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COMPLETE MOMENT CONVERGENCE FOR WEIGHTED SUMS
OF EXTENDED NEGATIVELY DEPENDENT RANDOM VARIABLES

MEIMEI GE AND XIN DENG

(Communicated by X. Wang)

Abstract. In this paper, some results on complete moment convergence for weighted sums of
extended negatively dependent (END, for short) random variables are established. The results
extend and improve the result of Baum and Katz (1965) from complete convergence for non-
weighted sums of independent random variables to the case of weighted sums of END random
variables under mild conditions.

1. Introduction

In many stochastic models, the assumption that random variables are independent
is not plausible. So itis of interest to extend the concept of independence to dependence
cases. One of these dependence structures is extended negatively dependent structure.

Firstly, let us recall the concept of extended negatively dependent random vari-
ables.

DEFINITION 1.1. A finite collection of random variables Xi,X5,...,X, is said to
be extended negatively dependent (END, for short) if there exists a positive constant M
independent of n such that both

n
P(Xy >x1,X2 > x2,..., Xy > X)) <M P(X; > xi)

i=1
and
n
P(X) <x1,X2 < x2,.., X <) SMJ]PXG < xi)
i=1

hold for each n > 1 and all real numbers x;,x3, . ..,x,. An infinite sequence {X,,n>1}
is said to be END if every finite subcollection is END. An array {X,;,1 <i<n,n>1}
of random variables is said to be rowwise END, if for any fixed n > 1, {X,;,1 <i<n}
are END random variables.
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The concept of END sequence was introduced by Liu (2009). It is easily seen
that independent and negatively orthant dependent (NOD, for short) random variables
are END. Furthermore, Joag-Dev and Proschan (1983) pointed out that negatively as-
sociated (NA, for short) random variables are NOD. Meanwhile, Hu (2000) introduced
the concept of negatively superadditive dependent (NSD, for short) random variables
and pointed out that NSD implies NOD (see Property 2 of Hu (2000)). By the above
statements, we can see that the class of END random variables includes NOD random
variables, NSD random variables, NA random variables and independent random vari-
ables as special cases. Thus, it is of practical significance to further study the probability
limit theorems and applications for END random variables.

Some applications for END sequence have been found. For example, Liu (2009)
studied the precise large deviations for dependent random variables with heavy tails;
Liu (2010) obtained the sufficient and necessary conditions of moderate deviations for
dependent random variables with heavy tails; Chen et al. (2011) studied the precise
large deviations of random sums in presence of NOD and consistent variation; Shen
(2011) established some probability inequalities for END sequences and gave some
applications; Wang and Wang (2013) obtained the precise large deviations for ran-
dom sums of END real-valued random variables with consistent variation; Wang et
al. (2013) studied some convergence results for weighted sums of END random vari-
ables; Wu et al. (2015) obtained L, convergence, complete convergence and complete
moment convergence for arrays of row-wise END random variables under some ap-
propriate conditions of h-integrability; Wang et al. (2015) and Yang et al. (2017)
obtained the complete consistency for the estimator of nonparametric regression mod-
els based on END errors; Shen and Volodin (2017) investigated weak and strong laws
of large numbers for arrays of rowwise END random variables and gave their appli-
cations to nonparametric regression models based on END errors; Shen et al. (2017)
studied the complete convergence and complete moment convergence for nonweighted
and weighted sums of arrays of rowwise END random variables, and so forth.

In this paper, we aim to establish complete convergence and complete moment
convergence for weighted sums of END random variables. Next, we give the concept
of complete convergence, which was proposed firstly by Hsu and Robbins (1947) as
follows.

DEFINITION 1.2. A sequence {X,,n > 1} of random variables is said to converge
completely to a constant « if for any € > 0,

oo

Y P(|Xy—a| > €) <.

n=1

In view of the Borel-Cantelli lemma, the above result implies that X,, — a almost
surely. Therefore, the complete convergence is a very important tool in establishing
almost sure convergence of summation of random variables as well as weighted sums
of random variables. For more details about the complete convergence, we refer the
reader to Erdos (1949), Katz (1963), Baum and Katz (1965), Chow (1973) and Gut
(1992).
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Furthermore, Chow (1988) first introduced the complete moment convergence,
whose concept is as follows.

DEFINITION 1.3. Let {Z,,n > 1} be a sequence of random variables, and @, > 0,
b, >0, g>0.Forany € >0, if

ZanE{b;l|Zn| _8}3- <o,

n=1

then {Z,,n > 1} is said to be complete moment convergence.

Itis easily seen that complete moment convergence implies complete convergence.
Thus, complete moment convergence is stronger than complete convergence. There
are many articles for complete moment convergence, for example, Sung (2009) for
independent (or dependent) random variables; Wang and Hu (2014) for the maximal
partial sums of martingale difference sequence; Guo et al. (2013) for weighted sums
of p*-mixing random variables; Wu et al. (2014) for arrays of rowwise END random
variables; Shen et al. (2016) for arrays of rowwise negatively superadditive dependent
(NSD) random variables; Wu et al. (2017) for weighted sums of weakly dependent
random variables, and so forth.

In the following, Baum and Katz (1965) obtained the following result of complete
convergence for independent and identically distributed random variables.

THEOREM A. Let p>1/oc and 1/2 < oo < 1. Let {X,,n > 1} be a sequence of
independent and identically distributed random variables with EX; =0. If E| X |P < eo,
then for € >0,

n

X

i=1

i n®P=2p (
n=1

>sn0‘> < oo, (1.1)

The main purpose of this paper is to improve and extend Theorem A from non-
weighted sums to weighted sums, and from independent random variables to END ran-
dom variables.

Combined with Theorem A, our results mainly make three improvements.

(1) The results was established from complete convergence for independent ran-
dom variables to complete moment convergence for END random variables;

(i1) The results was established from nonweighted sums to weighted sums, and the
condition on weights is very mild;

(iii) The results was established from 1/2 < o <1 to o« > 1/2, and from op > 1
tooap=>1.

Throughout this paper, all random variables are defined on the same probability
space (Q,.%#,P). Let {ay;,1 <i<n,n> 1} beanarray of constants. C and M denote
positive constants not depending on n, which may be different in various places. Let
logx = Inmax(x,e), and I(A) be the indicator function of the set A. Denote x; =
xI(x > 0). a < b implies that there exists some positive constant ¢; such that a <
c1b. |x| stands for the integer part of x. a Vb stands for max(a,b) and a Ab means
min(a,b).
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2. Preliminary lemmas

In this section, we will present some important lemmas which will be used to prove
the main results of the paper.

The first one is the basic property for END random variables, which can be refered
to Liu (2010).

LEMMA 2.1. Let random variables X,X3,...,X, be END with some concrete
constant M > 0. If fi,f2,...,fn are all nondecreasing (or nonincreasing) functions,
then random variables f(X1), f2(X2),..., fu(Xn) are END.

The next one comes from Wu et al. (2017) which plays an essential role to prove
the result of the paper.

LEMMA 2.2. Let {Y;,1 <i<n} and {Z;,1 <i< n} betwo sequences of random
variables. Then for any g > r >0, € >0, and a > 0, the following inequality holds:

.
E ( - 8a> <C (s‘f n L) aE
q_r

+
where C, =1 ifO<r<10rCr:2”1 if r>1.

q r

+C.E

n
EZI' )

i=1

>

i=1

i(YH—Zi)

i=1

The following one is the Rosenthal type inequality for END random variables,
which was obtained by Shen (2011).

LEMMA 2.3. Let r > 2 and {X,,n > 1} be a sequence of END random variables

with some concrete constant M > 0. Assume that EX, =0 and E|X,|" < e for each
n > 1. Then there exists a positive constant C(M,r) depending only on M and r such

that
E (

The last one is the Marcinkiewicz-Zygmund type inequality for END random vari-
ables, which can be found in Shen et al. (2017).

n

>

i=1

r n n r/2
) <SCM,r) | Y EIX| + <2EX1'2>

i=1 i=1

LEMMA 2.4. Let {X,,n > 1} be a sequence of END random variables with some
concrete constant M > 0 and E|X,|" < oo for some 0 < r < 2. Assume further that
EX, =0 foreach n> 1 if r > 1. Then there exists a positive constant C(M,r) depend-
ing only on M and r such that

r

n
<C(M,r) Y EIXi|".

i=1

E
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3. Main results and proofs

Now we state the main results of this paper and give their detailed proofs.

THEOREM 3.1. Let r >0, o> 1/2 and op > 1. Let {X,X,,n > 1} be a se-
quence of identically distributed END random variables with EX =0 if pVr > 1.
Assume that {an;,1 <i<n,n> 1} is an array of constants satisfying Y| |ani|? < n
for some g > pVr. Then

E|X|P < oo, if r<p,
E|X|I’log\X| <eoo, ifr=p, 3.1
E|X|" < oo, if r>p,

implies that

= n r
S 0P E (Y a,Xi| —en” | < e, (3.2)
n=1 i=1 +
and thus
2 nor=2p < Eam-X,- > Sl’la> < oo, 3.3)
n=1 i=1

Proof. Without loss of generality, we assume that a,; > 0 forall 1 <i<n and

n > 1 (Otherwise, we use a;- and a,; instead of a,;, respectively, and note that a,; =

at—ay ), and Y anl? <n.
We will consider the following three cases.

Case1: 0 <pVvr<l1
For fixed n > 1, define for 1 <i < n,

Yoi = —n®I(X; < —n®) + X1 (|1X;| < n®) +n%I(X; > n%),
Zni=Xi—Yu= (Xi — no‘)l(Xi > no‘) + (Xi—l—nO‘)I(Xi < —na).
Forevery n > 1, by Lemma 2.1, we can see that {V;;, 1 <i<n} and {Z,;,1 <i<

n} are still END random variables, which imply that {a,;Y,;, 1 <i<n} and {a,iZn;, 1 <
i < n} are both END random variables. It is easily seen that

Vil = [Xi1(|X:| < n®) +n*1(|X:] > n®) < |Xi],

|Zi| < X [1(1X:] > n®) < [Xi].
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Taking Yy =g A1, by Lemmas 2.2 and 2.4 and (3.1), we can get that

.
oo n
2 nor—2-orp 2 aniX;| — en®
=1 .
.
— 8n°‘>
+

n=1
o0 n
= Znap—Z—ocrE 2 aniYni + api m)
Za’” ni
i=1

n=1
Y
+ Znap 2— (XFE

n=1

p
< 2 napfay72E

n=1

) oo n
< Z pop—oy=2 ZE‘aniYni‘Y"‘ Z pop—2-ar 2E|anizni|r

n=1 i=1 n=1 i=1

2 am ni

oo n
< X a2 | (E|X|"1(1X| < n®) +n®YEI(1X;| > n®))
n=1 i=1

oo n
+ 3 02N ElayXi|1(1Xi] > n®)
n=1 i=1

oo n oo n
< Y nPm 2N a [TEIXI(1X] < n®) + Y 0PN Jay | E|X|I(1X | > n®)
n=1 i=1 n=1 i=1

< Y nP O IEIXI(IX| < n®) + Y P E X I(1X | > n®)
n=1 n=1
=11+ 1,

where

I = En“p’ay’lE\X\71(|X| <n%)

._.

— Znap ay—1 2E|X|yl )oc < |X| éma)
m=1

= Z EIX|"I((m—1)* < |X| <m%) Z pop—oy=1

m=1 n=m

< Y mPTEX|TI(m—1)* < |X| <m%) K E[X|P < oo,

m=1

and

L= Y n® " EX|T(|X| > n%)

n=1

= > n® LN EX)T(m® < |X| < (m+1)%)
n=1 m=n

Y EX|I(m* < X < (m+1)* Enal’ or=1
m=1
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Zm“” TEX[T(m® < |X| < (m+1)%) < E[X]P, if r<p,
m

< Z(logm)E|X|’I(m <|X| < (m+1)*) < E|X|Plog|X|, ifr=p,

m—

ZE|X|’I(m <|X| < (m+1)*) < EX], if r>p,

< oo,

Thus, (3.2) holds.

Case2: 1<pVr<?2
It is easily seen that E|X|PV" < o by (3.1). Hence, we have by EX; = 0 that

n*O(

n
2 EayiYyi| = n=¢
i=1 =

n
I’lia 2 |am-|E|Zm-\
i=1

n
n= Y |anl E1Xi|1(1Xi] > n®)
i=1

< n'TYEX|I(|X| > n%)
< nl—oc(p\/r)E‘X‘p\/rI(‘X‘ > na)
— 0, as n — oo, 3.4)
Hence, |7 | EaniY,i| < en®/2 for all n large enough. Take 8 =g A2.
Ho<r<1
Analogous to the proof of Case 1, by Lemmas 2.2 and 2.4, C, -inequality, Jensen’s
inequality and (3.1), we have
-
) +

(aniYni + aniZni)

oo n
Z nor—2-orp ( Zam-Xi —en®
i=1

n=1

— i nOCp*27(XFE <

n=1

M=

.
— 8n°‘>
+

(aniYni - EaniYni + aniZni)

1

-

Il
—_

< i nocp—2—ocrE <

n=1

1

—sna/2>
Jr

2 al’ll ni

B

r

< 2 napfaﬁ72E

n=1

< 2 pop—of—2 2E|aniYni|ﬁ + 2 pop—2-ar ZE‘aniZniV
i=1 n=1 i=1

n=1

+2n0617 2— (XFE

n
2 am ni Eam m
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o n
< X B2 (P (EIXPI(X] <) +nPEI(Xi| > n®))
n=1 i=1

oo n
+ Z pop—2-or Z lani|"E|X:|"T(|X;| > n®)
n=1 i=1

< ¥ nor= P2 N PEIXPI(IX| < n%)

n=1 i=1

oo n
+ 3 02N a " E|X|T(|X| > n®)

n=1 i=1

< Y PEXPI(X| < n®) 4 X, 0P EIXTI(1X] > n%)
n=1 n=1

< oo,

) 1<r<?2
Analogous to the proof of Case 1, by EX; =0, Lemmas 2.2 and 2.4, C,-inequality,
Jensen’s inequality and (3.1), we have that

-
nocp—2—ocrE o Sna
n=1 +

n
Y aniXi
i=1

B
o n
< Y 0 B2E || (@Y — EaniYu)
n=1 i=1
oo n '
+ 2 pop—2-orp ( Z(am-zm- — EaniZyi) )
n=1 i=1

< i pop—of-2 iE|aniYni|l3 + i pop—2-ar iE‘aniZniV

n=1 i=1 n=1 i=1

nap—aﬁ—22 \an,‘\ﬁ <E\Xi|ﬁ1(|X,-\ <n%) _|_n0¢ﬁEI(\X,-| > na)>
1 i=1

<

n

oo

oo n
+ Ym0 | EX| (| Xi| > n®)

n=1 i=1

< ¥ nor= P2 N PEIXPI(IX| < n%)

n=1 i=1

+ 3 02N a " E|X|T(|X| > n®)

n=1 i=1

< Y nr B IEXPI(X| <)+ Y 0 EXI(X] > n)
n=1 n=1

< oo,
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Case 3: p\/r>2

167

For 1 <i<nand n > 1, define a( ) = anil(Jay| < 1) and ag) = apil (Jay| > 1).
Hence,
( Zam-Xi —2£na>
= +
< (ia(l)x + ia( X; —2£n“>
X ni M ni
i=1 i=1 i
n | n )
<12 aVx|—en) + (|2 d?x|—en | .
i=1 + i=1 +
In order to prove (3.2), it suffices to show that
oo n "
H=Yn" 7Y (|Y al)X;| —en® | <o (3.5)
n=1 i=1 4
and
oo n "
G:=) noP=i-org ( En.)X,- —sn“) < oo, (3.6)
i=1

n=1

Now, we turn to prove H < co and G < oo.

For fixed n > 1, denote for 1 <i < n that

y\ = —ag)nal

ni

(X; < —n” )+a XI(|X|
WX =) =) (X —n*)1(X; > n
(@?x; < —n®) + a2 x:1(|a?

() X;

m

z\D =a

ni

v\ = —no1

ni

70 _ @,y _

ni

+

n®) +a n®1(x; > n%),
)—i—a( )(X +aMI(X; < —n%);
Xi| < )—i—nal(afn-)X,- > n%),

no‘)l(a,(qi)Xi >n%)+ (a,(i)Xi —l—n“)l(a,g)Xi < —no‘).

< n} and {

For fixed n > 1, by Lemma 2.1, we can see that {Y i ,
i <n} (j=1,2) are both END random variables. It is easﬂy seen that
Y= lal; xu<|xl-\ <n)+al n®1(X] > n%) <} X,
231 < laly) \1<|X-\>n><|f$ Xl
.71 = lag Xl (agy X < n) +n®0(jag Xi| > n®) < |y X,
20 < x> ) < 2K,

Similar to the proof of (3.4), we can get that

n—OC — n—O{

< oy ()
EY"
izzl ni

(3.7)

< o)
EZ
izzl ni
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as n — oo, where j =1,2. Note that aip‘ <1 and (3.1) implies EX? < o in this
case. Take it > gV (op—1)/(0c—1/2) such that ap — o —2+pu/2 < —1.
Ho<r<l1
By Lemmas 2.2 and 2.3, C,-inequality, Jensen’s inequality, (3.1), I} < e and
I, < oo, we have that

n

H — i nOCp7270(rE (

n=1

r

H oo
( )) ) 4 2 nozp—2—ocrE
n=1

< i nocp—ocu—2E <

n=1

< (1)
Z
izzl ni

n=1

- " n u/2
« 32 L3 gy py O (zEY,::>-EY;:>|2)
i=1 =1

ni

+inap72fariE 2
n=1 i=1
- " " u/2
—op— 1) (1))2
< Yy oo ZE‘Yn(i M+ | X EIY, |
n=1 i=1 i=1
+2n°‘1’ 2= “’2|a "E|X:|"1(1X;| > n®)

< 2 pop- a2 2 @V M (E1XM1(1X;] < n®) +n® EI(|X| > n®))
n=1 i=1

w2z
+2n°‘1’ oH= 2(2 !} 2EX> + Y P EXT(|1X | > n®)

n=1

< Y noP B XEI(X] < n®) 4+ Y a0k 2 (nEx?)

n=1 n=1

+ Y n® I EIXT(|X| > n®)

n=1

< i 0P o2+ /2 (EXz)u/z <

n=1
,
2)) — 8n°‘>
+

H oo
) ) + 2 nocp—2—ocrE (

n=1

and

T2 47

G — i nOCp*27(XFE (

n=1

—

< i noP—oH—2p (

n=1
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- " n n/2
« S ] 3oy prope <2EY,53>—EY,E?>|2)
i=1 i=1

n=1

ni

o n
+ 2 nap72far2E Z(z)
n=1 i=1
- " " n/2
SR WA LR (zm,;;”)
i=1 =1

n=1

+2nap - WZE|am i1 |a 2% > n%)

< 32y (1o PEX 10D K] <)+ nE (K] > n))
n=1 i=1

u/2
—|—2na1’ H= 2<2EamX|2> —i—EnO‘p 2= O"ZE|am i1( \a X|>n )

n=1

o " o 0 u/2
< 3 02N EldDX | I(1dDX| < n%) + Y 0ok 2 <2Eafj>x2>

n=1 i=1 n=1 i=1

+ X2 Y Elag X1y X| > n%)
n=1 i=1

=:G1+ Gy +Gs.

Next, we need to prove G; < o for i =1,2,3. In view of (2.21)—(2.23) in Sung (2010),
we have G| < oo. Noting that op — ot — 2+ 11/2 < —1, we have

G2 < inap—au—Z (nEx2)’J/2

n=1

< inap—au—2+u/2 (EX2)ﬂ/2 <

n=1

For G3 < e, denote for n > 2 and 1 < j <n—1 that

Ij= {1 <i<nin1+ 1)1 <10 < nl/qj_l/q}.

Then {I,j,1 < j <n—1} are disjoint, and J}Z Li={1<i< :a,(j) # 0}. Noting
that g > r, wehave 1<k<n-—1 that

(D) k1)1,

k
=1

n> i|a g‘z,‘ \an

i=1 J
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and thus 2.];:1 j7/48L,; < C(k+1)177/9. Take t = 1 /(ct — 1/q) . Then we have that

oo n
3 = Y a2 EldDx|1(ldPX| > n%)

n=2 i=1
= Zn"‘” o 22 > Elal)X|"1(la7 X| > n%)
n=2 Jj=Lli€l,;
< Y nopmor=ir/a Zj_r/qﬁlnj > EXIk<|X|<k+1)
n=2 j=1 k={njt/]
- - (n=DAL((k1) /)"
< Y normor-ir/a Z EIX|"I(k<|X['<k+1) > Je,
n=2 = j=1
Y
< CZnO‘p ar=2+r/q Z { k—l—l)/n)q/tj—i—l} TEIXI(k < |X]' < k+1)
1+t/q

N

C 3 2ol ) (s v 1) B < <

=

+C Z neP=or=l N EX|T(k < |X| <k+1)
n=1 k=|nltt/a]

=: G31 + G3.

Noting that oig(p —q)/(t+q) = (p —q)/t, we have that

L 1+t/qJ
Gy < CZnO‘P =l N RINEIX Ik < [X] < k+1)
n=1 k=n

< CZk nieap=0/t+a g x| 1(k < X' <k+1) < CE|X|P.

Similarly, noting that aq(p —r)/(t+¢q) = (p — r)/t, we have that

qu/ (q+1) ]

G <CY EX|'Ik<|XI'<k+1) Y n% !

k=1 n=1
CYy  keap=n/ O E|X | I(k < |X| <k+1), if r<p,

< CYy  (loghk)E|X|I(k < [X|' <k+1), ifr=p,
CY7P EIX|I(k<|X[' <k+1), if r>p,
CE|X|P, if r<p,

< S CEX|Plog|X|, if r=p,
CE|X]", if r>p,

Hence G3 < oo.
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) 1<r<?2

By Lemmas 2.2, 2.3 and 2.4, Jensen’s inequality, C,-inequality, the proof of H <
oo and G < o, we have for j = 1,2 that

,
2 pop—2-arp ( Eaiz{)xi N Sna>
n=1 +

=1
.
— 8n°‘>
+

n

— i n(xp727ocrE (

n=1 i=1
h i i i ﬂ hd n . . "
< oo (B o) )+ Saoeroe (S ) -2 )

N n . . n . . ”/2
< Yoo S gy _py D <2EYn(iJ) - EYn(l:’)|2>
n=1 i=1 i=1

i n . .
i 2 pop—2-or ZE|Z}5;) o Ezr(l.l{)‘r
n=1 i=1

- n , n A n ,
< 2 nap—au—Z ZE\Yn(IJ)W + ZE|Yn(zJ)‘2 + Z nap—2—ar2E‘Zr(l{)|r
n=1 i=1 i=1 n=1 i=1
< oo,
(iii) > 2
Noting that op —2 — (ar — 1)r/2 < ap — ar — 1, thus for j = 1,2, by Lemma

2.3 and (3.1), Jensen’s inequality, C,-inequality, the proof of H < oo and G < oo, we
can get that

i popr—2-org ( iaE,{)Xi _ 8na>
n=1 i=1 4

< Y nor-ou-2g ( 3 P —Ex) ) + Y pererg ( (29— EZY) )
n=1 i=1 n=1 i=1

o " ‘ n O\ M2
< X  SELS P | P
n=1 i=1 i=1
- n ' n ' r/2
4 2 nO(P*O(r72 ZE|Z£”/)‘V+ <2E|Z’5[)2>
n=1 i=1 i=1

- r/2
< 2 pop—or=2 (iE|Z({')2>
n=1 i=1

Yo nter=DU=r 2=V EIX|P)2 < oo if p 22,
< .
©  por=2=(er=Dr/2(E|X |12 <o if0<p<2.

n=1
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From the statements above, we have proved the result (3.2).
At last, we prove that (3.3). For Ve > 0, we can get that

)

—en®> t”’) dt

i nap—ar—2E (

iam-X,- —en”

n=1 i=1
_Znap ar— 2/ (Zamt
Zani

oo grnar n
P X;| —en® > V" | at
n=1 0 i=1

> Znap—ar—2/
n
Zam-X,- >2en® | .
i=1

=€’y nrp (
Hence, (3.2) implies (3.3) immediately. This completes the proof of the theorem. [

n=1

REMARK 3.1. Our result is much more exact and comprehensive as compared
to Theorem A, because Theorem A is obtained by taking r =1 and a,; =1 (V 1 <
i <n,n>1) in Theorem 3.1. Here we considered the case of weighted average. The
condition 1/2 < o < 1 is also extended to ¢ > 1/2 in this paper. Moreover, the method
used in this paper is different from that in Baum and Katz (1965).

Taking ap =2 in Theorem 3.1, we can get the following corollary.

COROLLARY 3.1. Ler 0 < p <4. Let {X,X,,n > 1} be a sequence of identically
distributed END random variables with E|X|P < oo and EX =0 if p > 1. Assume
further that {ani,1 <i<n,n> 1} is an array of constants satisfying Y| |an|? < n
for some q > p. Then

1 n
= Y aniXi — 0 a.s., n— oo (3.8)
=1

The result of the case ap =1 is also obtained as follows.

THEOREM 3.2. Let r >0 and 0 < p < 2. Let {X,X,,n > 1} be a sequence of
identically distributed END random variables with EX =0 if pVr > 1. Assume that
{ani,1 <i<n,n>1} is an array of constants satisfying Y| |ani|? < n for some
q>p\Vr. Then (3.1) implies that

oo n r
S PE (Y anXi| —en'/? ) <o, (3.9)
n=1 i=1 +
and thus
Zn_1P< > aniXi| > en' ) < oo, (3.10)
n=1
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Proof. According to the proof of Theorem 3.1, we only need to show that (3.4)
and (3.7) also hold when pV r > 1 for the case op = 1. Noting that E|X [PV < e by
(3.1), we have by Dominated Convergence Theorem that

n-l/p n-l/p

n
2 EayiZy;
i=1

n
ZEaniYni
i=1

n
< n Py Jaul EX|1(|1X:| > n'/P)
=1
< n""YPEIX|I(X| > n'/P)
< nO/\(lfr/p)E‘X‘erI(‘X‘ >n1/p)
< nO/\(lfr/p)E‘X‘erI(‘X‘ >n1/p)
— 0, asn — oo,

For ap = 1, we will prove (3.7) .
(1) For j =1, we have

n
n | EY M| = pir
=1

1

w2 D |EIX (X > n'/P)

i=1
< n'VYPEIX|I(1X| > n'/P)
< nOA(l_’/p)E\X\pWI(\X\ >nl/p)
< nOA(l_’/p)E\X\pWI(\X\ >nl/p)

— 0, asn — oo,

N

(ii) For j =2, we have

nl/p = /r iEZr(uz-)

i=1

Ey?®
1

n

1

w0 Y Ela Xill(lay Xl > n''7)
i=1

DS D PRI > )
i=1

N

N

< nNPE X IPVTI(|X| > nt /P14y
— 0, as n — oo,
The proof is completed. []
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