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Abstract. In the article, we find the best possible parameters α , β , λ , μ ∈ (1/2,1) such that
the double inequalities

Q[αa+(1−α)b,αb+(1−α)a] < RQA(a,b) < Q[βa+(1−β)b,βb+(1−β)a],

Q[λa+(1−λ)b,λb+(1−λ)a] < RAQ(a,b) < Q[μa+(1−μ)b,μb+(1−μ)a]

hold for all a,b > 0 with a �= b , where Q(a,b) =
√

(a2 +b2)/2 is the quadratic mean, and
RQA(a,b) and RAQ(a,b) are two Sándor-Yang means.

1. Introduction

Let a,b > 0 with a �= b . Then the Schwab-Borchardt mean SB(a,b) [1–5] is
defined by

SB(a,b) =

⎧⎪⎨
⎪⎩

√
b2−a2

arccos(a/b) (a < b),
√

a2−b2

cosh−1(a/b)
(a > b),

where cosh−1(x) = log(x+
√

x2−1) is the inverse hyperbolic cosine function.
It is well known that the Schwab-Borchardt mean SB(a,b) is strict increasing,

nonsymmetric and homogeneous of degree one with respect to its variables a and b .
Many classical bivariate means are the special cases of the Schwab-Borchardt mean.
For example,

P(a,b) =
a−b

2arcsin
(

a−b
a+b

) = SB(G(a,b),A(a,b)),

T (a,b) =
a−b

2arctan
(

a−b
a+b

) = SB(A(a,b),Q(a,b)), (1.1)

NS(a,b) =
a−b

2sinh−1 ( a−b
a+b

) = SB(Q(a,b),A(a,b)), (1.2)
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L(a,b) =
a−b

loga− logb
= SB(A(a,b),G(a,b))

are respectively the first Seiffert mean [6–11], second Seiffert mean [12–18], Neuman-
Sándor mean [19–21] and logarithmic mean [22–30], where G(a,b) =

√
ab is the ge-

ometric mean, A(a,b) = (a+b)/2 is arithmetic mean, Q(a,b) =
√

(a2 +b2)/2 is the
quadratic mean and sinh−1(x) = log(x+

√
x2 +1) is the inverse hyperbolic sine func-

tion.
The bivariate means have many important applications in the theory of special

functions. For instance, the modulus of the plane Grötzsch ring and the complete ellip-
tic integral K (r) [31–39] of the first kind can be expressed in terms of the Gaussian
arithmetic-geometric mean AGM [40–44], and the Toader mean [45–47]

TD(a,b) =
2
π

∫ π/2

0

√
a2 cos2 t +b2 sin2(t)dt

give the formula of the perimeter of an ellipse and it can be expressed by the complete
elliptic integral E (r) [48–57] of the second kind. Recently, the bivariate means have
attracted the attention of many researchers.

Let X = X(a,b) and Y = Y (a,b) be two symmetric bivariate means of a and b .
Then the Sándor-Yang mean RXY (a,b) is defined by

RXY (a,b) = Y (a,b)e
X(a,b)

SB(X(a,b),Y (a,b))−1
.

Neuman [58] proved that the inequalities

X(a,b) < RXY (a,b) < RYX (a,b) < Y (a,b) (1.3)

for all a,b > 0 with a �= b if X(a,b) < Y (a,b) .
In [59], Yang gave the explicit formulas for the Sándor-Yang means RQA(a,b) and

RAQ(a,b) as follows:

RQA(a,b) = A(a,b)e
Q(a,b)
NS(a,b)−1

, (1.4)

RAQ(a,b) = Q(a,b)e
A(a,b)
T (a,b)−1

. (1.5)

Let f (x) = Q[xa+(1− x)b,xb+(1− x)a] for x ∈ [1/2,1] . Then from (1.3) and
A(a,b) < Q(a,b) we clearly see that

f (1/2) = A(a,b) < RAQ(a,b) < RQA(a,b) < Q(a,b) = f (1) (1.6)

for all a,b > 0 with a �= b .
Note that, the function f (x) is strictly increasing on interval [1/2,1] for fixed

a,b > 0 with a �= b .
Motivated by inequality (1.6) and the monotonicity of the function f (x) on in-

terval [1/2,1] , it is natural to ask what are the best possible parameters α,β ,λ ,μ ∈
(1/2,1) such that the double inequalities

Q[αa+(1−α)b,αb+(1−α)a]< RQA(a,b) < Q[βa+(1−β )b,βb+(1−β )a],

Q[λa+(1−λ )b,λb+(1−λ )a]< RAQ(a,b) < Q[μa+(1− μ)b,μb+(1−μ)a]

hold for all a,b > 0 with a �= b . The main purpose of this paper is to answer this
question.
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2. Lemmas

In order to prove our main results, we need two lemmas which we present in this
section.

LEMMA 2.1. Let p ∈ (1/2,1) and f (x) be defined by

f (x) = sinh−1(x)− x
√

1+ x2

1+(1−2p)2x2 . (2.1)

The the following statements are true:
(1) f (x) > 0 for all x ∈ (0,1) if p = 1/2+

√
6/6 = 0.9082 · · ·.

(2) There exists λ1 ∈ (0,1) such that f (x) < 0 for x ∈ (0,λ1) and f (x) > 0 for

x ∈ (λ1,1) if p = 1/2+
√

(3+2
√

2)
√

2− e2/(2e) = 0.8990 · · ·.

Proof. It follows from (2.1) that

f (0) = 0, (2.2)

f ′(x) =
x2

[1+(1−2p)2x2]2
√

1+ x2
f1(x), (2.3)

where
f1(x) = (1−2p)4x2 +12p2−12p+1. (2.4)

(1) If p = 1/2+
√

6/6, then (2.4) leads to

f1(x) =
4
9
x2 > 0 (2.5)

for x ∈ (0,1) .
Therefore, Lemma 2.1(1) follows easily from (2.2), (2.3) and (2.5).

(2) If p = 1/2+
√

(3+2
√

2)
√

2− e2/(2e) , then (2.1) and (2.4) lead to

f (1) = log(1+
√

2)−
√

2e2

(3+2
√

2)
√

2
= 0.0174 · · ·> 0, (2.6)

f1(0) = 12p2−12p+1 = −0.0895 · · ·< 0, (2.7)

f1(1) = 16p4−32p3 +36p2−20p+2 = 0.3159 · · ·> 0, (2.8)

f ′1(x) = 2(1−2p)4 > 0 (2.9)

for x ∈ (0,1) .
From (2.3) and (2.7)–(2.9) we clearly see that there exists λ0 ∈ (0,1) such that

f (x) is strictly decreasing on (0,λ0] and strictly increasing on [λ0,1) .
We divide the proof into two cases.
Case 1. x ∈ (0,λ0] . Then f (x) < 0 follows from (2.2) and the monotonicity of

f (x) on the interval (0,λ0] .
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Case 2. x ∈ [λ0,1) . Then it follows from Case 1 that

f (λ0) < 0. (2.10)

Therefore, there exists λ1 ∈ (λ0,1) such that f (x) < 0 for x∈ [λ0,λ1) and f (x) >
0 for x ∈ (λ1,1) follows from (2.6) and (2.10) together with the monotonicity of the
function f (x) on the interval [λ0,1) . �

LEMMA 2.2. Let p ∈ (1/2,1) and g(x) be defined by

g(x) = arctan(x)− x
1+(1−2p)2x2 . (2.11)

Then the following statements are true:
(1) g(x) > 0 for all x ∈ (0,1) if p = 1/2+

√
3/6 = 0.7886 · · · .

(2) There exists μ1 ∈ (0,1) such that g(x) < 0 for x ∈ (0,μ1) and g(x) > 0 for

x ∈ (μ1,1) if p = 1/2+
√

2eπ/2−2−1/2 = 0.7747 · · · .

Proof. From (2.11) we get
g(0) = 0, (2.12)

g′(x) =
2x2

[1+(1−2p)2x2]2 (1+ x2)
g1(x), (2.13)

where
g1(x) =

(
8p4−16p3 +14p2−6p+1

)
x2 +6p2−6p+1. (2.14)

(1) If p = 1/2+
√

3/6, then (2.14) becomes

g1(x) =
2
9
x2. (2.15)

Therefore, Lemma 2.2(1) follows easily from (2.12), (2.13) and (2.15).
(2) If p = 1/2+

√
2eπ/2−2−1/2, then (2.11) and (2.14) lead to

g(1) =
π
4
− e2

2eπ/2
= 0.0713 · · ·> 0, (2.16)

g1(0) = 6p2−6p+1 = −0.0469 · · ·< 0, (2.17)

g1(1) = 8p4−16p3 +20p2−12p+2 = 0.9245 · · ·> 0. (2.18)

Note that
8p4−16p3 +14p2−6p+1 = 0.1966 · · ·> 0. (2.19)

From (2.13), (2.14) and (2.17)–(2.19) we know that there exists μ0 ∈ (0,1) such
that g(x) is strictly decreasing on (0,μ0] and strictly increasing on [μ0,1) .

We divide the proof into two cases.
Case 1. x ∈ (0,μ0] . Then g(x) < 0 follows from (2.12) and the monotonicity of

the function g(x) on the interval (0,μ0] .
Case 2. x ∈ [μ0,1) . Then it follows from Case 1 that

g(μ0) < 0. (2.20)

From (2.16) and (2.20) together with the monotonicity of g(x) on the interval
[μ0,1) we clearly see that there exists μ1 ∈ (μ0,1) such that g(x) < 0 for x ∈ [μ0,μ1)
and g(x) > 0 for x ∈ (μ1,1) . �
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3. Main results

THEOREM 3.1. Let α,β ∈ (1/2,1) . Then the double inequality

Q[αa+(1−α)b,αb+(1−α)a]< RQA(a,b) < Q[βa+(1−β )b,βb+(1−β )a]

holds for all a,b > 0 with a �= b if and only α � 1/2+
√

(3+2
√

2)
√

2− e2/(2e) and

β � 1/2+
√

6/6 .

Proof. Since RQA(a,b) and Q(a,b) are symmetric and homogeneous of degree
one, without loss of generality, we assume that a > b > 0. Let x = (a− b)/(a+ b)∈
(0,1) and p ∈ (1/2,1) . Then (1.2) and (1.4) lead to

log
Q[pa+(1− p)b, pb+(1− p)a]

RQA(a,b)
(3.1)

=
1
2

log
[
1+(1−2p)2x2]−

√
1+ x2 sinh−1(x)

x
+1.

Let

F(x) =
1
2

log
[
1+(1−2p)2x2]−

√
1+ x2 sinh−1(x)

x
+1. (3.2)

Then elaborated computations lead to

F(0) = 0, (3.3)

F(1) =
1
2

log
[
1+(1−2p)2]−√

2log(1+
√

2)+1, (3.4)

F ′(x) =
1

x2
√

1+ x2
f (x), (3.5)

where f (x) is defined by (2.1).
We divide the proof into four cases.
Case 1. p = 1/2+

√
6/6. Then Lemma 2.1(1), (3.3) and (3.5) lead to the conclu-

sion that
F(x) > 0 (3.6)

for all x ∈ (0,1) , and

RQA(a,b) < Q[pa+(1− p)b, pb+(1− p)a]

follows from (3.1), (3.2) and (3.6).
Case 2. 1/2 < p < 1/2+

√
6/6. Then (3.2) and the power series expansion lead

to

F(x) = 2

[
p−
(

1
2

+
√

6
6

)][
p−
(

1
2
−

√
6

6

)]
x2 +o

(
x2) (x → 0+). (3.7)

Equations (3.1), (3.2) and (3.7) imply that there exists δ1 ∈ (0,1) such that

RQA(a,b) > Q[pa+(1− p)b, pb+(1− p)a]
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for all a > b > 0 with (a−b)/(a+b)∈ (0,δ1) .

Case 3. p = 1/2 +
√

(3+2
√

2)
√

2− e2/(2e) . Then it follows from (3.5) and
Lemma 2.1(2) that there exists λ1 ∈ (0,1) such that F(x) is strictly decreasing on
(0,λ1) and strictly increasing on (λ1,1) .

Note that (3.4) becomes
F(1) = 0. (3.8)

Equations (3.3) and (3.8) together with the piecewise monotonicity of the function
F(x) on the interval (0,1) lead to the conclusion that

F(x) < 0 (3.9)

for all x ∈ (0,1) .
Therefore,

RQA(a,b) > Q[pa+(1− p)b, pb+(1− p)a]

follows from (3.1), (3.2) and (3.9).

Case 4. 1/2+
√

(3+2
√

2)
√

2− e2/(2e) < p < 1. Then (3.4) leads to

F(1) > 0. (3.10)

Equations (3.1) and (3.2) together with inequality (3.10) imply that there exists
δ2 ∈ (0,1) such that

RQA(a,b) < Q[pa+(1− p)b, pb+(1− p)a]

for all a > b > 0 with (a−b)/(a+b)∈ (1− δ2,1) . �

THEOREM 3.2. Let λ ,μ ∈ (1/2,1) . Then the double inequality

Q[λa+(1−λ )b,λb+(1−λ )a]< RAQ(a,b) < Q[μa+(1− μ)b,μb+(1−μ)a]

hold for all a,b > 0 with a �= b if and only if λ � 1/2 +
√

2eπ/2−2−1/2 and μ �
1/2+

√
3/6 .

Proof. Without loss of generality, we assume that a > b > 0. Let x = (a−b)/(a+
b) ∈ (0,1) and p ∈ (1/2,1) . Then (1.1) and (1.5) lead to

log
Q[pa+(1− p)b, pb+(1− p)a]

RAQ(a,b)
(3.11)

=
1
2

log
[
1+(2p−1)2x2]− 1

2
log
(
1+ x2)− arctan(x)

x
+1.

Let

G(x) =
1
2

log
[
1+(2p−1)2x2]− 1

2
log
(
1+ x2)− arctan(x)

x
+1. (3.12)

Then elaborated computations lead to

G(0) = 0, (3.13)
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G(1) =
1
2

log
[
1+(2p−1)2]− π

4
+1− 1

2
log2, (3.14)

G′(x) =
1

x2
√

1+ x2
g(x), (3.15)

where g(x) is defined by (2.11).
Next, we divide the proof into four cases.
Case 1. p = 1/2+

√
3/6. Then it follows from Lemma 2.2(1) and (3.13) together

with (3.15) that
G(x) > 0 (3.16)

for all x ∈ (0,1) . Therefore,

RAQ(a,b) < Q[pa+(1− p)b, pb+(1− p)a]

follows from (3.11), (3.12) and (3.16).
Case 2. 1/2 < p < 1/2+

√
3/6. Then (3.12) and the power series expansion lead

to

G(x) = 2

[
p−
(

1
2

+
√

3
6

)][
p−
(

1
2
−

√
3

6

)]
x2 +o

(
x2) (

x → 0+) . (3.17)

Equations (3.11) and (3.12) together with (3.17) imply that there exists δ3 ∈ (0,1)
such that

RAQ(a,b) > Q[pa+(1− p)b, pb+(1− p)a]

for all a > b > 0 with (a−b)/(a+b)∈ (0,δ3) .
Case 3. p = 1/2+

√
2eπ/2−2−1/2. Then Lemma 2.2(2) and (3.15) lead to the

conclusion that there exists μ1 ∈ (0,1) such that G(x) is strictly decreasing on (0,μ1]
and strictly increasing on [μ1,1) .

Note that (3.14) becomes
G(1) = 0. (3.18)

It follows from (3.13) and (3.18) together with the piecewise monotonicity of G(x)
on the interval (0,1) that

G(x) < 0 (3.19)

for all x ∈ (0,1) . Therefore,

RAQ(a,b) > Q[pa+(1− p)b, pb+(1− p)a]

for all a,b > 0 with a �= b follows from (3.11) and (3.12) together with (3.19).
Case 4. 1/2+

√
2eπ/2−2−1/2 < p < 1. Then (3.14) leads to

G(1) > 0. (3.20)

Equations (3.11) and (3.12) together with inequality (3.20) imply that there exists
δ4 ∈ (0,1) such that

RAQ(a,b) < Q[pa+(1− p)b, pb+(1− p)a]

for all a > b > 0 with (a−b)/(a+b)∈ (1− δ4,1) . �
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