EXTENDED NORMALIZED JENSEN FUNCTIONAL RELATED TO CONVEXITY, 1-QUASICONVEXITY AND SUPERQUADRACITY

Shoshana Abramovich

(Communicated by A. Vukelić)

Abstract

In this paper we extend results related to Normalized Jensen Functional in several directions. We compare a specific Jensen functional with a sum of other functionals for convex functions, and we also extend these results for 1 -quasiconvex functions and for Superquadratic functions.

1. Introduction

In this paper we extend and refine Jensen type inequalities appeared in [1], [2], [4], [5] and [8] related to the Jensen functional

$$
J_{n}(f, \mathbf{x}, \mathbf{p})=\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)-f\left(\sum_{i=1}^{n} p_{i} x_{i}\right) .
$$

We start with some theorems, definitions and notations that appeared in these papers.

THEOREM 1. [5] Consider the normalized Jensen functional where $f: C \longrightarrow \mathbb{R}$ is a convex function on the convex set C in a real linear space, $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in C^{n}$, and $\mathbf{p}=\left(p_{1}, \ldots, p_{n}\right), \mathbf{q}=\left(q_{1}, \ldots, q_{n}\right)$ are non-negative n-tuples satisfying $\sum_{i=1}^{n} p_{i}=$ $1, \sum_{i=1}^{n} q_{i}=1, q_{i}>0, i=1, \ldots, n$. Then

$$
M J_{n}(f, \mathbf{x}, \mathbf{q}) \geqslant J_{n}(f, \mathbf{x}, \mathbf{p}) \geqslant m J_{n}(f, \mathbf{x}, \mathbf{q})
$$

provided

$$
m=\min _{1 \leqslant i \leqslant n}\left(\frac{p_{i}}{q_{i}}\right), \quad M=\max _{1 \leqslant i \leqslant n}\left(\frac{p_{i}}{q_{i}}\right) .
$$

In [2] and in [4] a similar result is proved when f is a convex function on an interval on the real line, while \mathbf{p} and \mathbf{q} satisfy the conditions for Jensen-Steffensen inequality.

[^0]DEFINITION 1. [3] A function $f:[0, b) \rightarrow \mathbb{R}, 0<b \leqslant \infty$, is superquadratic provided that for all $0 \leqslant x<b$ there exists a constant $C(x) \in \mathbb{R}$ such that

$$
f(y)-f(x)-f(|y-x|) \geqslant C(x)(y-x)
$$

for all $0 \leqslant y<b$.
Corollary 1. [3] Suppose that f is superquadratic. Let $0 \leqslant x_{i}<b, i=$ $1, \ldots, n$ and let $\bar{x}=\sum_{i=1}^{n} a_{i} x_{i}$, where $a_{i} \geqslant 0, i=1, \ldots, n$ and $\sum_{i=1}^{n} a_{i}=1$. Then

$$
\sum_{i=1}^{n} a_{i} f\left(x_{i}\right)-f(\bar{x}) \geqslant \sum_{i=1}^{n} a_{i} f\left(\left|x_{i}-\bar{x}\right|\right)
$$

If f is non-negative, it is also convex and the inequality refines Jensen's inequality.
THEOREM 2. [2, Theorem 3] Under the same conditions and definitions on \mathbf{p}, \mathbf{q}, \mathbf{x}, m and M as in Theorem 1 , if $f:[0, b) \rightarrow \mathbb{R}, 0<b \leqslant \infty$, is a superquadratic function, $\sum_{j=1}^{n} p_{j} x_{j}=\bar{x}_{p}$ and $\sum_{j=1}^{n} q_{j} x_{j}=\bar{x}_{q}, \mathbf{x} \in[0, b)^{n}$, then the following inequlities hold:

$$
J_{n}(f, \mathbf{x}, \mathbf{p})-m J_{n}(f, \mathbf{x}, \mathbf{q}) \geqslant m f\left(\left|\bar{x}_{q}-\bar{x}_{p}\right|\right)+\sum_{i=1}^{n}\left(p_{i}-m q_{i}\right) f\left(\left|x_{i}-\bar{x}_{p}\right|\right)
$$

and

$$
J_{n}(f, \mathbf{x}, \mathbf{p})-M J_{n}(f, \mathbf{x}, \mathbf{q}) \leqslant-\sum_{i=1}^{n}\left(M q_{i}-p_{i}\right) f\left(\left|x_{i}-\bar{x}_{q}\right|\right)-f\left(\left|\bar{x}_{q}-\bar{x}_{p}\right|\right)
$$

DEFINITION 2. [1] A real-valued function f defined on an interval $[0, b)$ with $0<b \leqslant \infty$ is called γ-quasiconvex if it can be represented as the product of a comvex function and the power function x^{γ}. For $\gamma=1, f$ is called 1 -quasiconvex function.

Corollary 2. [1, Theorem 1] Let $\varphi:[a, b) \rightarrow \mathbb{R}, a \geqslant 0$ be convex differentiable function, and let $\psi_{1}(x)$ be a 1-quasiconvex function where $\psi_{1}(x)=x \varphi(x)$. Let $p_{i} \geqslant 0, x_{i} \in[a, b), i=1, \ldots, n, \sum_{i=1}^{n} p_{i}=1, \bar{x}=\sum_{i=1}^{n} p_{i} x_{i}$. Then a Jensen's type inequality holds:

$$
J_{n}\left(\psi_{1}, \mathbf{x}, \mathbf{p}\right) \geqslant \varphi^{\prime}(\bar{x}) \sum_{i=1}^{n} p_{i}\left(x_{i}-\bar{x}\right)^{2}=\varphi^{\prime}(\bar{x}) J_{n}\left(x^{2}, \mathbf{x}, \mathbf{p}\right)
$$

which is a refinement of Jensen Inequality if $\varphi^{\prime}(\bar{x})>0$.
Theorem 3. [1, Theorem 18] Suppose that $\psi_{N}:[a, b) \rightarrow \mathbb{R}, 0 \leqslant a<b \leqslant \infty$, is N-quasiconvex function, that is $\psi_{N}=x^{N} \varphi(x), N=1,2, \ldots$, when φ is convex on $[a, b)$. Let $\mathbf{p}, \mathbf{q}, \mathbf{x}, m, M, \bar{x}_{p}, \bar{x}_{q}$ and $x_{i}, i=1, \ldots, n$ be as in Theorem 2. Then,

$$
\begin{aligned}
& J_{n}\left(\psi_{N}, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-m J_{n}\left(\psi_{N}, \mathbf{x}_{1}, \mathbf{q}\right) \\
\geqslant & \sum_{i=1}^{n}\left(p_{i}-m q_{i}\right)\left(x_{i}-\bar{x}_{p}\right)^{2} \frac{\partial}{\partial \bar{x}_{p}}\left(\frac{x_{i}^{N}-\bar{x}_{p}^{N}}{x_{i}-\bar{x}_{p}} \varphi\left(\bar{x}_{p}\right)\right) \\
& +m\left(\bar{x}_{q}-\bar{x}_{p}\right)^{2}\left(\frac{\bar{x}_{q}^{N}-\bar{x}_{p}^{N}}{\bar{x}_{q}-\bar{x}_{p}} \varphi\left(\bar{x}_{p}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& J_{n}\left(\psi_{N}, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-M J_{n}\left(\psi_{N}, \mathbf{x}_{1}, \mathbf{q}\right) \\
\leqslant & \sum_{i=1}^{n}\left(p_{i}-M q_{i}\right)\left(x_{i}-\bar{x}_{q}\right)^{2} \frac{\partial}{\partial \bar{x}_{q}}\left(\frac{x_{i}^{N}-\bar{x}_{q}^{N}}{x_{i}-\bar{x}_{q}} \varphi\left(\bar{x}_{q}\right)\right) \\
& -M\left(\bar{x}_{q}-\bar{x}_{p}\right)^{2} \frac{\partial}{\partial \bar{x}_{q}}\left(\frac{\bar{x}_{q}^{N}-\bar{x}_{p}^{N}}{\bar{x}_{q}-\bar{x}_{p}} \varphi\left(\bar{x}_{q}\right)\right) .
\end{aligned}
$$

For $N=1$ we get that

$$
\begin{aligned}
& J_{n}\left(\psi_{1}, \mathbf{x}, \mathbf{p}\right)-m J_{n}\left(\psi_{1}, \mathbf{x}, \mathbf{q}\right) \\
\geqslant & \varphi^{\prime}\left(\bar{x}_{p}\right)\left(J_{n}\left(x^{2}, \mathbf{x}, \mathbf{p}\right)-m J_{n}\left(x^{2}, \mathbf{x}, \mathbf{q}\right)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& J_{n}\left(\psi_{1}, \mathbf{x}, \mathbf{p}\right)-M J_{n}\left(\psi_{1}, \mathbf{x}, \mathbf{q}\right) \\
\leqslant & \varphi^{\prime}\left(\bar{x}_{q}\right)\left(J_{n}\left(x^{2}, \mathbf{x}, \mathbf{p}\right)-M J_{n}\left(x^{2}, \mathbf{x}, \mathbf{q}\right)\right) .
\end{aligned}
$$

Let $0 \leqslant p_{i, 1} \leqslant 1,0<q_{i} \leqslant 1, \sum_{i=1}^{n} p_{i, 1}=\sum_{i=1}^{n} q_{i}=1$.
Denote $m_{1}=\min \left(\frac{p_{i, 1}}{q_{i}}\right), i=1, \ldots, n$ and s_{1} the number of i-th for which m_{1} occur.

Define

$$
\begin{align*}
p_{i, k} & =\left\{\begin{array}{cc}
p_{i, k-1}-m_{k-1} q_{i}, & m_{k-1} \neq \frac{p_{i, k-1}}{p_{i}} \\
\frac{1}{s_{k-1}} m_{k-1}, & m_{k-1}=\frac{p_{i, 1-1}}{q_{i}}, \quad k=2, \ldots
\end{array}\right. \tag{1.1}\\
m_{k-1} & =\min _{1 \leqslant i \leqslant n}\left(\frac{p_{i, k-1}}{q_{i}}\right), k=2, \ldots,
\end{align*}
$$

and denote s_{k-1} as the number of cases for which m_{k-1} occurs.
Let also $x_{i, 1} \in(a, b), i=1, \ldots, n$ and denote

$$
x_{i, k}=\left\{\begin{array}{cl}
x_{i, k-1}, & m_{k-1} \neq \frac{p_{i, k-1}}{q_{i}} \tag{1.2}\\
\sum_{i=1}^{n} q_{i} x_{i, k-1}, & m_{k-1}=\frac{p_{i, k-1}}{q_{i}},
\end{array}\right.
$$

$i=1, \ldots n, k=2, \ldots$,
In [8] the author uses the notations (1.1) and (1.2) for the special case $q_{i}=\frac{1}{n}$, $i=1, \ldots, n$ and he proves:

THEOREM 4. [8, Theorem 1] Let $f: I \rightarrow \mathbb{R}$, (I is an interval) be convex, and let $\mathbf{x}_{1}=\left(x_{1,1}, \ldots, x_{n, 1}\right) \subset I^{n}, \mathbf{p}_{1}=\left(p_{1,1}, \ldots, p_{n, 1}\right) \subset(0,1)^{n}$ be such that $\sum_{i=1}^{n} p_{i, 1}=1$. Then for every $N \in \mathbb{N}$ we have

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-f\left(\sum_{i=1}^{n} p_{i, 1} x_{i, 1}\right) \\
& -\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} \frac{1}{n} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} \frac{1}{n} x_{i, k}\right)\right) \geqslant 0
\end{aligned}
$$

where $m_{k}=\min _{1 \leqslant i \leqslant n}\left(\frac{p_{i, k}}{q_{i}}\right)$ and $q_{i}=\frac{1}{n}, i=1, \ldots, n, k=1, \ldots, N$.

Using the theorems, notations and definitions stated above, and generalizing the technique used in [8], in the next sections we extend in several directions Theorem 1 proved in [5] by S. Dragomir and Theorem 4 proved by M. Sababheh in [8].

In Theorem 1 Dragomir compares a specific Jensen functional with another Jensen functional. In Theorem 5 and Theorem 6 in Section 2 we compare the specific Jensen functional with a sum of other functionals, see also Sababheh in [8], where a particular case is proved.

In Section 3, Theorem 7 we extend Theorem 1 and Theorem 5 for 1 -quasiconvex functions.

A particular case of Theorem 7 is proved in [1].
In Theorem 8 we extend Theorem 1 and Theorem 5 for Superquadratic functions. A particular case of Theorem 8 is proved in [2].
We show in the sequel that Theorem 4 is included in our Theorem 5 and therefore applications mentioned in [8] regarding inequalities of interest in Operator Theory Matrix Inequalities (see for instance [6], [7], [9], [10], and [11]) can be seen as derived also from our theorems in this paper.

2. Convexity and extended normalized Jensen functional

We start with the following theorem:

THEOREM 5. Suppose that $f:[a, b) \rightarrow \mathbb{R}, a<b \leqslant \infty$ is a convex function. Then, for every integer N

$$
\begin{equation*}
J_{n}\left(f, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-\sum_{k=1}^{N} m_{k} J_{n}\left(f, \mathbf{x}_{k}, \mathbf{q}\right) \geqslant 0 \tag{2.1}
\end{equation*}
$$

where $\mathbf{p}_{1}=\left(p_{1,1}, \ldots, p_{n, 1}\right), \mathbf{q}=\left(q_{1}, \ldots, q_{n}\right), \mathbf{x}_{k}=\left(x_{1, k}, \ldots, x_{n, k}\right), k=1, \ldots, N$, and $p_{i, k}, m_{k}, x_{i, k}$, are as denoted in (1.1) and (1.2), $\sum_{i=1}^{n} p_{i, 1}=\sum_{i=1}^{n} q_{i}=1$, and $p_{i, 1} \geqslant 0$, $q_{i}>0, \quad i=1, \ldots, n, m_{1}=\min _{1 \leqslant i \leqslant n}\left(\frac{p_{i, 1}}{q_{i}}\right)$.

Proof. According to (1.1) and (1.2)

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-m_{1}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, 1}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, 1}\right)\right) \\
= & \sum_{i=1}^{n}\left(p_{i, 1}-m_{1} q_{i}\right) f\left(x_{i, 1}\right)+\frac{s_{1} m_{1}}{s_{1}} f\left(\sum_{i=1}^{n} q_{i} x_{i, 1}\right) \\
= & \sum_{i=1}^{n} p_{i, 2} f\left(x_{i, 2}\right)
\end{aligned}
$$

Therefore, also

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, 2} f\left(x_{i, 2}\right)-\sum_{k=2}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, 2} f\left(x_{i, 2}\right)-m_{2}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, 2}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, 2}\right)\right) \\
& -\sum_{k=3}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right) \\
= & \vdots \\
= & \sum_{i=1}^{n} p_{i, N-1} f\left(x_{i, N-1}\right)-m_{N-1}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, N-1}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, N-1}\right)\right) \\
& -m_{N}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, N}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, N}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, N} f\left(x_{i, N}\right)-m_{N}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, N}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, N}\right)\right) \\
= & \sum_{i=1}^{n}\left(p_{i, N}-m_{N} q_{i}\right) f\left(x_{i, N}\right)+s_{N}\left(\frac{m_{N}}{s_{N}}\right) f\left(\sum_{i=1}^{n} q_{i} x_{i, N}\right) \\
= & \sum_{i=1}^{n} p_{i, N+1} f\left(x_{i, N+1}\right)
\end{aligned}
$$

which means that

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right) \tag{2.3}\\
= & \sum_{i=1}^{n}\left(p_{i, N}-m_{N} q_{i}\right) f\left(x_{i, N}\right)+s_{N}\left(\frac{m_{N}}{s_{N}}\right) f\left(\sum_{i=1}^{n} q_{i} x_{i, N}\right)=\sum_{i=1}^{n} p_{i, N+1} f\left(x_{i, N+1}\right) .
\end{align*}
$$

Also it is clear that

$$
\begin{align*}
\sum_{i=1}^{n} p_{i, k} & =1, \quad p_{i, k} \geqslant 0, \quad i=1, \ldots, n, \quad k=1, \ldots, N+1, \tag{2.4}\\
\sum_{i=1}^{n} p_{i, 1} x_{i, 1} & =\sum_{i=1}^{n} p_{i, k} x_{i, k}, \quad k=1, \ldots, N+1 .
\end{align*}
$$

Therefore as a result of (2.3) and (2.4), in order to prove (2.1) we have to show that

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, N+1} f\left(x_{i, N+1}\right) \\
\geqslant & f\left(\sum_{i=1}^{n} p_{i, 1} x_{i, 1}\right)=f\left(\sum_{i=1}^{n} p_{i, k} x_{i, k}\right)=f\left(\sum_{i=1}^{n} p_{i, N+1} x_{i, N+1}\right) .
\end{aligned}
$$

That is, we have to show that

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i, N+1} f\left(x_{i, N+1}\right) \geqslant f\left(\sum_{i=1}^{n} p_{i, N+1} x_{i, N+1}\right) \tag{2.5}
\end{equation*}
$$

and (2.5) holds because it is given that the function f is a convex function.
The proof of the theorem is complete.
Corollary 3. Under the conditions of Theorem 5, if

$$
\begin{equation*}
p_{i, N}=q_{i}, \quad i=1, \ldots, n \tag{2.6}
\end{equation*}
$$

we get an equality in (2.1).

Proof.

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right) \tag{2.7}\\
= & \sum_{i=1}^{n} p_{i, N} f\left(x_{i, N}\right)-m_{N}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, N}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, N}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, N} f\left(x_{i, N}\right)-1\left(\sum_{i=1}^{n} p_{i, N} f\left(x_{i, N}\right)-f\left(\sum_{i=1}^{n} p_{i, N} x_{i, N}\right)\right) \\
= & f\left(\sum_{i=1}^{n} p_{i, N} x_{i, N}\right) .
\end{align*}
$$

Indeed, the first equality in (2.7) follows from the first equality in (2.3). The second and third equalities hold as $m_{N}=\frac{p_{i, N}}{q_{i}}=1, i=1, \ldots, n$. Therefore from (2.7)

$$
\sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right)-f\left(\sum_{i=1}^{n} p_{i, N} x_{i, N}\right)=0
$$

holds, and as according to (2.4)

$$
\sum_{i=1}^{n} p_{i, N} x_{i, N}=\sum_{i=1}^{n} p_{i, 1} x_{i, 1}
$$

holds, (2.1) follows with equality. The proof is complete.
Replacing $q_{i}, i=1, \ldots, n$ by $\frac{1}{n}$ in Theorem 5 and Corollary 3 we get Theorem 4 (Theorem 1 in [8]) and Theorem 2 in [8].

We extend now the left hand-side inequality in Theorem 1.
We denote

$$
\begin{align*}
\mathbf{p}_{1} & =\left(p_{1,1}, \ldots, p_{1, n}\right), \quad \mathbf{q}=\left(q_{1}, \ldots, q_{n}\right) \tag{2.8}\\
\mathbf{x}_{k} & =\left(x_{1, k}, \ldots, x_{n, k}\right), \quad k=1, \ldots, N \\
p_{i, 1} & \geqslant 0, \quad q_{i}>0, \quad i=1, \ldots, n, \quad \sum_{i=1}^{n} p_{i, 1}=\sum_{i=1}^{n} q_{i}=1 \\
M_{1} & =\operatorname{Max}\left(\frac{p_{i, 1}}{q_{i}}\right)=\frac{p_{j, 1}}{q_{j}}, \quad i=1, \ldots, n
\end{align*}
$$

where j is a fixed specific integer for which M_{1} holds.
We also denote

$$
\begin{align*}
p_{i, 1} & =p_{i, 1}^{*}, \quad x_{i, 1}^{*}=x_{i .1}, \quad i=1, \ldots, n \tag{2.9}\\
p_{i, k}^{*} & =p_{i, k-1}^{*}-M_{k-1} q_{i}, x_{i, k}^{*}=x_{i, k-1}^{*}, \text { when } M_{k-1} \neq \frac{p_{i, k-1}^{*}}{q_{i}}, k=2, \ldots, N \\
p_{i, k}^{*} & =p_{i, k-1}^{*}-M_{k-1} q_{i}, x_{i, k}^{*}=x_{i, k-1}^{*}, \text { when } M_{k-1}=\frac{p_{i, k-1}^{*}}{q_{i}}, i \neq j_{k}, k=2, \ldots, N \\
p_{j_{k}, k}^{*} & =M_{k-1}, x_{j, k}^{*}=\sum_{i=1}^{n} q_{i} x_{i, k-1}^{*}, \text { when } M_{k-1}=\frac{p_{j_{k}, k-1}^{*}}{q_{j_{k-1}}} \\
M_{k} & =\operatorname{Max}_{1 \leqslant i \leqslant n}\left(\frac{p_{i, k}^{*}}{q_{i}}\right)=\frac{p_{j_{k}, k}^{*}}{q_{j_{k}}}, \quad k=1, \ldots, N
\end{align*}
$$

where j_{k} is a specific index for which M_{k} holds.
With the notations and conditions in (2.8) and (2.9) we get:
THEOREM 6. Let $f:[a, b) \rightarrow \mathbb{R}, a \leqslant b \leqslant \infty$, be a convex function, and let (2.8) and (2.9) hold. Then, for every integer N

$$
\begin{equation*}
J_{n}\left(f, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-\sum_{k=1}^{N} M_{k} J_{n}\left(f, \mathbf{x}_{k}, \mathbf{q}\right) \leqslant 0 \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{k}=\frac{p_{j_{1}, 1}}{q_{j_{1}}^{k}}, \quad k=1, \ldots, N \tag{2.11}
\end{equation*}
$$

hold, where j_{1} is a fixed specific integer for which $M_{1}=\frac{p_{j_{1}, 1}}{q_{j_{1}}}$ is satisfied.
Proof. As j_{1} is a specific integer for which $M_{1}=\operatorname{Max}_{1 \leqslant i \leqslant n}\left(\frac{p_{i, 1}}{q_{i}}\right)=\frac{p_{j_{1}, 1}}{q_{j_{1}}}$, it is easy to see that

$$
\begin{equation*}
M_{k-1}=\underset{1 \leqslant i \leqslant n}{\operatorname{Max}} \frac{p_{i, k-1}^{*}}{q_{i}}=\frac{p_{j_{1}, 1}}{q_{j_{1}}^{k-1}}, \quad k=2, \ldots, N+1 \tag{2.12}
\end{equation*}
$$

because the only positive $p_{i, k}^{*}, k=2, \ldots$ is $p_{j_{1}, k}^{*}$, as

$$
\begin{aligned}
& \text { when } \frac{p_{i, 1}^{*}}{q_{i}}<\frac{p_{j_{1}, 1}^{*}}{q_{j_{1}}}, \quad i \neq j_{1}, \quad \text { then } p_{i, 2}^{*}<0, \quad x_{i, 2}^{*}=x_{i, 1}^{*}, \\
& \text { when } \frac{p_{i, 1}^{*}}{q_{i}}=\frac{p_{j_{1}, 1}^{*}}{q_{j_{1}}}, \quad i \neq j_{1}, \quad \text { then } p_{i, 2}^{*}=0, \quad x_{i, 2}^{*}=x_{i, 1}^{*} \\
& \text { when } i=j_{1}, \quad \text { then } p_{i, 2}^{*}>0, \quad x_{i, 2}^{*}>0,
\end{aligned}
$$

and

$$
\sum_{i=1}^{n} p_{i, 2}^{*} x_{i, 2}^{*}=1, \quad x_{j_{1}, 2}^{*}=\sum_{i=1}^{n} q_{i} x_{i, 1 .}
$$

Hence, also for $k=2, \ldots, N$ the only positive $p_{i, k}^{*}, i=2, \ldots, n$ is $p_{j_{1}, k}^{*}$ where j_{1} is the fixed integer that satisfies $M_{1}=\frac{p_{j_{1}, 1}}{q_{j_{1}}}$, and therefore we can replace in the last line of (2.9) j_{k} with j_{1}, which means that (2.11) holds.

In order to complete the proof of the theorem, we proceed now with proving (2.10):
In a similar way as we get (2.2) we get

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-\sum_{k=1}^{N} M_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}\right)\right) \tag{2.14}\\
= & \sum_{i=1}^{n} p_{i, 2}^{*} f\left(x_{i, 2}^{*}\right)-\sum_{k=2}^{N} M_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}^{*}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, 2}^{*} f\left(x_{i, 2}^{*}\right)-M_{2}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, 2}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, 2}^{*}\right)\right) \\
& -\sum_{k=3}^{N} M_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}^{*}\right)\right) \\
= & \vdots \\
= & \sum_{i=1}^{n} p_{i, N-1}^{*} f\left(x_{i, N-1}^{*}\right)-M_{N-1}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, N-1}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, N-1}^{*}\right)\right) \\
& -M_{N}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, N}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, N}^{*}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, N}^{*} f\left(x_{i, N}^{*}\right)-M_{N}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, N}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, N}^{*}\right)\right) \\
= & \sum_{i=1}^{n}\left(p_{i, N}^{*}-M_{N} q_{i}\right) f\left(x_{i, N}^{*}\right)+M_{N} f\left(\sum_{i=1}^{n} q_{i} x_{i, N}^{*}\right) \\
= & \sum_{i=1}^{n} p_{i, N+1}^{*} f\left(x_{i, N+1}^{*}\right)
\end{align*}
$$

which means that

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i, 1}^{*} f\left(x_{i, 1}^{*}\right)-\sum_{k=1}^{N} M_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}^{*}\right)\right) \tag{2.15}\\
= & \sum_{i=1}^{n}\left(p_{i, N}^{*}-M_{N} q_{i}\right) f\left(x_{i, N}^{*}\right)+M_{N} f\left(\sum_{i=1}^{n} q_{i} x_{i, N}^{*}\right) \\
= & \sum_{i=1}^{n} p_{i, N+1}^{*} f\left(x_{i, N+1}^{*}\right) .
\end{align*}
$$

Also it is clear that

$$
\begin{align*}
& p_{i, k}^{*} \leqslant 0, \quad i=1, \ldots, n, \quad i \neq j_{1}, \quad p_{j_{1}, k}>0, \quad k=2, \ldots, N+1, \tag{2.16}\\
& \sum_{i=1}^{n} p_{i, k}^{*}=1, \quad \sum_{i=1}^{n} p_{i, 1} x_{i, 1}=\sum_{i=1}^{n} p_{i, k}^{*} x_{i, k}^{*}, \quad k=1, \ldots, N+1
\end{align*}
$$

From (2.15) it follows that we have to show that

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i, 1}^{*} f\left(x_{i, 1}^{*}\right)-\sum_{k=1}^{N} M_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}^{*}\right)-f\left(\sum_{i=1}^{n} q_{i} x_{i, k}^{*}\right)\right) \\
= & \sum_{i=1}^{n} p_{i, N+1}^{*} f\left(x_{i, N+1}^{*}\right) \leqslant f\left(\sum_{i=1}^{n} p_{i, 1} x_{i, 1}\right),
\end{aligned}
$$

again from (2.15) we have to show that

$$
\sum_{i=1}^{n}\left(p_{i, N}^{*}-M_{N} q_{i}\right) f\left(x_{i, N}^{*}\right)+M_{N} f\left(\sum_{i=1}^{n} q_{i} x_{i, N}^{*}\right) \leqslant f\left(\sum_{i=1}^{n} p_{i, 1} x_{i, 1}\right) .
$$

Using (2.12) in other words, we have to show that

$$
f\left(\sum_{i=1}^{n} p_{i, N}^{*} x_{i, N}^{*}\right)+\sum_{i=1,}^{n}\left(M_{N} q_{i}-p_{i, N}^{*}\right) f\left(x_{i, N}^{*}\right) \geqslant M_{N} f\left(\sum_{i=1}^{n} q_{i} x_{i, N .}^{*}\right)
$$

holds, or that

$$
\frac{1}{M_{N}} f\left(\sum_{i=1}^{n} p_{i, N}^{*} x_{i, N}^{*}\right)+\sum_{i=1, i \neq j}^{n}\left(q_{i}-\frac{p_{i, N}^{*}}{M_{N}}\right) f\left(x_{i, N}^{*}\right) \geqslant f\left(\sum_{i=1}^{n} q_{i} x_{i, N .}^{*}\right)
$$

The last inequality follows from the convexity of f because $q_{i}-\frac{p_{i, N}^{*}}{M_{N}} \geqslant 0, i=1, \ldots, n$, $i \neq j$ and $\frac{1}{M_{N}}>0$, and the inequality (2.10) holds.

The proof of the theorem is complete.

3. 1-quasiconvexity, superquadracity and normalized Jensen functional

In Theorem 7 we extend Theorem 3 and Theorem 5 for 1 -quasiconvex functions, and in Theorem 8 we extend Theorem 2 for superquadratic functions.

THEOREM 7. Let $\psi_{1}:[a, b) \rightarrow \mathbb{R}, 0 \leqslant a<b \leqslant \infty$ be a 1-quasiconvex function where $\psi_{1}(x)=x \varphi(x)$, and φ is a differentiable convex function. Let $\bar{x}_{\mathbf{p}_{k}}=$ $\sum_{i=1}^{n} p_{i, k} x_{i, k}$ and $\bar{x}_{\mathbf{q}_{k}}=\sum_{i=1}^{n} q_{i} x_{i, k}, \quad k=1, \ldots, N$. Then under the same notations and conditions as used in Theorem 5 for $p_{i, k}, x_{i, k}, m_{k}, \mathbf{p}_{1}, \mathbf{q}, k=1, \ldots, N, i=1, \ldots n$ we get:

$$
\begin{align*}
& J_{n}\left(\psi_{1}, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-\sum_{k=1}^{N} m_{k} J_{n}\left(\psi_{1}, \mathbf{x}_{k}, \mathbf{q}\right) \tag{3.1}\\
\geqslant & \varphi^{\prime}\left(\bar{x}_{\mathbf{p}_{1}}\right)\left(\sum_{i=1}^{n} p_{i, N+1} x_{i, N+1}^{2}-\left(\bar{x}_{\mathbf{p}_{N}}\right)^{2}\right) \\
= & \varphi^{\prime}\left(\bar{x}_{\mathbf{p}_{1}}\right)\left(J_{n}\left(x^{2}, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-\sum_{k=1}^{N} m_{k} J_{n}\left(x^{2}, \mathbf{x}_{k}, \mathbf{q}\right)\right) .
\end{align*}
$$

If φ is also increasing then (3.1) refines Theorem 1 and Theorem 5.
In particular, for $N=1$ we get that

$$
\begin{align*}
& J_{n}\left(\psi_{1}, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-m_{1} J_{n}\left(\psi_{1}, \mathbf{x}_{1}, \mathbf{q}\right) \tag{3.2}\\
\geqslant & \varphi^{\prime}\left(\bar{x}_{\mathbf{p}_{1}}\right)\left(J_{n}\left(x^{2}, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-m_{1} J_{n}\left(x^{2}, \mathbf{x}_{1}, \mathbf{q}\right)\right) .
\end{align*}
$$

Proof. As ψ_{1} is 1-quasiconvex, therefore from Corollary 2 we get that

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i, N+1} \psi_{1}\left(x_{i, N+1}\right)-\psi_{1}\left(\bar{x}_{\mathbf{p}_{N+1}}\right) \tag{3.3}\\
\geqslant & \varphi^{\prime}\left(\bar{x}_{\mathbf{p}_{N+1}}\right)\left(\sum_{i=1}^{n} p_{i, N+1} x_{i, N+1}^{2}-\left(\bar{x}_{\mathbf{p}_{N+1}}\right)^{2}\right)
\end{align*}
$$

and as (2.3) and (2.4) hold, we get that

$$
\begin{align*}
& \sum_{i=1}^{n} p_{i, N+1} \psi_{1}\left(x_{i, N+1}\right)-\psi_{1}\left(\bar{x}_{\mathbf{p}_{N+1}}\right) \tag{3.4}\\
= & \sum_{i=1}^{n} p_{i, 1} \psi_{1}\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} \psi_{1}\left(x_{i, k}\right)-\psi_{1}\left(\bar{x}_{\mathbf{q}_{k}}\right)\right)-\psi_{1}\left(\bar{x}_{\mathbf{p}_{N+1}}\right) \\
= & \sum_{i=1}^{n} p_{i, 1} \psi_{1}\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} \psi_{1}\left(x_{i, k}\right)-\psi_{1}\left(\bar{x}_{\mathbf{q}_{k}}\right)\right)-\psi_{1}\left(\bar{x}_{\mathbf{p}_{1}}\right)
\end{align*}
$$

holds.
(3.3) and (3.4) lead to

$$
\begin{aligned}
& \sum_{i=1}^{n} p_{i, 1} \psi_{1}\left(x_{i, 1}\right)-\psi_{1}\left(\bar{x}_{\mathbf{p}_{1}}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} \psi_{1}\left(x_{i, k}\right)-\psi_{1}\left(\bar{x}_{\mathbf{q}_{k}}\right)\right) \\
\geqslant & \varphi^{\prime}\left(\bar{x}_{\mathbf{p}_{N+1}}\right)\left(\sum_{i=1}^{n} p_{i, N+1} x_{i, N+1}^{2}-\left(\bar{x}_{\mathbf{p}_{N+1}}\right)^{2}\right) .
\end{aligned}
$$

From this inequality and by using again (2.3) and (2.4) for the convex function $f(x)=$ x^{2} we get that (3.1) holds.

In the case that φ is also non-decreasing, ψ_{1} is convex too, and as $f(x)=x^{2}$ is convex, (3.1) refines (2.1).

Inequality (3.2) follows by inserting in (3.1) $N=1$.
The proof is complete.
Inequality (3.2) appears also in Theorem 3 ([1, Theorem 17]).
Similarly, we get for superquadratic functions (see Definition 1) the following theorem which extends Theorem 2:

THEOREM 8. Let $f:[0, b) \rightarrow \mathbb{R}, 0<b \leqslant \infty$ be a superquadratic function. Let $p_{i, k}, x_{i, k}, m_{k}$ and $s_{k}, k=1, \ldots, N, i=1, \ldots, n$ satisfy (1.1) and (1.2). Let $\bar{x}_{\mathbf{p}_{j}}=$ $\sum_{i=1}^{n} p_{i, j} x_{i, j}$ and $\bar{x}_{\mathbf{q}_{j}}=\sum_{i=1}^{n} q_{i} x_{i, j}, j=1, \ldots, N, p_{i, 1} \geqslant 0, q_{i}>0, i=1, \ldots, n, \mathbf{x}=$ $\left(x_{i}, \ldots, x_{n}\right) \in[0, b)^{n}$. Then

$$
\begin{equation*}
J_{n}\left(f, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-\sum_{k=1}^{N} m_{k} J_{n}\left(f, \mathbf{x}_{k}, \mathbf{q}\right) \geqslant \sum_{k=1}^{n} p_{i, N+1} f\left(\left|x_{i, N+1}-\bar{x}_{\mathbf{p}_{1}}\right|\right) \tag{3.5}
\end{equation*}
$$

If f is also non-negative then f is convex and (3.5) refines Theorem 4.
In particular for $N=1$ we get that

$$
\begin{equation*}
J_{n}\left(f, \mathbf{x}_{1}, \mathbf{p}_{1}\right)-m J_{n}\left(f, \mathbf{x}_{1}, \mathbf{q}\right) \geqslant m f\left(\left|\bar{x}_{q}-\bar{x}_{p_{1}}\right|\right)+\sum_{i=1}^{n}\left(p_{i}-m q_{i}\right) f\left(\left|x_{i}-\bar{x}_{p_{1}}\right|\right) \tag{3.6}
\end{equation*}
$$

Proof. From (2.3) we get the identity

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i, 1} f\left(x_{i, 1}\right)-\sum_{k=1}^{N} m_{k}\left(\sum_{i=1}^{n} q_{i} f\left(x_{i, k}\right)-f\left(\bar{x}_{\mathbf{q}_{k}}\right)\right)=\sum_{i=1}^{n} p_{i, N+1} f\left(x_{i, N+1}\right) \tag{3.7}
\end{equation*}
$$

and because

$$
p_{i, N+1} \geqslant 0, \quad i=1, \ldots, n, \quad \sum_{i=1}^{n} p_{i, N+1}=1
$$

we get from the superquadracity of f that Corollary 1 holds, that is

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i, N+1} f\left(x_{i, N+1}\right)-f\left(\bar{x}_{\mathbf{p}_{N+1}}\right) \geqslant \sum_{i=1}^{n} p_{i, N+1} f\left(\left|x_{i, N+1}-\bar{x}_{\mathbf{p}_{N+1}}\right|\right) \tag{3.8}
\end{equation*}
$$

Using (2.4) we can rewrite (3.8) as

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i, N+1} f\left(x_{i, N+1}\right)-f\left(\bar{x}_{\mathbf{p}_{1}}\right) \geqslant \sum_{i=1}^{n} p_{i, N+1} f\left(\left|x_{i, N+1}-\bar{x}_{\mathbf{p}_{1}}\right|\right) \tag{3.9}
\end{equation*}
$$

(3.7) and (3.9) lead to (3.5).

By inserting $N=1$ in (3.5) and making simple calculations using (2.3) (for $N=1$) we get (3.6).

The proof of the theorem is complete.

REFERENCES

[1] S. Abramovich, Jensen, Hölder, Minkowski, Jensen-Steffensen and Slater-Pečarić inequalities derived through γ-quasiconvexity, Math. Inequal. Appl. 19 (2016), no. 4, 1203-1226.
[2] S. Abramovich and S. S. Dragomir, Normalized Jensen Functional, Superquadracity and Related Inequalities, International Series of Numerical Mathematics, Birkhäuser Verlag 157, (2008), 217-228.
[3] S. Abramovich, G. Jameson and G. Sinnamon, Refining Jensen's Inequality, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie, (Novel Series) 47 (95), (2004), 3-14.
[4] J. Barić, M. Matić, J. Pečarić, On the bounds for the normalized Jensen functional and JensenSteffensen inequality, Math. Inequal. Appl. 12 (2009), no. 2, 413-432.
[5] S. S. Dragomir, Bounds of the normalised Jensen functional", Bull. Austral. Math. Soc. 74 (2006), 471-478.
[6] F. Kittaneh and Y. Manasrah, Improved Young and Heinz inequalities for matrices, J. Math. Anal. Appl. 36, (2010), 262-269.
[7] C. Niculescu and L.-E. Persson, Convex functions and their applications, a contemporary approach, CMS books in mathematics 23, Springer, New York, 2006.
[8] M. SABABHEH, Improved Jensen's inequality, Math. Inequal. Appl. 20 (2017), no. 2, 389-403.
[9] M. Sababheh and D. Choi, A complete refinement of Young's inequality, J. Math. Anal. Appl. 440, no. 1, (2016), 379-393.
[10] M. Sababheh and M. Sal. Moslehian, Advaned refinements of Young and Heinz inequalities, J. Number Theory 172 (2017), 178-199.
[11] J. Zhao and J. Wu, Operator inequalities involving improved Young and it's reserved inequalities, J. Math. Anal. Appl. 421 (2015), 1779-1789.
(Received June 11, 2017)
Shoshana Abramovich Department of Mathematics

University of Haifa
Haifa, Israel
e-mail: abramos@math.haifa.ac.il

[^1]
[^0]: Mathematics subject classification (2010): 26D15, 26A51, 26B25, 39B62, 47A63, 47A64.
 Keywords and phrases: Convexity, superquadracity, γ-quasiconvexity, 1 -quasiconvexity, Jensen functionals.

[^1]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

