COEFFICIENT PROBLEMS FOR UNIFIED STARLIKE AND CONVEX CLASSES OF m–FOLD SYMMETRIC BI–UNIVALENT FUNCTIONS

ZHENHAN TU AND LIANGPENG XIONG

(Communicated by H. M. Srivastava)

Abstract. Let \mathcal{T}_m denote the class of m-fold symmetric bi-univalent functions in the open unit disk. We obtain the coefficient bounds of $|a_{m+1}|$ and $|a_{2m+1}|$ for functions in a new general subclass $\mathcal{C}_h^p(\alpha)$ of \mathcal{T}_m, where h and p are in Carathéodary class of functions. We investigate the initial Taylor-Maclaurin coefficients estimate problems associated with $\mathcal{C}_h^p(\alpha)$ also. Our conclusion improves some earlier related results.

1. Introduction

Let \mathcal{A} be the class of functions of the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

which are normalized analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. We denote by \mathcal{S} the class of all functions $f(z) \in \mathcal{A}$ which are univalent in \mathbb{U}.

Let \mathcal{P} be the class of all analytic functions $p : \mathbb{U} \to \mathbb{C}$ satisfying $p(0) = 1$ and the real part $\Re p(z) > 0$ on \mathbb{U}.

The Koebe one-quarter theorem ensures that the image of \mathbb{U} under every $f \in \mathcal{S}$ contains a disk of radius $\frac{1}{4}$ (see, Duren [11]). Thus, every function $f(z) \in \mathcal{S}$ has an inverse f^{-1}, which is defined by

$$f^{-1}(f(z)) = z, \quad z \in \mathbb{U}$$

and

$$f(f^{-1}(w)) = w, \quad (|w| < r_0(f), \ r_0(f) \geq \frac{1}{4}).$$

A function $f \in \mathcal{S}$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let \mathcal{T} denote the class of bi-univalent functions.

In 1967, Lewin [20] investigated the class \mathcal{T} and showed that, for every function $f \in \mathcal{S}$ of the form (1), the second coefficient of f satisfies the estimate $|a_2| < 1.51$. Mathematics subject classification (2010): 30C45, 30C50.

Keywords and phrases: Convex functions, Faber polynomial expansion, starlike functions, Taylor-Maclaurin coefficients inequalities, univalent functions.
Also, Brannan-Clunie [7] conjectured that $|a_2| \leq \sqrt{2}$ for $f \in \mathcal{T}$. Furthermore, Netanyahu [22] proved that $\max\{|a_2| : f \in \mathcal{T}\} = \frac{3}{4}$. In 1985, Kedzierawski [19] proved the Brannan-Clunie conjecture for bi-starlike functions and Tan [35] obtained the bound with $|a_2| < 1.485$, which is the best known estimate for functions in the class \mathcal{T}. In addition, Brannan-Taha [8] obtained estimates on the initial coefficients $|a_2|$ and $|a_3|$ for functions in the classes of bi-starlike functions of order β ($0 \leq \beta < 1$) and bi-convex functions of order β ($0 \leq \beta < 1$).

The study of bi-univalent functions was revived in recent years by Srivastava-Mishra-Gochhayat [24], and a considerably large number of sequels to Srivastava-Mishra-Gochhayat [24] have appeared in the literature since then (see, e.g., [3, 12, 15, 23, 25, 33, 36, 37, 38]). Recently, Çağlar-Deniz-Srivastava [10] studied the second Hankel determinant for certain subclasses of bi-univalent functions, Deniz [13] and Srivastava-Bansal [27] both extended and improved the results of Brannan–Taha [8] by the principle of subordination between analytic functions, and Srivastava-Gaboury-Ghanim [30] obtained the coefficient estimates for some general subclasses of analytic and bi-univalent functions.

Faber polynomials plays a considerable act in geometric function theory (see, e.g., [4, 6, 17]), which was introduced by Faber [16]. In particular, Srivastava-Eker-Ali [28] and Sakar-Güney [34] used the Faber polynomial expansion techniques to derive bounds for the general Taylor-Maclaurin coefficients $|a_n|$ of the functions in different subclasses of \mathcal{T}, and Srivastava-Eker-Hamidi-Jahangiri [31] studied the Faber polynomial coefficients for bi-univalent functions defined by the Tremblay fractional derivative operator.

Now, using the Faber polynomial expansion of functions $f \in \mathcal{A}$ of the form (1), the coefficients of its inverse map $g = f^{-1}$ can be expressed as (see, Airault-Bouali [4]):

$$g(w) = f^{-1}(w) = w + \sum_{n=2}^{\infty} \frac{1}{n} K_{n-1}^{-n}(a_2, a_3, \ldots) w^n,$$

where

$$K_{n-1}^{-n} = \frac{(-n)!}{(-2n+1)!(n-1)!} a_2^{n-1} + \frac{(-n)!}{2(-n-1)!(n-3)!} a_2^{-3} a_3$$

$$+ \frac{(-n)!}{(-2n+3)!(n-4)!} a_2^{-4} a_4 + \frac{(-n)!}{2(-n+2)!(n-5)!} a_2^{-5}[a_5 + (-n+2)a_3^2]$$

$$+ \frac{(-n)!}{(-2n+5)!(n-6)!} a_2^{-6}[a_6 + (-2n+5)a_3 a_4] + \sum_{j \geq 7} a_2^{-1} V_j,$$

in which V_j ($7 \leq j \leq n$) is a homogeneous polynomial in the variables a_2, a_3, \ldots, a_n (see, Airault-Ren [5]). In particular, the first three terms of K_{n-1}^{-n} are

$$\frac{1}{2} K_1^{-2} = -a_2, \quad \frac{1}{3} K_2^{-3} = 2a_2^2 - a_3, \quad \frac{1}{4} K_3^{-4} = -(5a_2^3 - 5a_2 a_3 + a_4).$$

Thus, the inverse function f^{-1} may analytically continued to \mathcal{U} as follows:

$$f^{-1}(w) = w - a_2 w^2 + (2a_2^2 - a_3) w^3 - (5a_2^3 - 5a_2 a_3 + a_4) w^4 + \cdots.$$
For each $f \in \mathcal{S}$, the function
\[h(z) = \sqrt[m]{f(z^m)}, \quad z \in \mathbb{D}, \quad m \in \mathbb{N}, \]
is univalent and maps the unit disk \mathbb{D} into a region with m-fold symmetry. A function is said to be m-fold symmetric (see, e.g., [26, 29]) if it has the following normalized form:
\[f(z) = z + \sum_{k=1}^{\infty} a_{mk+1} z^{mk+1}, \quad z \in \mathbb{D}, \quad m \in \mathbb{N}. \] (5)

We denote by \mathcal{S}_m the class of m-fold symmetric univalent functions in \mathbb{D}. The functions in the class \mathcal{S} are said to be one-fold symmetric.

Each bi-univalent function generates an m-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. The normalized form of f is given as in (5) and the series expansion for f^{-1}, which has been recently proven by Srivastava-Sivasubramanian-Sivakumar [26], is given as follows:
\[g(w) = w - a_{m+1} w^{m+1} + [(m+1)a_{m+1}^2 - a_{2m+1}] w^{2m+1} + \cdots, \] (6)
where $f^{-1} = g$. We denote by \mathcal{C}_m the class of m-fold symmetric bi-univalent functions in \mathbb{D}. Thus, when $m = 1$, the formula (6) coincides with the formula (4).

Here are some examples of m-fold symmetric bi-univalent functions (see, e.g., [26, 29])
\[\left(\frac{z^m}{1 - z^m} \right)^{\frac{1}{m}}, \quad \left[\frac{1}{2} \log \left(\frac{1 + z^m}{1 - z^m} \right) \right]^{\frac{1}{m}}, \quad [- \log(1 - z^m)]^{\frac{1}{m}} \]
with the corresponding inverse functions
\[\left(\frac{w^m}{1 - w^m} \right)^{\frac{1}{m}}, \quad \left(\frac{e^{2w^m} - 1}{e^{2w^m} + 1} \right)^{\frac{1}{m}}, \quad \left(\frac{e^{w^m} - 1}{e^{w^m}} \right)^{\frac{1}{m}}. \]

Srivastava-Gaboury-Ghanim [29] and Sivasubramanian-Sivakumar [32] deal with the coefficients problems for $f \in \mathcal{C}_m$. Bounds for the initial coefficients of different classes of m-fold symmetric bi-univalent functions were also investigated by the other authors (see, e.g., [14, 17, 26]).

DEFINITION 1. Let the function $h, p : \mathbb{D} \to \mathbb{C}$ be constrained that $h(0) = p(0) = 1$ and
\[\min \{ \Re(h(z)), \Re((p(z)) \} > 0 \quad (z \in \mathbb{D}). \]
For a function $f \in \mathcal{C}_m$, we say $f \in \mathcal{C}_m^{h,p}(\alpha)$ if the following conditions are satisfied:
\[\left(\frac{zf'(z)}{f(z)} \right)^{\alpha} \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\alpha} \in h(\mathbb{D}) \quad (z \in \mathbb{D}, \quad 0 \leq \alpha \leq 1) \]
and
\[\left(\frac{wg'(w)}{g(w)} \right)^{\alpha} \left(1 + \frac{wg''(w)}{g'(w)} \right)^{1-\alpha} \in p(\mathbb{D}) \quad (w \in \mathbb{D}, \quad 0 \leq \alpha \leq 1), \]
where $g(w) = f^{-1}(w)$.

REMARK 1. Obviously, $\mathcal{C}_{m}^{h, p}(\alpha)$ generalizes the class of m-fold symmetric bi-starlike and bi-convex functions. Specially, $\mathcal{C}_{1}^{h, p}(\alpha)$ was introduced and studied by Xiong-Liu [36] with $\mathcal{C}_{1}^{h, p}(\alpha)$. Some closely-related classes were investigated by Bulut [9] and Xu-Xiao-Srivastava [37] also.

If we let
\[
h(z) = m \frac{1 + (1 - 2\beta)z^m}{1 - z^m}, \quad p(z) = m \frac{1 - (1 - 2\beta)z^m}{1 + z^m}, \quad (0 \leq \beta < 1, \ z \in \mathbb{U})
\]
and
\[
h(z) = m \left(\frac{1 + z^m}{1 - z^m} \right)^\beta, \quad p(z) = m \left(\frac{1 - z^m}{1 + z^m} \right)^\beta, \quad (0 < \beta \leq 1, \ z \in \mathbb{U})
\]
in Definition 1 respectively, then we have the definition 2 and definition 3 as follows.

DEFINITION 2. For a function $f \in \mathcal{F}_m$, we say $f \in \mathcal{C}_{m}^{\beta}(\alpha)$ if the following conditions are satisfied:
\[
\Re \left\{ \left(\frac{zf''(z)}{f'(z)} \right)^\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1 - \alpha} \right\} > \beta \quad (z \in \mathbb{U})
\]
and
\[
\Re \left\{ \left(\frac{wg'(w)}{g(w)} \right)^\alpha \left(1 + \frac{wg'(w)}{g(w)} \right)^{1 - \alpha} \right\} > \beta \quad (w \in \mathbb{U}),
\]
where $g(w) = f^{-1}(w), \ 0 \leq \beta < 1, \ 0 \leq \alpha \leq 1$.

REMARK 2. (i) If $m = 1$ in Definition 2, then the class $\mathcal{C}_{1}^{\beta}(\alpha)$ was introduced and studied by Ali-Lee-Ravichandran-Supramaniama [3] with $\mathcal{C}_{1}^{\beta}(\alpha)$. Also the classes $\mathcal{C}_{1}^{\beta}(1) \equiv \mathcal{K}_{1}^{\beta}$ and $\mathcal{C}_{1}^{\beta}(0) \equiv \mathcal{K}_{1}^{0 \beta}$ were introduced by Brannan-Taha [8].

(ii) If $\alpha = 0$ in Definition 2, then the class $\mathcal{C}_{m}^{\beta}(0)$ was introduced and studied by Sivasubramanian-Sivakumar [32] with \mathcal{K}_{1}^{β}.

(iii) If $\alpha = 1$ in Definition 2, then the class $\mathcal{C}_{m}^{\beta}(1)$ was introduced and studied by Hamidi-Jahangiri [17] with \mathcal{K}_{1}^{β}.

DEFINITION 3. For a function $f \in \mathcal{F}_m$, we say $f \in \mathcal{C}_{m}^{\alpha \beta}(\alpha)$ if the following conditions are satisfied:
\[
\left| \arg \left[\left(\frac{zf''(z)}{f'(z)} \right)^\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1 - \alpha} \right] \right| < \frac{\beta \pi}{2}, \quad z \in \mathbb{U}
\]
and
\[
\left| \arg \left[\left(\frac{wg'(w)}{g(w)} \right)^\alpha \left(1 + \frac{wg'(w)}{g(w)} \right)^{1 - \alpha} \right] \right| < \frac{\beta \pi}{2}, \quad w \in \mathbb{U},
\]
where $g(w) = f^{-1}(w), \ 0 \leq \alpha \leq 1, \ 0 < \beta \leq 1$.

Remark 3. (i) If \(m = 1 \) in Definition 3, then the class was introduced and studied by Ali-Lee-Ravichandran-Supramaniam [3] with \(C^* (\alpha) \). Also the classes \(C^* (1) \equiv \mathcal{S}^*_\beta \) and \(C^* (0) \equiv \mathcal{K}^*_\beta \) were introduced by Brannan-Taha [8].

(ii) If \(\alpha = 0 \) or \(\alpha = 1 \) in Definition 3, then the classes were introduced and studied by Sivasubramanian-Sivakumar [32] with \(\mathcal{K}^*_m \) or \(\mathcal{S}^*_m \), respectively.

Motivated and stimulated especially by the works of Srivastava–Mishra–Gochhayat [24], Xiong-Liu [36], Xu-Xiao-Srivastava [37] and Xu-Gui-Srivastava [38], we give the estimates on the initial coefficients \(|a_{m+1}| \) and \(|a_{2m+1}| \) for the subclass \(C^ {h,p}_m (\alpha) \) of \(m \)-fold symmetric bi-univalent functions in this paper. The corresponding results about the classes \(C^*_m (\alpha) \) and \(C^* (\alpha) \) were given also. Our results generalize and improve some earlier related works.

2. Main results

We begin by finding the estimates on the coefficients \(|a_{m+1}| \) and \(|a_{2m+1}| \) for functions in the class \(C^ {h,p}_m (\alpha) \).

Theorem 1. Let the function \(f(z) \) given by (5) be in the class \(C^ {h,p}_m (\alpha) \). Then

\[
|a_{m+1}| \leq \min \left\{ \sqrt{\frac{|h^{(2m)}(0)| + |p^{(2m)}(0)|}{(2m)!|L_m|}}, \sqrt{\frac{|h^{(m)}(0)|^2 + |p^{(m)}(0)|^2}{2(m!)^2[(1 - \alpha)m^2 + 1]^2}} \right\}
\]

and

\[
|a_{2m+1}| \leq \min \left\{ \sqrt{\frac{|A + L_m|}{L_mB}} \frac{|h^{(2m)}(0)|}{(2m)!} + \sqrt{\frac{|A - L_m|}{L_mB}} \frac{|p^{(2m)}(0)|}{(2m)!}, \mathfrak{B} \right\},
\]

where \(A = m(m + 1)[2(1 - \alpha)(2m + 1) + 2\alpha] \), \(B = 4(1 - \alpha)m(2m + 1) + 4m\alpha \), \(L_m = (m + 1)[2(1 - \alpha)m(2m + 1) + 2m\alpha] + \alpha(\alpha - 1)m^2 + 2\alpha(1 - \alpha)m^2(m + 1) - 2m\alpha - (1 - \alpha)m^2(m + 1)^2 - 2m(1 - \alpha)(m + 1)^2 \) and

\[
\mathfrak{B} = \frac{A}{B} \frac{|h^{(m)}(0)|^2 + |p^{(m)}(0)|^2}{2(m!)^2[(1 - \alpha)m^2 + 1]^2} + \frac{|h^{(2m)}(0)| + |p^{(2m)}(0)|}{(2m)!B}.
\]

Proof. For the function \(f \in C^ {h,p}_m (\alpha) \) and for the inverse map \(g = f^{-1} \), we obtain

\[
\left(\frac{zf'(z)}{f(z)} \right)^\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\alpha} = h(z) \quad (z \in \mathbb{U})
\]

and

\[
\left(\frac{wg'(w)}{g(w)} \right)^\alpha \left(1 + \frac{wg''(w)}{g'(w)} \right)^{1-\alpha} = p(w) \quad (w \in \mathbb{U}),
\]

where \(h \) and \(p \) satisfy the hypotheses in Definition 1. Now suppose that the functions \(h(z) \) and \(p(w) \) have the following series expansions:

\[
h(z) = 1 + h_m z^m + h_{2m} z^{2m} + \cdots
\]
and
\[p(w) = 1 + p_m w + p_{2m} w^{2m} + \cdots, \tag{12} \]
respectively.

Following (5), we write:
\[\left(\frac{zf'(z)}{f(z)} \right)^\alpha \left(1 + \frac{zf''(z)}{f'(z)} \right)^{1-\alpha} = 1 + T_m z^m + T_{2m} z^{2m} + \cdots, \]
where
\[T_m = [(1 - \alpha)m^2 + 1]a_{m+1} \tag{13} \]
and
\[T_{2m} = [2(1 - \alpha)m(2m + 1) + 2m\alpha]a_{2m+1} + \left[\frac{\alpha(\alpha - 1)}{2}m^2 + \alpha(1 - \alpha)m^2(1 + m) - m\alpha - \frac{\alpha(1 - \alpha)}{2}m^2(m + 1)^2 - m(1 - \alpha)(m + 1)^2 \right]a_{m+1}. \]

Also from (5) and (6), we get
\[\left(\frac{wg'(w)}{g(w)} \right)^\alpha \left(1 + \frac{wg''(w)}{g'(w)} \right)^{1-\alpha} = 1 + G_m w^m + G_{2m} w^{2m} + \cdots, \tag{14} \]
where
\[G_m = -[(1 - \alpha)m^2 + 1]a_{m+1} \]
and
\[G_{2m} = \left[m(m + 1)[2(1 - \alpha)(2m + 1) + 2\alpha] + \frac{\alpha(\alpha - 1)}{2}m^2 + \alpha(1 - \alpha)m^2(m + 1) - m\alpha - \frac{\alpha(1 - \alpha)}{2}m^2(m + 1)^2 - m(1 - \alpha)(m + 1)^2 \right]a_{m+1} - \left[2(1 - \alpha)m(2m + 1) + 2m\alpha \right]a_{2m+1}. \]

Now, combining (9)-(14), we have
\[T_m = h_m, \tag{15} \]
\[T_{2m} = h_{2m}, \tag{16} \]
\[G_m = p_m, \tag{17} \]
\[G_{2m} = p_{2m}. \tag{18} \]

From (15) and (17), it follows
\[h_m = -p_m \tag{19} \]
and
\[2[(1 - \alpha)m^2 + 1]a_{m+1}^2 = h_m^2 + p_m^2. \tag{20} \]
Also from (16) and (18), we get

\[L_m a_{m+1}^2 = h_{2m} + p_{2m}, \]

(21)

where

\[L_m = (m + 1)[2(1 - \alpha)m(2m + 1) + 2m\alpha] + \alpha(\alpha - 1)m^2 + 2\alpha(1 - \alpha)m^2(m + 1) - 2m(1 - \alpha)(m + 1)^2. \]

Therefore, from (20) and (21), we have

\[a_{m+1}^2 = \frac{h_{2m}^2 + p_{2m}^2}{2[(1 - \alpha)m^2 + 1]^2}, \]

(22)

and

\[a_{m+1}^2 = \frac{h_{2m} + p_{2m}}{L_m}, \]

(23)

which give the desired estimate on \(|a_{m+1}|\) as asserted in (7).

Next, in order to find the bound on \(|a_{2m+1}|\), by subtracting (18) from (16), we get

\[4[(1 - \alpha)m(2m + 1) + m\alpha]a_{2m+1} - m(m + 1)[2(1 - \alpha)(2m + 1) + 2\alpha]a_{m+1}^2 = h_{2m} - p_{2m}. \]

(24)

By (22) and (24), it follows

\[a_{2m+1} = \frac{m(m + 1)[2(1 - \alpha)(2m + 1) + 2\alpha]}{4[(1 - \alpha)m(2m + 1) + m\alpha]} \frac{h_{2m}^2 + p_{2m}^2}{2[(1 - \alpha)m^2 + 1]^2} + \frac{h_{2m} - p_{2m}}{4[(1 - \alpha)m(2m + 1) + m\alpha]}. \]

(25)

On the other hand, from (23) and (24), it follows

\[L_mB a_{2m+1} = A(h_{2m} + p_{2m}) + L_m(h_{2m} - p_{2m}), \]

where

\[A = m(m + 1)[2(1 - \alpha)(2m + 1) + 2\alpha], \]

\[B = 4(1 - \alpha)m(2m + 1) + 4m\alpha. \]

Thus we obtain

\[a_{2m+1} = \frac{A + L_m}{L_mB} h_{2m} + \frac{A - L_m}{L_mB} p_{2m}, \]

which yields the desired estimate on \(|a_{2m+1}|\) as asserted in (8). \(\Box\)

Theorem 2. Let the function \(f(z)\) given by (5) be in the class \(C_{m+\beta}^\alpha(\alpha)\). Then

\[|a_{m+1}| \leq \min \left\{ \frac{2\beta}{m} \sqrt{\frac{1}{(2m)!|L_m|}}, \frac{2\beta}{m(m!)[(1 - \alpha)m^2 + 1]} \right\} \]
and

$$|a_{2m+1}| \leq \min \left\{ \left(\left| \frac{A+L_m}{L_mB} \right| + \left| \frac{A-L_m}{L_mB} \right| \right) \frac{2\beta^2}{m^2(2m)!}, B_2 \right\},$$

where \(A = m(m+1)[2(1-\alpha)(2m+1) + 2\alpha], \ B = 4(1-\alpha)m(2m+1) + 4m\alpha, \ L_m = (m+1)[2(1-\alpha)m(2m+1) + 2m\alpha] + \alpha(\alpha-1)m^2 + 2\alpha(1-\alpha)m^2(m+1) - 2m\alpha - \alpha(1-\alpha)m^2(m+1)^2 - 2m(1-\alpha)(m+1)^2 \) and

$$B_2 = \frac{A}{B \cdot m^2(m!)^2[(1-\alpha)m^2+1]^2} + \frac{4\beta^2}{m^2(2m)!B}.$$

Proof. Let

$$h(z) = \sqrt[2m]{\frac{1+z}{1-z^{m}}} = 1 + 2 \frac{\beta}{m} + 2 \frac{\beta^2}{m^2} z^m + \cdots, \ z \in U$$

and

$$p(z) = \sqrt[2m]{\frac{1-z}{1+z^{m}}} = 1 - 2 \frac{\beta}{m} + 2 \frac{\beta^2}{m^2} z^m + \cdots, \ z \in U$$

in Theorem 1. Then we have Theorem 2. \(\square \)

Theorem 3. Let the function \(f(z) \) given by (5) be in the class \(\mathcal{C}_m^\beta(\alpha) \). Then

$$|a_{m+1}| \leq \min \left\{ \frac{2}{m} \sqrt{(1-\beta)[m+1-m(1-\beta)]}{(2m)!L_m}, \frac{2(1-\beta)}{m(m!)[(1-\alpha)m^2+1]} \right\}$$

and

$$|a_{2m+1}| \leq \min \left\{ \left(\left| \frac{A+L_m}{L_mB} \right| + \left| \frac{A-L_m}{L_mB} \right| \right) \frac{2(1-\beta)[m+1-m(1-\beta)]}{m^2(2m)!}, B_3 \right\},$$

where \(A = m(m+1)[2(1-\alpha)(2m+1) + 2\alpha], \ B = 4(1-\alpha)m(2m+1) + 4m\alpha, \ L_m = (m+1)[2(1-\alpha)m(2m+1) + 2m\alpha] + \alpha(\alpha-1)m^2 + 2\alpha(1-\alpha)m^2(m+1) - 2m\alpha - \alpha(1-\alpha)m^2(m+1)^2 - 2m(1-\alpha)(m+1)^2 \) and

$$B_3 = \frac{A}{B \cdot m^2(m!)^2[(1-\alpha)m^2+1]^2} + \frac{4(1-\beta)^2}{m^2(2m)!B}.$$

Proof. Let

$$h(z) = \sqrt[2m]{\frac{1+(1-2\beta)z^m}{1-z^m}}$$

$$= 1 + \frac{2}{m}(1-\beta)z^m + \left[\frac{2}{m}(1-\beta) + \frac{1-m}{2m^2}(2-2\beta)^2 \right] z^m + \cdots, \ z \in U$$
and

\[p(z) = \sqrt[2m]{\frac{1 - (1 - 2\beta)z^m}{1 + z^m}} = 1 - \frac{2m}{(1 - \beta)}z^m + \left[\frac{2m}{m} (1 - \beta) \right] z^m + \cdots, \quad z \in \mathbb{U} \]

in Theorem 1. Then we have Theorem 3. \hfill \Box

3. Corollaries and consequences

In this section, we give some corollaries by using the above theorems.

Corollary 1. Let the function \(f(z) \) given by (5) be in the class \(\mathcal{C}^{h, p} (\alpha) \), then

\[
|a_2| \leq \min \left\{ \sqrt{\frac{|h''(0)| + |p''(0)|}{2|\alpha^2 - 3\alpha + 4|}}, \sqrt{\frac{|h'(0)|^2 + |p'(0)|^2}{2(2 - \alpha)^2}} \right\}
\]

and

\[
|a_3| \leq \min \left\{ \frac{|\alpha^2 - 11\alpha + 16|h''(0)|}{8(3 - 2\alpha)(\alpha^2 - 3\alpha + 4)}, \frac{|\alpha^2 + 5\alpha - 8| p''(0)|}{8(3 - 2\alpha)(\alpha^2 - 3\alpha + 4)} \right\} \mathfrak{B}_1,
\]

where

\[
\mathfrak{B}_1 = \frac{|h'(0)|^2 + |p'(0)|^2}{2(2 - \alpha)^2} + \frac{|h''(0)| + |p''(0)|}{8(3 - 2\alpha)}.
\]

Proof. By taking \(m = 1 \) in Theorem 1, we get Corollary 1, which is an improvement of the estimates given by Xiong-Liu [36]. \hfill \Box

Corollary 2. Let the function \(f(z) \) given by (5) be in the class \(\mathcal{K}^{*}_{m} \beta \). Then

\[
|a_{m+1}| \leq \min \left\{ \frac{2\beta}{m} \sqrt{\frac{1}{2(2m)!m^2(m + 1)}}, \frac{2\beta}{m(m!)(m^2 + 1)} \right\}
\]

and

\[
|a_{2m+1}| \leq \min \left\{ \frac{\beta^2}{m^4(2m)!}, \frac{2(m + 1)\beta^2}{m^2(m!)(2m^2 + 1)^2} + \frac{\beta^2}{m^3(2m + 1)!} \right\}.
\]

Proof. By letting \(\alpha = 0 \) in Theorem 2, we have Corollary 2. \hfill \Box

Corollary 3. Let the function \(f(z) \) given by (5) be in the class \(\mathcal{K}^{*}_{m} \beta \). Then

\[
|a_{m+1}| \leq \min \left\{ \frac{2\beta}{m} \sqrt{\frac{1}{(2m)!2m^2}}, \frac{2\beta}{m(m!)} \right\}
\]
and
\[|a_{2m+1}| \leq \min \left\{ \frac{(m+1)\beta^2}{m^2(2m)!}, \frac{2(m+1)\beta^2}{m^2(m!)^2}, \frac{\beta^2}{m^3(2m)!} \right\}. \]

Proof. Let \(\alpha = 1 \) in Theorem 2. Then we have Corollary 3. \(\Box \)

COROLLARY 4. Let the function \(f(z) \) given by (5) be in the class \(\mathcal{K}_m^\beta \). Then
\[|a_{m+1}| \leq \min \left\{ \frac{2}{m} \sqrt{\frac{(1-\beta)[m+(1-m)(1-\beta)]}{2(2m)!m^2(m+1)}}, \frac{2(1-\beta)}{m(m!)(m^2+1)} \right\} \]
and
\[|a_{2m+1}| \leq \min \left\{ \frac{|(1-\beta)[m+(1-m)(1-\beta)]|}{m^4(2m)!}, \mathfrak{B}_4 \right\}, \]
where
\[\mathfrak{B}_4 = \frac{2(m+1)(1-\beta)^2}{m^2(m!)^2(m^2+1)}, + \frac{(1-\beta)[m+(1-m)(1-\beta)]}{m^3(2m+1)!}. \]

Proof. Let \(\alpha = 0 \) in Theorem 3. Then we have Corollary 4. \(\Box \)

COROLLARY 5. Let the function \(f(z) \) given by (5) be in the class \(\mathcal{M}_m^\beta \). Then
\[|a_{m+1}| \leq \min \left\{ \frac{2}{m} \sqrt{\frac{(1-\beta)[m+(1-m)(1-\beta)]}{2(2m)!m^2}}, \frac{2(1-\beta)}{m(m!)} \right\} \]
and
\[|a_{2m+1}| \leq \min \left\{ \frac{(m+1)[(1-\beta)[m+(1-m)(1-\beta)]]}{m^4(2m)!}, \mathfrak{B}_5 \right\}, \]
where
\[\mathfrak{B}_5 = \frac{2(m+1)(1-\beta)^2}{m^2(m!)^2} + \frac{(1-\beta)[m+(1-m)(1-\beta)]}{m^3(2m)!}. \]

Proof. Let \(\alpha = 1 \) in Theorem 3. Then we have Corollary 5. \(\Box \)

REMARK 4. In the case of one fold symmetric functions, Corollary 1 to Corollary 5 improve the estimates obtained by Brannan-Taha [8]. Sharp estimates for the coefficients \(|a_{m+1}| \), \(|a_{2m+1}| \) and other coefficients of functions belonging to the classes investigated in this paper are yet open problems.

Acknowledgement. The authors are thankful to the referees for their valuable comments. The first author was supported by the National Natural Science Foundation of China (No. 11671306).
REFERENCES

(Received June 30, 2017)

Zhenhan Tu
School of Mathematics and Statistics
Wuhan University
Wuhan, Hubei 430072, People’s Republic of China
e-mail: zhtu.math@whu.edu.cn

Corresponding author:
Liangpeng Xiong
School of Mathematics and Statistics
Wuhan University
Wuhan, Hubei 430072, People’s Republic of China
e-mail: lpxiong2016@whu.edu.cn