations (1.1) and (1.2) for the special case qi = 1

n ,
i = 1, . . . ,n and he proves:

THEOREM 4. [8, Theorem 1] Let f : I → R, ( I is an interval) be convex, and
let x1 = (x1,1, . . . ,xn,1) ⊂ In, p1=(p1,1, . . . , pn,1) ⊂ (0,1)n be such that ∑n

i=1 pi,1 = 1.
Then for every N ∈ N we have

n

∑
i=1

pi,1 f (xi,1)− f

(
n

∑
i=1

pi,1xi,1

)

−
N

∑
k=1

mk

(
n

∑
i=1

1
n

f
(
xi,k
)− f

(
n

∑
i=1

1
n
xi,k

))
� 0,

where mk = min
1�i�n

(
pi,k
qi

)
and qi = 1

n , i = 1, . . . ,n, k = 1, . . . ,N.
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Using the theorems, notations and definitions stated above, and generalizing the
technique used in [8], in the next sections we extend in several directions Theorem 1
proved in [5] by S. Dragomir and Theorem 4 proved by M. Sababheh in [8].

In Theorem 1 Dragomir compares a specific Jensen functional with another Jensen
functional. In Theorem 5 and Theorem 6 in Section 2 we compare the specific Jensen
functional with a sum of other functionals, see also Sababheh in [8], where a particular
case is proved.

In Section 3, Theorem 7 we extend Theorem 1 and Theorem 5 for 1-quasiconvex
functions.

A particular case of Theorem 7 is proved in [1].
In Theorem 8 we extend Theorem 1 and Theorem 5 for Superquadratic functions.
A particular case of Theorem 8 is proved in [2].
We show in the sequel that Theorem 4 is included in our Theorem 5 and therefore

applications mentioned in [8] regarding inequalities of interest in Operator Theory –
Matrix Inequalities (see for instance [6], [7], [9], [10], and [11]) can be seen as derived
also from our theorems in this paper.

2. Convexity and extended normalized Jensen functional

We start with the following theorem:

THEOREM 5. Suppose that f : [a,b)→ R, a < b � ∞ is a convex function. Then,
for every integer N

Jn ( f ,x1,p1)−
N

∑
k=1

mkJn ( f ,xk,q) � 0, (2.1)

where p1 = (p1,1, . . . , pn,1) , q =(q1, . . . ,qn) , xk =
(
x1,k, . . . ,xn,k

)
, k = 1, . . . ,N , and

pi,k , mk, xi,k, are as denoted in (1.1) and (1.2), ∑n
i=1 pi,1 = ∑n

i=1 qi = 1, and pi,1 � 0,

qi > 0, i = 1, . . . ,n, m1 = min
1�i�n

(
pi,1
qi

)
.

Proof. According to (1.1) and (1.2)

n

∑
i=1

pi,1 f (xi,1)−m1

(
n

∑
i=1

qi f (xi,1)− f

(
n

∑
i=1

qixi,1

))

=
n

∑
i=1

(pi,1−m1qi) f (xi,1)+
s1m1

s1
f

(
n

∑
i=1

qixi,1

)

=
n

∑
i=1

pi,2 f (xi,2) .
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Therefore, also

n

∑
i=1

pi,1 f (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))
(2.2)

=
n

∑
i=1

pi,2 f (xi,2)−
N

∑
k=2

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))

=
n

∑
i=1

pi,2 f (xi,2)−m2

(
n

∑
i=1

qi f (xi,2)− f

(
n

∑
i=1

qixi,2

))

−
N

∑
k=3

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))

=
...

=
n

∑
i=1

pi,N−1 f (xi,N−1)−mN−1

(
n

∑
i=1

qi f (xi,N−1)− f

(
n

∑
i=1

qixi,N−1

))

−mN

(
n

∑
i=1

qi f (xi,N)− f

(
n

∑
i=1

qixi,N

))

=
n

∑
i=1

pi,N f (xi,N)−mN

(
n

∑
i=1

qi f (xi,N)− f

(
n

∑
i=1

qixi,N

))

=
n

∑
i=1

(pi,N −mNqi) f (xi,N)+ sN

(
mN

sN

)
f

(
n

∑
i=1

qixi,N

)

=
n

∑
i=1

pi,N+1 f (xi,N+1) ,

which means that

n

∑
i=1

pi,1 f (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))
(2.3)

=
n

∑
i=1

(pi,N −mNqi) f (xi,N)+ sN

(
mN

sN

)
f

(
n

∑
i=1

qixi,N

)
=

n

∑
i=1

pi,N+1 f (xi,N+1) .

Also it is clear that

n

∑
i=1

pi,k = 1, pi,k � 0, i = 1, . . . ,n, k = 1, . . . ,N +1, (2.4)

n

∑
i=1

pi,1xi,1 =
n

∑
i=1

pi,kxi,k, k = 1, . . . ,N +1.
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Therefore as a result of (2.3) and (2.4), in order to prove (2.1) we have to show that

n

∑
i=1

pi,1 f (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))

=
n

∑
i=1

pi,N+1 f (xi,N+1)

� f

(
n

∑
i=1

pi,1xi,1

)
= f

(
n

∑
i=1

pi,kxi,k

)
= f

(
n

∑
i=1

pi,N+1xi,N+1

)
.

That is, we have to show that

n

∑
i=1

pi,N+1 f (xi,N+1) � f

(
n

∑
i=1

pi,N+1xi,N+1

)
, (2.5)

and (2.5) holds because it is given that the function f is a convex function.
The proof of the theorem is complete. �

COROLLARY 3. Under the conditions of Theorem 5, if

pi,N = qi, i = 1, . . . ,n (2.6)

we get an equality in (2.1).

Proof.

n

∑
i=1

pi,1 f (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))
(2.7)

=
n

∑
i=1

pi,N f (xi,N)−mN

(
n

∑
i=1

qi f (xi,N)− f

(
n

∑
i=1

qixi,N

))

=
n

∑
i=1

pi,N f (xi,N)−1

(
n

∑
i=1

pi,N f (xi,N)− f

(
n

∑
i=1

pi,Nxi,N

))

= f

(
n

∑
i=1

pi,Nxi,N

)
.

Indeed, the first equality in (2.7) follows from the first equality in (2.3). The second
and third equalities hold as mN = pi,N

qi
= 1, i = 1, . . . ,n . Therefore from (2.7)

n

∑
i=1

pi,1 f (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))
− f

(
n

∑
i=1

pi,Nxi,N

)
= 0,

holds, and as according to (2.4)

n

∑
i=1

pi,Nxi,N =
n

∑
i=1

pi,1xi,1
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holds, (2.1) follows with equality. The proof is complete. �
Replacing qi, i = 1, . . . ,n by 1

n in Theorem 5 and Corollary 3 we get Theorem 4
(Theorem 1 in [8]) and Theorem 2 in [8].

We extend now the left hand-side inequality in Theorem 1.
We denote

p1 = (p1,1, . . . , p1,n) , q =(q1, . . . ,qn) , (2.8)

xk =
(
x1,k, . . . ,xn,k

)
, k = 1, . . . ,N

pi,1 � 0, qi > 0, i = 1, . . . ,n,
n

∑
i=1

pi,1 =
n

∑
i=1

qi = 1,

M1 = Max

(
pi,1

qi

)
=

p j,1

q j
, i = 1, . . . ,n,

where j is a fixed specific integer for which M1 holds.
We also denote

pi,1 = p∗i,1, x∗i,1 = xi.1, i = 1, . . . ,n, (2.9)

p∗i,k = p∗i,k−1−Mk−1qi, x∗i,k = x∗i,k−1, when Mk−1 �=
p∗i,k−1

qi
, k = 2, . . . ,N

p∗i,k = p∗i,k−1−Mk−1qi, x∗i,k = x∗i,k−1, when Mk−1 =
p∗i,k−1

qi
, i �= jk, k = 2, . . . ,N

p∗jk,k = Mk−1, x∗j,k =
n

∑
i=1

qix
∗
i,k−1, when Mk−1 =

p∗jk ,k−1

q jk−1

,

Mk = Max
1�i�n

(
p∗i,k
qi

)
=

p∗jk,k
q jk

, k = 1, . . . ,N,

where jk is a specific index for which Mk holds.
With the notations and conditions in (2.8) and (2.9) we get:

THEOREM 6. Let f : [a,b) → R, a � b � ∞, be a convex function, and let (2.8)
and (2.9) hold. Then, for every integer N

Jn ( f ,x1,p1)−
N

∑
k=1

MkJn ( f ,xk,q) � 0, (2.10)

and
Mk =

p j1,1

qk
j1

, k = 1, . . . ,N (2.11)

hold, where j1 is a fixed specific integer for which M1 =
p j1,1

q j1
is satisfied.

Proof. As j1 is a specific integer for which M1 = Max
1�i�n

(
pi,1
qi

)
=

p j1,1

q j1
, it is easy

to see that

Mk−1 = Max
1�i�n

p∗i,k−1

qi
=

p j1,1

qk−1
j1

, k = 2, . . . ,N +1 (2.12)
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because the only positive p∗i,k, k = 2, . . . is p∗j1,k , as

when
p∗i,1
qi

<
p∗j1,1
q j1

, i �= j1, then p∗i,2 < 0, x∗i,2 = x∗i,1, (2.13)

when
p∗i,1
qi

=
p∗j1,1
q j1

, i �= j1, then p∗i,2 = 0, x∗i,2 = x∗i,1,

when i = j1, then p∗i,2 > 0, x∗i,2 > 0,

and
n

∑
i=1

p∗i,2x
∗
i,2 = 1, x∗j1,2 =

n

∑
i=1

qixi,1..

Hence, also for k = 2, . . . ,N the only positive p∗i,k, i = 2, . . . ,n is p∗j1,k where j1 is the

fixed integer that satisfies M1 =
p j1,1

q j1
, and therefore we can replace in the last line of

(2.9) jk with j1 , which means that (2.11) holds.
In order to complete the proof of the theorem, we proceed now with proving (2.10):
In a similar way as we get (2.2) we get

n

∑
i=1

pi,1 f (xi,1)−
N

∑
k=1

Mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
n

∑
i=1

qixi,k

))
(2.14)

=
n

∑
i=1

p∗i,2 f
(
x∗i,2
)− N

∑
k=2

Mk

(
n

∑
i=1

qi f
(
x∗i,k
)− f

(
n

∑
i=1

qix
∗
i,k

))

=
n

∑
i=1

p∗i,2 f
(
x∗i,2
)−M2

(
n

∑
i=1

qi f
(
x∗i,2
)− f

(
n

∑
i=1

qix
∗
i,2

))

−
N

∑
k=3

Mk

(
n

∑
i=1

qi f
(
x∗i,k
)− f

(
n

∑
i=1

qix
∗
i,k

))

=
...

=
n

∑
i=1

p∗i,N−1 f
(
x∗i,N−1

)−MN−1

(
n

∑
i=1

qi f
(
x∗i,N−1

)− f

(
n

∑
i=1

qix
∗
i,N−1

))

−MN

(
n

∑
i=1

qi f
(
x∗i,N
)− f

(
n

∑
i=1

qix
∗
i,N

))

=
n

∑
i=1

p∗i,N f
(
x∗i,N
)−MN

(
n

∑
i=1

qi f
(
x∗i,N
)− f

(
n

∑
i=1

qix
∗
i,N

))

=
n

∑
i=1

(
p∗i,N −MNqi

)
f
(
x∗i,N
)
+MN f

(
n

∑
i=1

qix
∗
i,N

)

=
n

∑
i=1

p∗i,N+1 f
(
x∗i,N+1

)
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which means that

n

∑
i=1

p∗i,1 f
(
x∗i,1
)− N

∑
k=1

Mk

(
n

∑
i=1

qi f
(
x∗i,k
)− f

(
n

∑
i=1

qix
∗
i,k

))
(2.15)

=
n

∑
i=1

(
p∗i,N −MNqi

)
f
(
x∗i,N
)
+MN f

(
n

∑
i=1

qix
∗
i,N

)

=
n

∑
i=1

p∗i,N+1 f
(
x∗i,N+1

)
.

Also it is clear that

p∗i,k � 0, i = 1, . . . ,n, i �= j1, p j1,k > 0, k = 2, . . . ,N +1, (2.16)
n

∑
i=1

p∗i,k = 1,
n

∑
i=1

pi,1xi,1 =
n

∑
i=1

p∗i,kx
∗
i,k, k = 1, . . . ,N +1.

From (2.15) it follows that we have to show that

n

∑
i=1

p∗i,1 f
(
x∗i,1
)− N

∑
k=1

Mk

(
n

∑
i=1

qi f
(
x∗i,k
)− f

(
n

∑
i=1

qix
∗
i,k

))

=
n

∑
i=1

p∗i,N+1 f
(
x∗i,N+1

)
� f

(
n

∑
i=1

pi,1xi,1

)
,

again from (2.15) we have to show that

n

∑
i=1

(
p∗i,N −MNqi

)
f
(
x∗i,N
)
+MN f

(
n

∑
i=1

qix
∗
i,N

)
� f

(
n

∑
i=1

pi,1xi,1

)
.

Using (2.12) in other words, we have to show that

f

(
n

∑
i=1

p∗i,Nx∗i,N

)
+

n

∑
i=1, i�= j

(
MNqi− p∗i,N

)
f
(
x∗i,N
)

� MN f

(
n

∑
i=1

qix
∗
i,N.

)
,

holds, or that

1
MN

f

(
n

∑
i=1

p∗i,Nx∗i,N

)
+

n

∑
i=1, i�= j

(
qi −

p∗i,N
MN

)
f
(
x∗i,N
)

� f

(
n

∑
i=1

qix
∗
i,N.

)
.

The last inequality follows from the convexity of f because qi− p∗i,N
MN

� 0 , i = 1, . . . ,n,

i �= j and 1
MN

> 0, and the inequality (2.10) holds.

The proof of the theorem is complete. �
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3. 1 -quasiconvexity, superquadracity and normalized Jensen functional

In Theorem 7 we extend Theorem 3 and Theorem 5 for 1-quasiconvex functions,
and in Theorem 8 we extend Theorem 2 for superquadratic functions.

THEOREM 7. Let ψ1 : [a,b) → R, 0 � a < b � ∞ be a 1 -quasiconvex func-
tion where ψ1 (x) = xϕ (x) , and ϕ is a differentiable convex function. Let xpk =
∑n

i=1 pi,kxi,k and xqk = ∑n
i=1 qixi,k , k = 1, . . . ,N . Then under the same notations and

conditions as used in Theorem 5 for pi,k, xi,k, mk , p1, q , k = 1, . . . ,N, i = 1, . . .n we
get:

Jn (ψ1,x1,p1)−
N

∑
k=1

mkJn (ψ1,xk,q) (3.1)

� ϕ
′
(xp1)

(
n

∑
i=1

pi,N+1x
2
i,N+1 − (xpN )2

)

= ϕ
′
(xp1)

(
Jn
(
x2,x1,p1

)− N

∑
k=1

mkJn
(
x2,xk,q

))
.

If ϕ is also increasing then (3.1) refines Theorem 1 and Theorem 5.
In particular, for N = 1 we get that

Jn (ψ1,x1,p1)−m1Jn (ψ1,x1,q) (3.2)

� ϕ
′
(xp1)

(
Jn
(
x2,x1,p1

)−m1Jn
(
x2,x1,q

))
.

Proof. As ψ1 is 1-quasiconvex, therefore from Corollary 2 we get that

n

∑
i=1

pi,N+1ψ1 (xi,N+1)−ψ1
(
xpN+1

)
(3.3)

� ϕ
′ (

xpN+1

)( n

∑
i=1

pi,N+1x
2
i,N+1 −

(
xpN+1

)2)

and as (2.3) and (2.4) hold, we get that

n

∑
i=1

pi,N+1ψ1 (xi,N+1)−ψ1
(
xpN+1

)
(3.4)

=
n

∑
i=1

pi,1ψ1 (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qiψ1
(
xi,k
)−ψ1

(
xqk

))−ψ1
(
xpN+1

)

=
n

∑
i=1

pi,1ψ1 (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qiψ1
(
xi,k
)−ψ1

(
xqk

))−ψ1 (xp1)

holds.



EXTENDED NORMALIZED JENSEN FUNCTIONAL 763

(3.3) and (3.4) lead to

n

∑
i=1

pi,1ψ1 (xi,1)−ψ1 (xp1)−
N

∑
k=1

mk

(
n

∑
i=1

qiψ1
(
xi,k
)−ψ1

(
xqk

))

� ϕ
′ (

xpN+1

)( n

∑
i=1

pi,N+1x
2
i,N+1 −

(
xpN+1

)2)
.

From this inequality and by using again (2.3) and (2.4) for the convex function f (x) =
x2 we get that (3.1) holds.

In the case that ϕ is also non-decreasing, ψ1 is convex too, and as f (x) = x2 is
convex, (3.1) refines (2.1).

Inequality (3.2) follows by inserting in (3.1) N = 1.
The proof is complete. �
Inequality (3.2) appears also in Theorem 3 ([1, Theorem 17]).
Similarly, we get for superquadratic functions (see Definition 1) the following

theorem which extends Theorem 2:

THEOREM 8. Let f : [0,b) → R , 0 < b � ∞ be a superquadratic function. Let
pi,k , xi,k , mk and sk , k = 1, . . . ,N , i = 1, . . . ,n satisfy (1.1) and (1.2). Let xp j =
∑n

i=1 pi, jxi, j and xq j = ∑n
i=1 qixi, j, j = 1, . . . ,N, pi,1 � 0, qi > 0, i = 1, . . . ,n, x =

(xi, . . . ,xn) ∈ [0,b)n . Then

Jn ( f ,x1,p1)−
N

∑
k=1

mkJn ( f ,xk,q) �
n

∑
k=1

pi,N+1 f (|xi,N+1−xp1 |) (3.5)

If f is also non-negative then f is convex and (3.5) refines Theorem 4.
In particular for N = 1 we get that

Jn ( f ,x1,p1)−mJn ( f ,x1,q) � mf
(∣∣xq−xp1

∣∣)+ n

∑
i=1

(pi−mqi) f
(∣∣xi−xp1

∣∣) , (3.6)

Proof. From (2.3) we get the identity

n

∑
i=1

pi,1 f (xi,1)−
N

∑
k=1

mk

(
n

∑
i=1

qi f
(
xi,k
)− f

(
xqk

))
=

n

∑
i=1

pi,N+1 f (xi,N+1) , (3.7)

and because

pi,N+1 � 0, i = 1, . . . ,n,
n

∑
i=1

pi,N+1 = 1

we get from the superquadracity of f that Corollary 1 holds, that is
n

∑
i=1

pi,N+1 f (xi,N+1)− f
(
xpN+1

)
�

n

∑
i=1

pi,N+1 f
(∣∣xi,N+1− xpN+1

∣∣) . (3.8)

Using (2.4) we can rewrite (3.8) as
n

∑
i=1

pi,N+1 f (xi,N+1)− f (xp1) �
n

∑
i=1

pi,N+1 f (|xi,N+1− xp1 |) . (3.9)
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(3.7) and (3.9) lead to (3.5).
By inserting N = 1 in (3.5) and making simple calculations using (2.3) (for N = 1)

we get (3.6).
The proof of the theorem is complete. �
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