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Abstract. In this paper, we investigate the solution of Pompeiu derivation functional inequality
of other type

f (x+ y+ z+ xy+ xz+ yz + xyz) � f (x)+ f (y)+ f (z)+ f (x)y+x f (y)+x f (z)+y f (z)+xy f (z) ,

on R .

1. Introduction

Let R be the set of all real numbers. A function M : R → R is said to be a multi-
plicative function if

M (xy) = M (x)M(y), (1)

for all x,y ∈ R [1].
The functional equation

f (x+ y+ xy) = f (x)+ f (y)+ f (x) f (y) , (2)

is called Pompeiu functional equation [7, 8].
Therefore, the only solution f of Pompeiu functional equation (2) is given by

f (x) = M (x+1)−1, (3)

where M is multiplicative [6].
A function f : R → R is called Pompeiu derivation if it satisfies the functional

equation

f (x+ y+ xy) = f (x)+ f (y)+ f (x)y+ x f (y) , (4)

for all x,y ∈ R .
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In [5] the authors studied the functional inequality

f (x+ y+ xy) � f (x)+ f (y)+ f (x) f (y) .

Recently, John Rassias and others [2] investigated the solution and stability of type
functional inequality

f (x+ y+ xy) � f (x)+ f (y)+ f (xy) ,

(see also [4]).

DEFINITION 1. Let R be the set of all real numbers. A function f : R → R is
called a Pompeiu functional equation of other type if

f (x+ y+ z+ xy+ xz+ yz+ xyz)
= f (x)+ f (y)+ f (z)+ f (x) f (y)+ f (x) f (z)+ f (y) f (z)+ f (x) f (y) f (z) , (5)

for all x,y,z ∈ R .

Recently, Wlodzimierz Fechner [3] investigated the solution of Hlawka’s functional
inequality

f (x+ y)+ f (y+ z)+ f (x+ z) � f (x+ y+ z)+ f (x)+ f (y)+ f (z) .

DEFINITION 2. Let R be the set of all real numbers. A function f : R → R is
called a Pompeiu derivation of other type if

f (x+ y+ z+ xy+ xz+ yz+ xyz)
= f (x)+ f (y)+ f (z)+ f (x)y+ x f (y)+ f (x) z+ x f (z)+ f (y)z+ y f (z)+ f (x)yz

+ x f (y)z+ xy f (z) , (6)

for all x,y,z ∈ R .
Now, we introduce the following new functional inequality

f (x+ y+ z+ xy+ xz+ yz+ xyz)
� f (x)+ f (y)+ f (z)+ f (x)y+ x f (y)+ x f (z)+ y f (z)+ xy f (z) , (7)

on R .

Hence, it is natural that inequality (7) is called a Pompeiu derivation functional inequal-
ity of other type and every solution of the Eq. (7) is said to be a Pompeiu derivation
functional inequality of other type.

In this paper, we investigate the general solution of Pompeiu derivation functional
inequality of other type on R .
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2. Pompeiu derivation inequality

In this section, we study the general solution of Pompeiu derivation inequality

f (x+ y+ xy) � f (x)+ f (y)+ x f (y) , (8)

on R .
In mathematics and specifically, real analysis, the Dini derivatives are a class of

generalizations of the derivative. The upper Dini derivative for an arbitrary mapping
f : R → R is defined by

D± f (t) = limsup
h→0±

f (t +h)− f (t)
h

,

where lim sup is the supremum limit.
The lower Dini derivative of f is defined as follows:

D± f (t) = liminf
h→0±

f (t +h)− f (t)
h

,

where lim inf is the infimum limit.
If f is differentiable at t , then the Dini derivative at t is the usual derivative at t .

THEOREM 1. Assume that I is a nonvoid open interval containing zero. If a func-
tion f : I → R solves (8) for all x,y ∈ I such that x+y+xy∈ I , satisfies the following
conditions, then

D+ f (x) � f ′ (0) � D− f (x) ,

for all x ∈ I\{−1} :

i) f is differentiable at zero;

ii) f (0) = 0 .

Proof. Let f : I → R holds in functional inequality (8) and put y > 0. We have

f (x+(1+ x)y)− f (x) � f (y)+ x f (y),

and

(1+ x)
f (x+(1+ x)y)− f (x)

(1+ x)y
� f (y)

y
+

x f (y)
y

, (9)

for all x,y ∈ I such that x+ y+ xy∈ I .
Assume that x > −1 and pick a sequence (yn)n∈N of positive elements of I tend-

ing to zero in (9). Substitute y→ yn and letting n→+∞ in (9), by the definition of Dini
derivatives and using the assumptions that f (0) = 0 and f is differentiable at zero, we
have

(1+ x)D+ f (x) � (1+ x) f ′ (0) ,
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that is
D+ f (x) � f ′ (0) ,

for all x ∈ I such that x > −1.
Similarly, if x < −1 then

D− f (x) � f ′ (0) ,

for all x ∈ I .
We put y < 0 for all x,y ∈ I such that x+ y+ xy∈ I . By (8), we have

(1+ x)
f (x+(1+ x)y)− f (x)

(1+ x)y
� f (y)

y
+

x f (y)
y

. (10)

Assume that x > −1 and pick a sequence (yn)n∈N of negative elements of I tend-
ing to zero in (10).

Substitute y → yn and letting n → +∞ in (10), we have

D− f (x) � f ′ (0) ,

for all x ∈ I .
Similarly, if x < −1 then

D+ f (x) � f ′ (0) ,

for all x ∈ I. Then

D+ f (x) � f ′ (0) � D− f (x) ,

for all x ∈ I\{−1} and proof is complete. �

THEOREM 2. Let R be the set of all real numbers. If a function f : R → R solves
(8), satisfies the following conditions then there exists a real constant c, that f (x) = cx
for all x ∈ (−1,0):

i) f is differentiable at zero;

ii) f (0) = 0 .

Proof. Replace x in (8) by x+ y and y by −y . We have

f (x+ y− y− (x+ y)y) � f (x+ y)+ f (−y)+ (x+ y) f (− y),

assume that y > 0, then

− (x+ y)
f (x− (x+ y)y)− f (x)

−(x+ y)y
� f (x+ y)− f (x)

y
− f (−y)

−y
− (x+ y) f (−y)

−y
,

(11)
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for all x,y ∈ R .
Suppose that x ∈ (−1,0) and pick a sequence (yn)n ∈ N of positive elements of

R tending to zero in (11).
Substitute y → yn and letting n → +∞ in (11), we have

− xD+ f (x) � D+ f (x)− (1+x) f ′ (0) ,

that is f ′ (0) � D+ f (x) for all x ∈ (−1,0) .
Similarly, assume that y < 0 and pick a sequence (yn)n∈N of negative elements of

R tending to zero in (11) for all x ∈ (−1,0) . Substitute y → yn and letting n → +∞ in
(11). By using Theorem 1, proof is complete. �

3. Solution

In this section, we study the general solution of Pompeiu derivation of other type.
In [6], Kannappan and Sahoo defined a genealization of the Pompeiu functional equa-
tion (2), such that

f (ax+by+ cxy) = f (x)+ f (y)+ f (x) f (y), (12)

for all x,y ∈ R and a,b,c are arbitrary real constants.

DEFINITION 3. Let R be the set of all real numbers. A function f : R → R is
called a multiplicative derivation if

f (xy) = f (x)y+x f (y) ,

for all x,y ∈ R .

Hence, the function f : R → R is called a 3-multiplicative derivation if

f (xyz) = f (x)yz+ x f (y)z+ xy f (z) , (13)

for all x,y,z ∈ R.

THEOREM 3. Let R be the set of all real numbers. A function f : R → R satisfies
the functional equation (6) if only if there exists a 3-multiplicative derivation D : R→ R
such that

f (x) = D(x+1) ,

for all x,y,z ∈ R.



908 M. HADDADI, M. ESHAGHI GORDJI AND A. MAHMOODI

Proof. Putting f (x) = D(x+1) , we have

f (x+ y+ z+ xy+ xz+ yz+ xyz) = D(x+ y+ z+ xy+ xz+ yz+ xyz+1)
=D((x+1)(y+1)(z+1))
=(D(x+1))(y+1)(z+1)+ (x+1)D(y+1)(z+1)+ (x+1)(y+1)(D(z+1))
= f (x)(y+1)(z+1)+ (x+1) f (y)(z+1)+ (x+1)(y+1) f (z)
= f (x) (y+ z+ yz+1)+ (x+1) f (y)(z+1)+ (x+ y+ xy+1) f (z)
= f (x)+ f (y)+ f (z)+ f (x)y+ x f (y)+ f (x) z+ x f (z)+ f (y)z+ y f (z)+ f (x)yz

+ x f (y)z+ xy f (z) ,

for all x,y,z ∈ R.
Similarly, we put D(x) = f (x−1) and proof is complete. �

We now, investigate the solution of Pompeiu derivation functional equation of other
type for z = 1 such that introduced the following inequality

f (2x+2y+2xy+1)� 2 f (x)+2 f (y)+2x f (y) , (14)

for all x,y ∈ R .

THEOREM 4. Let R be the set of all real numbers. If a function f : R → R solves
(14), satisfies the following conditions then there exists a real constant c, that f (x)= cx
for all x ∈ (−1,0):

i) f is differentiable at zero;

ii) f (0) = 0 .

Proof. We put z = 1 in (6) by inequality (8), we have

f (2x+2y+2xy+1)= 2 f (x+ y+ xy) � 2 f (x)+2 f (y)+2x f (y), (15)

similar of Theorem 2, proof is complete. �

4. Pompeiu derivation inequality of other type

In this section, we investigate the general solution of Pompeiu derivation func-
tional inequality of other type on R .

THEOREM 5. Assume that I is a nonvoid open interval containing zero. If a func-
tion f : I → R solves (7) for all x,y,z ∈ I such that x+ y+ z+ xy+ xz+ yz+ xyz∈ I ,
satisfies the following conditions, then

D+ f (x+ y+ xy) � f ′ (0) � D− f (x+ y+ xy),

for all x,y ∈ I\{−1} :
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i) f is differentiable function;

ii) f (0) = 0 .

Proof. Let f : I → R holds in functional inequality (7) and put z > 0. We have

f (x+y+ xy+(1+ x+ y+ xy)z)− f (x+ y+ xy) � (1+ x+ y+ xy) f (z) ,

and

(1+ x)(1+ y)
f (x+ y+ xy+(1+ x)(1+ y)z)− f (x+ y+ xy)

(1+ x)(1+ y)z
� (1+ x)(1+ y)

f (z)
z

,

(16)

for all x,y,z ∈ I such that x+ y+ z+ xy+ xz+ yz+ xyz ∈ I .
Assume that x > −1, y > −1 and pick a sequence(zn)n∈N of positive elements of

I tending to zero in (16).
Substitute z → zn and letting n → +∞ in (16), we have

(1+ x)(1+ y)D+ f (x+ y+ xy) � (1+ x)(1+ y) f ′ (0) ,

so
D+ f (x+ y+ xy) � f ′ (0) ,

for all x,y ∈ I such that x > −1 and y > −1.
Similarly, if x < −1 and y < −1 then

D− f (x+ y+ xy) � f ′ (0) .

We put z < 0 in (7), we have

f (x+ y+ xy+(1+ x+ y+ xy)z)− f (x+ y+ xy) � (1+ x+ y+ xy) f (z) ,

and

(1+ x)(1+ y)
f (x+ y+ xy+(1+ x)(1+ y)z)− f (x+ y+ xy)

(1+ x)(1+ y)z
� (1+ x)(1+ y)

f (z)
z

,

(17)

for all x,y,z ∈ I such that x+ y+ z+ xy+ xz+ yz+ xyz∈ I .
Assume x > −1, y > −1 and pick a sequence (zn)n∈N of negative elements of I

tending to zero in (17).
Substitute z → zn and letting n → +∞ in (17), we have

D− f (x+ y+ xy) � f ′ (0) ,

for all x,y ∈ I such that x > −1 and y > −1.
Similarly, if x < −1 and y < −1 then

D+ f (x+ y+ xy) � f ′ (0) .

So
D+ f (x+ y+ xy) � f ′ (0) � D− f (x+ y+ xy),

for all x,y ∈ I\{−1} and proof is complete. �
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THEOREM 6. Let R be the set of all real numbers. If a function f : R → R
solves (7), satisfies the following conditions then there exists a real constant c, that
f (x+ y+ xy) = c(x+ y+ xy) for all x,y ∈ (−1,0):

i) f is differentiable function;

ii) f (0) = 0 .

Proof. Similar of Theorem 5, proof is complete. �
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