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(Communicated by J. Pečarić)

Abstract. Denote by T (R,r) the family of triangles inscribed in the circle of center O with the
radius R and circumscribed to the circle of center I with the radius r . This defines the Blundon’s
configuration. The family T (R,r) contains only two isosceles triangles AminBminCmin and
AmaxBmaxCmax , which are extremal for Blundon’s inequalites (1). Some properties of Blundon’s
configuration are given Section 2. Applications are presented in the last section where a strong
version of Blundon’s inequalites is obtained (Theorem 7).

1. Introduction

Given a triangle ABC , denote by O the circumcenter, I the incenter, N the Nagel
point, s the semiperimeter, R the circumradius, and r the inradius of ABC . W. J.
Blundon [7] has proved in 1965 that the following inequalities hold

2R2 +10Rr−r2−2(R−2r)
√

R2−2Rr � s2 � 2R2 +10Rr−r2 +2(R−2r)
√

R2 −2Rr.
(1)

The inequalities (1) are fundamental in triangle geometry because they represent
necessary and sufficient conditions (see [7]) for the existence of a triangle with given
elements R,r and s . The algebraic character of inequalities (1) is discussed in the
papers [10] and [11] and an elementary proof to the weak form of (1) is given in [8].
Other results connected to (1) are contained in [13]. We mention that D. Andrica,
C. Barbu [2] (see also [1, Section 4.6.5, pp.125-127]) give a direct geometric proof
to Blundon’s inequalities by using the Law of Cosines in triangle ION . They have
obtained the formula

cos‘ION =
2R2 +10Rr− r2− s2

2(R−2r)
√

R2 −2Rr
. (2)

Because −1 � cos‘ION � 1, obviously it follows that (2) implies (1), showing the
geometric character of (1). In the paper [3] other Blundon’s type inequalities are ob-
tained using the same idea and different points instead of points I,O,N . If φ denotes
min{|A−B| , |B−C| , |C−A|}, then in the paper [15] is proved the following improve-
ment to (1), −cosφ � cos‘ION � cosφ . A geometric proof to this inequalities is given
in the paper [4].
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In Section 2 of the present note we study some geometric properties of the Blun-
don’s configuration. In the last section we present a strong version of Blundon’s in-
equalities.

2. The Blundon’s configuration

It is well-known that distance between points O and N is given by

ON = R−2r. (3)

The relation (3) reflects geometrically the difference between the quantities involved in
the Euler’s inequality R � 2r . In the book of T.Andreescu and D.Andrica [1, Theorem
1, pp.122-123] is given a proof to relation (3) using complex numbers. In the paper [5]
similar relations involving the circumradius and the exradii of the triangle are proved
and discussed.

Denote by T (R,r) the family of all triangles having the circumradius R and the
inradius r, inscribed in the circle of center O and circumscribed to the circle of center
I, where the points O and I are fixed. Let us observe that the inequalities (1) give
in terms of R and r the exact interval containing the semiperimeter s for triangles in
family T (R,r) .

More exactly, we have

s2
min = 2R2 +10Rr− r2−2(R−2r)

√
R2−2Rr

and

s2
max = 2R2 +10Rr− r2 +2(R−2r)

√
R2 −2Rr.

The triangles in the family T (R,r) are situated ”between” two extremal triangles
AminBminCmin and AmaxBmaxCmax determined by smin and smax . These triangles are
isosceles with respect to the vertices Amin and Amax . Indeed, according to formula
(2), the triangle in the family T (R,r) with minimal semiperimeter corresponds to the
equality case cos‘ION = 1, i.e. the points I,O,N are collinear and I and N belong
to the same ray with the origin O . Let G and H be the centroid and the orthocenter
of triangle. Taking in to account the well-known property that points O,G,H belong
to Euler’s line of triangle, this implies that O, I,G must be collinear, hence in this
case triangle ABC is isosceles. In similar way, the triangle in the family T (R,r) with
maximal semiperimeter corresponds to the equality case cos‘ION = −1, i.e. the points
I,O,N are collinear and O is situated between I and N . Using again the Euler’s line
of the triangle, it follows that triangle ABC is isosceles.

We call the Blundon’s configuration, the geometric situation in Figure 1.
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Figure 1. The Blundon’s configuration and the Nagel’s point N

THEOREM 1. The family T (R,r) contains only two isosceles triangles, i.e. the
extremal triangles AminBminCmin and AmaxBmaxCmax .

Proof. The triangle ABC in T (R,r) is isosceles with AB = AC if and only if OI
is perpendicular to BC . Because BminCmin and BmaxCmax are perpendicular to OI , the
conclusion follows. �

In what follows we will determine some elements of the isosceles triangles
AminBminCmin and AmaxBmaxCmax .

We have AminD = R−OD = R− (OI− r), where the point D is defined in Figure
1. It follows

AminD = hmin = R+ r−OI = R+ r−√
R2−2Rr. (4)

Similarly, we have

AmaxE = hmax = R+ r+OI = R+ r+
√

R2−2Rr. (5)

REMARK 1. Because OD � 0, it follows OI � r and we get

R � r(1+
√

2), (6)

i.e.
r � (

√
2−1)R.
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This is a short geometric proof to the A.Emmerich inequality [9] , true for every non-
acute triangle.

Consider am = BminCmin, bm = AminBmin = AminCmin, Km = am·hmin
2 the area of

triangle AminBminCmin. We have

R =
amb2

m

4Km
=

b2
m

2hmin
,

therefore

2Rhmin = b2
m = h2

min +
a2

m

4
,

hence
a2

m = 4hmin(2R−hmin). (7)

From equations (4) and (7) it follows

a2
m = 4r

Ä
2R− r+2

√
R2−2Rr

ä
. (8)

Denote aM = BmaxCmax, bM = AmaxBmax = AmaxCmax, and let KM = aM ·hmax
2 be the

area of triangle AmaxBmaxCmax. We have

R =
aMb2

M

4KM
=

b2
M

2hmax
,

hence

2Rhmax = b2
M = h2

max +
a2

M

4
.

From here we obtain
a2

M = 4hmax(2R−hmax). (9)

Using the equations (5) and (9) it follows

a2
M = 4r

Ä
2R− r−2

√
R2−2Rr

ä
. (10)

Combining the equations (8) and (10) we obtain

a2
m +a2

M = 8r(2R− r) and amaM = 4r
√

r2 +4Rr.

From equations (8) and (10) we get the inequality aM < am. Also, we have

cosAmin = 2cos2
Amin

2
−1 = 2 · h

2
min

b2
m

−1 =
hmin

R
−1, (11)

and similarly

cosAmax = 2cos2
Amax

2
−1 = 2 · h

2
max

b2
m

−1 =
hmax

R
−1. (12)
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THEOREM 2. The following relations hold:

sin
Amax

2
=

1
2
− 1

2

…
1− 2r

R
(13)

and

sin
Amin

2
=

1
2

+
1
2

…
1− 2r

R
. (14)

Proof. Using formulas (12) and (5), we have successively

sin2 Amax

2
=

1− cosAmax

2
=

2− hmax
R

2
= 1− hmax

2R
= 1− R+ r+

√
R2−2Rr

2R

=
R− r−√

R2−2Rr
2R

=
2R2−2Rr−2R

√
R2 −2Rr

4R2 =

Ç
R−√

R2−2Rr
2R

å2

,

and the formula (13) follows.
In similar way, using formulas (11) and (4), we obtain

sin2 Amin

2
=

1− cosAmin

2
=

2− hmin
R

2
= 1− hmin

2R
= 1− R+ r−√

R2−2Rr
2R

=
R− r+

√
R2−2Rr

2R
=

2R2−2Rr+2R
√

R2−2Rr
4R2 =

Ç
R+

√
R2−2Rr
2R

å2

,

and we get the formula (14). �
The results in Theorem 1 and Theorem 2 clarify with different proofs the results

contained in Theorems 1-2 in the paper [14].

3. Consequences for Blundon’s inequalities

In this section we give some applications in the spirit of papers [6] and [12]. We
begin with the following auxiliary result.

LEMMA 3. Let P be a point situated in the interior of the circle C (O;R) . If
P �= O, then the function A �→ PA is strictly increasing on the semicircle M̆0M1 , where
the points M0,M1 are the intersection of OP with the circle C such that P ∈ (OM0) .

Proof. Without loss of generality, we can assume that O is the origin of the co-
ordinates system xOy and P is situated on the positive half axis. In this case we have
P(x0,0),x0 > 0,A(Rcost,Rsin t),t ∈ [0,π ], and

PA2 = (Rcost − x0)2 +(Rsint)2 = R2 + x2
0−2Rx0 cost.

Because the cosine function is strictly decreasing on the interval [0,π ] and x0 > 0 we
obtain that the function A �→ PA2 is strictly increasing, and the conclusion follows. �
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THEOREM 4. In the Blundon’s configuration, the function A �→ ∠BAC is strictly

increasing on the semicircle A̧maxAmin .

Proof. We use the well-know relation sin A
2 = r

IA . From Lemma 3 with P = I , the

function A �→ IA is strictly decreasing on the semicircle A̧maxAmin . Therefore, for two

points A1,A2 ∈ A̧maxAmin in this order, we have IA1 > IA2 . Therefore sin A1
2 = r

IA1
<

r
IA2

= sin A2
2 , implying ∠B1A1C1 < ∠B2A2C2 . �

From the Law of Sines, for a triangle in the family T (R,r) , we have a = 2RsinA .
Using the relation r = (s−a) tan A

2 we obtain

s =
r+a tan A

2

tan A
2

=
r+2RsinA tan A

2

tan A
2

, (15)

i.e. the semiperimeter s depends only on the angle A.

Figure 2. The distribution of triangles in the family T (R,r)

On the other hand, from the relations bc = 4rRs
a and b+ c = 2s−a , it follows that

b,c are the roots of the quadratic equation

x2− (2s−a)x+
4rRs

a
= 0,

that is
2s−a±

»
4s2−4as+a2− 16rRs

a

2
.
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The above computations show that a triangle in the family T (R,r) is perfectly deter-
mined up to a congruence by the angle A . In this way, we obtain the distribution of
triangles in the family T (R,r) (see Figure 2).

COROLLARY 5. The distribution of triangles in the family T (R,r) is in pairs
(ΔABC,ΔA′B′C′) such that triangles ABC and A′B′C′ are congruent and symmetric
with respect to the diameter OI .

COROLLARY 6. In the Blundon’s configuration, the function A �→ BC is strictly
increasing on the arc ȦmaxA0 , and strictly decreasing on the arc Ȧ0Amin , where A0 is

the point on the semicircle A̧maxAmin such that ∠B0A0C0 = π
2 .

THEOREM 7. (The strong version of Blundon’s inequality) In the Blundon’s con-

figuration, the function A �→ s(A) , is strictly decreasing on the arc A̧maxBmin , where
s(A) denotes the semiperimeter of triangle ABC, that is we have the inequalities

s(Amax) � s(A) � s(Bmin).

Proof. Clearly, s(Amax) = smax , the semiperimeter of triangle AmaxBmaxCmax , and
s(Amin) = smin , the semiperimeter of triangle AminBminCmin . When A moves on the

arc A̧maxBmin from Amax to Bmin , the angle ∠ION strictly decreases from π to 0,
i.e the function A �→ ∠ION is strictly decreasing. Assume that we have the order
Amax,A1,A2,Bmin . From formula (2) we obtain s2(A1) > s2(A2) , and the conclusion
follows. �

The area K of a triangle ABC in the family T (R,r) is a function of angle A, and
we have the formula K = K(A) = rs(A), where s(A) is given in (15). The following
consequence of Theorem 7 is the strong version of the result in [12, Theorem 1].

COROLLARY 8. In the Blundon’s configuration, the function A �→K(A) is strictly

decreasing on the arc A̧maxBmin , strictly increasing on the arc B̧minCmax , and strictly

decreasing on ÇmaxAmin , where K(A) denotes the area of triangle ABC.
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