Abstract. Some inequalities related to the celebrated Bessel’s inequality in inner product spaces are given. They complement the results obtained by Boas-Bellman, Bombieri, Selberg and Heilbronn in the middle of the 20th century that have been applied for almost orthogonal series and in Number Theory.

1. Introduction

Let \((H; \langle \cdot, \cdot \rangle)\) be an inner product space over the real or complex number field \(\mathbb{K}\). If \((e_i)_{1 \leq i \leq n}\) are orthonormal vectors in the inner product space \(H\), i.e., \(\langle e_i, e_j \rangle = \delta_{ij}\) for all \(i, j \in \{1, \ldots, n\}\) where \(\delta_{ij}\) is the Kronecker delta, then the following inequality is well known in the literature as Bessel’s inequality:

\[
\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \leq \|x\|^2 \quad \text{for any } x \in H.
\] (1.1)

In 1941, R. P. Boas [2] and in 1944, independently, R. Bellman [1] proved the following generalization of Bessel’s inequality (see also [13, p. 392]):

Theorem 1. If \(x, y_1, \ldots, y_n\) are elements of an inner product space \((H; \langle \cdot, \cdot \rangle)\), then the following inequality holds

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\|^2 \left[\max_{1 \leq i \leq n} \|y_i\|^2 + \left(\sum_{1 \leq i \neq j \leq n} |\langle y_i, y_j \rangle|^2\right)^{\frac{1}{2}}\right].
\] (1.2)

Mathematics subject classification (2010): 46C05, 26D15.

Keywords and phrases: Inner product spaces, Bessel’s inequality, Boas-Bellman, Bombieri, Selberg and Heilbronn inequalities.
In [7] we pointed out the following Boas-Bellman type inequalities:

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\| \max_{1 \leq i \leq n} |\langle x, y_i \rangle| \left\{ \sum_{i=1}^{n} \|y_i\|^2 + \sum_{1 \leq i \neq j \leq n} \left| \langle y_i, y_j \rangle \right| \right\}^{\frac{1}{2}},
\]

(1.3)

for any \(x, y_1, \ldots, y_n \) vectors in the inner product space \((H; \langle \cdot, \cdot \rangle) \).

If we assume that \((e_i)_{1 \leq i \leq n} \) is an orthonormal family in \(H \), then by (1.3) we have

\[
\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \leq \sqrt{n} \|x\| \max_{1 \leq i \leq n} |\langle x, e_i \rangle|, \ x \in H.
\]

We also have, see [7]

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\|^2 \max_{1 \leq i \leq n} \left\{ \sum_{1 \leq j \leq n} \left| \langle y_i, y_j \rangle \right|^q \right\}^{\frac{1}{q}},
\]

(1.5)

for any \(x, y_1, \ldots, y_n \in H \), \(p > 1 \), \(\frac{1}{p} + \frac{1}{q} = 1 \).

The above inequality (1.4) becomes, for an orthonormal family \((e_i)_{1 \leq i \leq n} \),

\[
\sum_{i=1}^{n} |\langle x, e_i \rangle|^2 \leq n \|x\|^2 \left(\sum_{i=1}^{n} |\langle x, e_i \rangle|^2p \right)^{\frac{1}{p}}, \ x \in H.
\]

Further, we recall [7] that

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\|^2 \max_{1 \leq i \leq n} \|y_i\|^2 + (n-1) \max_{1 \leq i \neq j \leq n} \left| \langle y_i, y_j \rangle \right|, \quad \text{for any} \ x, y_1, \ldots, y_n \in H.
\]

(1.5)

In 1971, E. Bombieri [3] gave the following generalization of Bessel’s inequality.

Theorem 2. If \(x, y_1, \ldots, y_n \) are vectors in the inner product space \((H; \langle \cdot, \cdot \rangle) \), then the following inequality holds:

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\|^2 \max_{1 \leq i \leq n} \left\{ \sum_{j=1}^{n} |\langle y_i, y_j \rangle| \right\}.
\]

(1.6)

It is obvious that if \((y_i)_{1 \leq i \leq n} \) are orthonormal, then from (1.6) one can deduce Bessel’s inequality.

Another generalization of Bessel’s inequality was obtained by A. Selberg (see for example [13, p. 394]):
THEOREM 3. Let \(x, y_1, \ldots, y_n \) be vectors in \(H \) with \(y_i \neq 0 \) \((i = 1, \ldots, n) \). Then one has the inequality:

\[
\sum_{i=1}^{n} \frac{|\langle x, y_i \rangle|^2}{\sum_{j=1}^{n} |\langle y_i, y_j \rangle|} \leq \|x\|^2.
\] (1.7)

Another type of inequality related to Bessel’s result, was discovered in 1958 by H. Heilbronn [12] (see also [13, p. 395]).

THEOREM 4. With the assumptions in Theorem 2, one has

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle| \leq \|x\| \left(\sum_{i,j=1}^{n} |\langle y_i, y_j \rangle| \right) \frac{1}{2}.
\] (1.8)

In [8] the first author obtained the following Bombieri type inequalities

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\| \max_{1 \leq i \leq n} |\langle x, y_i \rangle| \left(\sum_{i,j=1}^{n} |\langle y_i, y_j \rangle| \right) \frac{1}{2},
\] (1.9)

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\| \max_{1 \leq i \leq n} |\langle x, y_i \rangle| \frac{1}{2} \left(\sum_{i=1}^{n} \left| \sum_{j=1}^{n} |\langle y_i, y_j \rangle| \right|^{2p} \right)^{\frac{1}{2p}},
\] (1.10)

where \(\frac{1}{r} + \frac{1}{s} = 1 \), \(s > 1 \),

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\| \max_{1 \leq i \leq n} |\langle x, y_i \rangle| \frac{1}{2} \left[\max_{1 \leq i \leq n} \left(\sum_{j=1}^{n} |\langle y_i, y_j \rangle| \right) \right]^{\frac{1}{2}},
\] (1.11)

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\| \max_{1 \leq i \leq n} |\langle x, y_i \rangle| \frac{1}{2} \left[\sum_{i=1}^{n} \left(\sum_{j=1}^{n} |\langle y_i, y_j \rangle| \right) \frac{1}{2} \right]^{\frac{1}{2}},
\] (1.12)

where \(p > 1 \), \(\frac{1}{p} + \frac{1}{q} = 1 \) and

\[
\sum_{i=1}^{n} |\langle x, y_i \rangle|^2 \leq \|x\|^2 \left\{ \sum_{i,j=1}^{n} |\langle y_i, y_j \rangle|^2 \right\}^{\frac{1}{2}}.
\] (1.13)
for any \(x \in H \).

It has been shown that for different selection of vectors the upper bound provided by the inequality (1.13) is some time better other times worse than the one obtained by Bombieri above in (1.6).

In this paper we obtain some inequalities related to the celebrated Bessel’s inequality in inner product spaces. They complement the results obtained by Boas-Bellman, Bombieri, Selberg and Heilbronn above, which have been applied for almost orthogonal series and in Number Theory.

2. The Main Results

The following generalization of Bessel’s inequality may be stated.

Theorem 5. Let \(x, y_j \in H \) for \(j \in \{1, \ldots, n\} \), then

\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left(\|x\|^2 + \sum_{j=1}^{n} \sum_{k=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle \right). \tag{2.1}
\]

Proof. For every scalars \(\lambda_1, \lambda_2, \ldots, \lambda_n \) we have:

\[
0 \leq \left\| x - \sum_{j=1}^{n} \lambda_j y_j \right\|^2 = \left\langle x - \sum_{j=1}^{n} \lambda_j y_j, x - \sum_{j=1}^{n} \lambda_j y_j \right\rangle \\
= \langle x, x \rangle - \left\langle x, \sum_{j=1}^{n} \lambda_j y_j \right\rangle - \left\langle \sum_{j=1}^{n} \lambda_j y_j, x \right\rangle + \sum_{j=1}^{n} \sum_{k=1}^{n} \lambda_j \lambda_k \langle y_j, y_k \rangle \\
= \|x\|^2 - \sum_{j=1}^{n} \langle x, y_j \rangle - \sum_{j=1}^{n} \lambda_j \langle y_j, x \rangle + \sum_{j=1}^{n} \sum_{k=1}^{n} \lambda_j \lambda_k \langle y_j, y_k \rangle.
\]

By choosing \(\lambda_j = \langle x, y_j \rangle \) for any \(1 \leq j \leq n \), we get

\[
0 \leq \|x\|^2 - \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 - \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 + \sum_{j=1}^{n} \sum_{k=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle,
\]

which implies the desired inequality (2.1). \(\square \)

Remark 1 If \(\{y_j\}_{j=1}^{n} \) is an orthonormal family in \(H \), then we get from (2.1) that

\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left(\|x\|^2 + \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \right),
\]

which is equivalent to Bessel’s inequality (1.1). Also, if \(n = 1 \) and we take \(y_1 = y \), then we get from (2.1) that

\[
|\langle x, y \rangle|^2 \leq \frac{1}{2} \left(\|x\|^2 + |\langle x, y \rangle|^2 \|y\|^2 \right),
\]
which is equivalent to
\[|\langle x, y \rangle|^2 \left(2 - \|y\|^2 \right) \leq \|x\|^2 \] \hspace{1cm} (2.2)

and by taking \(y = \frac{z}{\|z\|}, \ z \neq 0 \), we get the Schwarz inequality
\[|\langle x, z \rangle|^2 \leq \|x\|^2 \|z\|^2, \ x, z \in H. \]

Corollary 1 Let \(x, y_j \in H \) for \(j \in \{1, \ldots, n\} \), then
\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left(\|x\|^2 + \max_{j,k \in \{1, \ldots, n\}} |\langle y_j, y_k \rangle| \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \right). \hspace{1cm} (2.3)
\]

Proof. From (2.1) we observe that
\[
\sum_{k,j=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle = \sum_{k,j=1}^{n} \left| \langle x, y_j \rangle \langle y_k, x \rangle \langle y_k, x \rangle \right| = \sum_{k,j=1}^{n} \left(\sum_{i=1}^{n} |\langle x, y_i \rangle| \right)^2 \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right) = \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2.
\]

Therefore we have
\[
\sum_{k,j=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle = \left| \sum_{k,j=1}^{n} \langle x, y_j \rangle \langle y_k, x \rangle \right| \leq \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 = \max_{j,k \in \{1, \ldots, n\}} |\langle y_j, y_k \rangle| \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2.
\]

By utilising (2.1) we get the desired result (2.3). \(\square \)

Remark 2 If the family \(\{y_j\}_{j=1}^{n} \) is orthonormal, then \(\max_{j,k \in \{1, \ldots, n\}} |\langle y_j, y_k \rangle| = 1 \) and from (2.3) we get
\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left[\|x\|^2 + \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \right]. \hspace{1cm} (2.5)
\]
By Cauchy-Schwarz inequality we also have

$$\frac{1}{n} \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \leq \sum_{j=1}^{n} |\langle x, y_j \rangle|^2.$$ \hfill (2.6)

Therefore (2.5) and (2.6) we have the double inequality for the orthonormal family \(\{y_j\}_{j=1}^{n} \)

$$\frac{1}{n} \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \leq \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left[\|x\|^2 + \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \right].$$ \hfill (2.7)

We also observe that, if we use Heilbronn’s inequality (1.8) then we get by (2.3) that

$$\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left(\|x\|^2 + \max_{j,k \in \{1,\ldots,n\}} |\langle y_j, y_k \rangle| \sum_{i,j=1}^{n} |\langle y_i, y_j \rangle| \right),$$

which gives

$$\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \|x\|^2 \left(1 + \max_{j,k \in \{1,\ldots,n\}} |\langle y_j, y_k \rangle| \sum_{i,j=1}^{n} |\langle y_i, y_j \rangle| \right)$$ \hfill (2.8)

for any \(x \in H \).

Corollary 2 Let \(x, y_j \in H \) for \(j \in \{1,\ldots,n\} \), then

$$\left(2 - n \max_{j,k \in \{1,\ldots,n\}} |\langle y_j, y_k \rangle| \right) \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \|x\|^2.$$ \hfill (2.9)

Proof. Then by (2.3) we get

$$\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left(\|x\|^2 + n \max_{j,k \in \{1,\ldots,n\}} |\langle y_j, y_k \rangle| \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \right).$$

This inequality is equivalent to

$$\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 - \frac{1}{2} n \max_{j,k \in \{1,\ldots,n\}} |\langle y_j, y_k \rangle| \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \|x\|^2,$$

or to (2.9). \hfill \Box
REMARK 3 This is an inequality of interest if the family of vectors \(\{ y_j \} \) satisfies the condition
\[
2 - n \max_{j, k \in \{1, \ldots, n\}} | \langle y_j, y_k \rangle | \geq 1,
\]
namely
\[
\max_{j, k \in \{1, \ldots, n\}} | \langle y_j, y_k \rangle | \leq \frac{1}{n}. \tag{2.10}
\]
In this situation from (2.9) we get
\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \left(2 - n \max_{j, k \in \{1, \ldots, n\}} | \langle y_j, y_k \rangle | \right) \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \|x\|^2, \tag{2.11}
\]
for any \(x \in H \).

If the family of vectors \(\{ y_j \} \) satisfies the condition
\[
2 - n \max_{j, k \in \{1, \ldots, n\}} | \langle y_j, y_k \rangle | \geq 0,
\]
namely
\[
\max_{j, k \in \{1, \ldots, n\}} | \langle y_j, y_k \rangle | \leq \frac{2}{n}, \tag{2.12}
\]
then we also have the meaningful inequality
\[
0 \leq \left(2 - n \max_{j, k \in \{1, \ldots, n\}} | \langle y_j, y_k \rangle | \right) \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \|x\|^2, \tag{2.13}
\]
for any \(x \in H \).

COROLLARY 3 Let \(x, y_j \in H \) for \(j \in \{1, \ldots, n\} \), then
\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \left(1 + \frac{1}{2} \max_{k, \ell=1, \ldots, n, k \neq \ell} \{|\langle y_\ell, y_k \rangle|\} - \frac{1}{2} \|y_j\|^2 \right) \tag{2.14}
\]
\[
\leq \frac{1}{2} \left[\|x\|^2 + \max_{k, \ell=1, \ldots, n, k \neq \ell} \{|\langle y_\ell, y_k \rangle|\} \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \right].
\]

Proof. We observe that
\[
\sum_{k, j=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle
\]
\[
= \sum_{k=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle + \sum_{k, j=1, k \neq j}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle
\]
\[
= \sum_{j=1}^{n} \langle x, y_j \rangle \langle y_j, y_j \rangle \langle y_j, x \rangle + \sum_{k, j=1, k \neq j}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle
\]
\[
= \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \|y_j\|^2 + \sum_{k, j=1, k \neq j}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle.
\]
This implies that
\[
\sum_{k,j=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle \quad (2.15)
\]
\[
= \sum_{k,j=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle
\]
\[
= \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \|y_j\|^2 + \sum_{k,j=1,k \neq j}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle
\]
\[
\leq \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \|y_j\|^2 + \sum_{k,j=1,k \neq j}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle
\]
\[
\leq \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \|y_j\|^2 + \sum_{k,j=1,k \neq j}^{n} |\langle x, y_j \rangle| |\langle y_j, y_k \rangle| |\langle y_k, x \rangle|
\]
By using (2.1) we then get
\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left(|x|^2 + \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \|y_j\|^2 + \sum_{k,j=1,k \neq j}^{n} |\langle x, y_j \rangle| |\langle y_j, y_k \rangle| |\langle y_k, x \rangle| \right)
\]
\[
\leq \frac{1}{2} \left(|x|^2 + \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \|y_j\|^2 + \max_{k,\ell=1,\ldots,n,k \neq \ell} \left\{ |\langle y_\ell, y_k \rangle| \right\} \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \right)
\]
\[
= \frac{1}{2} \left(|x|^2 + \sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \|y_j\|^2 + \max_{k,\ell=1,\ldots,n,k \neq \ell} \left\{ |\langle y_\ell, y_k \rangle| \right\} \left(\sum_{j=1}^{n} |\langle x, y_j \rangle| \right)^2 \right),
\]
which produces the desired result (2.14). □

Remark 4 If the family of vectors \(\{ y_j \} \) is orthogonal then \(\langle y_\ell, y_k \rangle = 0 \) for \(k, \ell = 1, \ldots, n, k \neq \ell \) and by (2.14) we have
\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \left(\frac{2}{n} - \|y_j\|^2 \right) \leq |x|^2, \; x \in H.
\]
This inequality is meaningful if \(\|y_j\|^2 < \frac{2}{n} \) for any \(j = 1, \ldots, n \).

From a different perspective, we have by (2.4) that

\[
\sum_{k,j=1}^{n} \langle x, y_j \rangle \langle y_j, y_k \rangle \langle y_k, x \rangle \leq \sum_{k,j=1}^{n} |\langle x, y_j \rangle| |\langle y_j, y_k \rangle| |\langle y_k, x \rangle|
\]

\[
= \sum_{k,j=1}^{n} |\langle x, y_j \rangle| |\langle y_j, y_k \rangle| |\langle y_k, x \rangle|
\]

\[
\leq \max_{k,j \in \{1, \ldots, n\}} \left\{|\langle x, y_j \rangle| |\langle y_j, y_k \rangle| \right\} \sum_{k,j=1}^{n} |\langle y_j, y_k \rangle|
\]

\[
= \max_{k \in \{1, \ldots, n\}} \left\{|\langle x, y_j \rangle|^2 \right\} \sum_{k,j=1}^{n} |\langle y_j, y_k \rangle|
\]

for any \(x \in H \).

By using the inequality (2.1) we can state the following corollary as well:

COROLLARY 4 Let \(x, y_j \in H \) for \(j \in \{1, \ldots, n\} \), then

\[
\sum_{j=1}^{n} |\langle x, y_j \rangle|^2 \leq \frac{1}{2} \left(\|x\|^2 + \max_{k \in \{1, \ldots, n\}} \left\{|\langle x, y_k \rangle|^2 \right\} \sum_{k,j=1}^{n} |\langle y_j, y_k \rangle| \right)
\]

\[
\leq \frac{1}{2} \|x\|^2 \left(1 + \max_{k \in \{1, \ldots, n\}} \|y_k\|^2 \sum_{k,j=1}^{n} |\langle y_j, y_k \rangle| \right).
\]

Acknowledgement. The authors would like to thank the anonymous referee for valuable suggestions that have been implemented in the final version of the paper.

REFERENCES

(Received October 3, 2017)

Silvestru Sever Dragomir
Mathematics, College of Engineering & Science
Victoria University
PO Box 14428, Melbourne City, MC 8001, Australia
DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences
School of Computer Science & Applied Mathematics,
University of the Witwatersrand
Private Bag 3, Johannesburg 2050, South Africa
e-mail: sever.dragomir@vu.edu.au

Mohamed Elmursi
Mathematics & Computer Science Department
Faculty Of Science, Sohag University
Sohag City, PC 82524, Arab Republic of Egypt
e-mail: m.elmursi@science.sohag.edu.eg, e-mail: fedmursiex@gmail.com