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THE LOGARITHMIC INTERSECTION BODY

LIJUAN LIU

(Communicated by J. Pečarić)

Abstract. Haberl and Ludwig extended the classical intersection body to Lp space, and they
showed that the classical intersection body is the limit case of the Lp intersection body. In this
paper, we introduce the logarithmic intersection body and prove that it is the limit case of the
normalized Lp intersection body. The affine nature of the logarithmic intersection body operator
is demonstrated. Furthermore, a positive answer to the log-Busemann-Petty problem is given.

1. Introduction

Intersection body was introduced by Lutwak [18]. For K ∈ S n , the intersection
body, IK , of K is the origin-symmetric star body, whose radial function is defined by,
for all u ∈ Sn−1 ,

ρ(IK,u) = voln−1(K ∩u⊥),

where voln−1 denotes (n− 1)-dimensional volume, and u⊥ denotes the hyperplane
orthogonal to u .

Intersection bodies have attracted increased interest during past two decades (see
[5-6,8,11,14,16-17,27]). The greatest contribution of intersection bodies is to be used
to solve the Busemann-Petty problem (see [7,10,28]).

Haberl and Ludwig [13] extended the classical intersection bodies to Lp space, and
defined the notion of the normalized Lp intersection bodies. For K ∈ S n,0 < p < 1,
the Lp intersection body, IpK , of K is the origin-symmetric star body, whose radial
function is defined by, for all u ∈ Sn−1 ,

ρ(IpK,u)p =
1

(n− p)

∫
Sn−1

ρ(K,ν)n|〈ρ(K,ν)ν,u〉|−pdν.

Haberl and Ludwig [13] pointed out that the intersection body IK , of K is obtained
as a limit of Lp intersection body IpK of K , that is for all u ∈ Sn−1 ,

ρ(IK,u) = lim
p→1−

1− p
2

ρ(IpK,u)p.
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Haberl [12] studied the symmetric (nonsymmetric) Lp -Busemann-Petty type prob-
lem (see also Yuan and Cheung [26]). More results on the Lp intersection body can be
found in [1,13].

The normalized Lp intersection body was defined by Wang and Zhang [25]. For
K ∈ S n, p < 1, p �= 0, the normalized Lp intersection body, I pK , of K is the origin-
symmetric star body, whose radial function is defined by, for all u ∈ Sn−1 ,

ρ( I pK,u)p =
1

(n− p)V(K)

∫
Sn−1

ρ(K,ν)n|〈ρ(K,ν)ν,u〉|−pdν.

The logarithmic Brunn-Minkowski theory was born due to the logarithmic
Minkowski problem which was considered by Böröczky, Lutwak, Yang, and Zhang
[3], while the planar logarithmic Minkowski problem was first studied by Stancu [21-
22]. Böröczky, Lutwak, Yang, and Zhang [2] established the planar logarithmic Brunn-
Minkowski inequality. Gardner, Hug, Weil, and Ye [9] established the dual logarithmic
Brunn-Minkowski inequality. The (dual) logarithmic Brunn-Minkowski theory has at-
tracted a lot of attention (see [2-3,9,19,21-24,30]).

Since the classical (dual) Brunn-Minkowski theory was extended to the (dual) Lp -
Brunn-Minkowski theory, the (dual) Lp -Brunn-Minkowski theory has been developed.
In particular, the (dual) logarithmic Brunn-Minkowski theory may be obtained as a limit
of the (dual) Lp -Brunn-Minkowski theory when p → 0.

Note that

lim
p→0

log[
1

(n− p)V(K)

∫
Sn−1

ρ(K,ν)n|〈ν,u〉ρ(K,ν)|−pdν]
1
p

= lim
p→0

log[
1

(n− p)V(K)

∫
Sn−1

ρ(K,ν)n|〈ν,u〉ρ(K,ν)|−pdν]

p

= lim
p→0

log
n

n− p
p

+ lim
p→0

log[
1

nV(K)

∫
Sn−1

ρ(K,ν)n|〈ν,u〉ρ(K,ν)|−pdν]

p

=
1
n

+ lim
p→0

1
nV (K)

∫
Sn−1

ρ(K,ν)n〈ν,u〉ρ(K,ν)|−p(− log |〈ν,u〉ρ(K,ν)|dν)

=
1
n
− 1

nV (K)

∫
Sn−1

ρ(K,ν)n log |〈ν,u〉ρ(K,ν)|dν.

(1.1)

For K ∈S n , the logarithmic intersection body, I0K , of K is the origin-symmetric
star body, whose radial function is defined by, for all u ∈ Sn−1 ,

logρ(I0K,u) =
1
n
− 1

nV (K)

∫
Sn−1

ρ(K,ν)n log |〈ν,u〉ρ(K,ν)|dν. (1.2)

Applying (1.1) and (1.2), the logarithmic intersection body I0K , of K can be obtained
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as a limit of the normalized Lp intersection body I pK of K , that is for all u ∈ Sn−1 ,

ρ(I0K,u) = lim
p→0

ρ( I pK,u). (1.3)

Recently, Gardner, Hug, Weil and Ye [9] defined the Orlicz intersection body, Iφ K ,
of a star body K as whose radial function is given by (also see [29])

ρ(Iφ K,u) = inf{λ > 0 :
∫

K
φ(

1
λ |u · y|)dy � 1}, (1.4)

where φ : (0,∞)→ (0,∞) is a strictly decreasing function and φ(1) = 1. If φ : (0,∞)→
(0,∞) is a strictly increasing function, the inequality of the integral (1.4) is reserve.

The main purpose of this paper is to study the log-Busemann-Petty problem. Our
main result can be stated as follows.

THEOREM 1.1. Let K be a logarithmic intersection body and L be an origin-
symmetric body in R

n . If
I0K ⊂ I0L,

then
V (K) � V (L),

with equality if and only if K = L.

2. Notation and background material

For general reference for the theory of convex (star) bodies the reader may wish to
consult the books of Gardner [8] and Schneider [20].

The unit ball and its surface in R
n are denoted by B and Sn−1 , respectively. We

write V (K) for the volume of the compact set K in R
n . The radial function ρK : Sn−1 →

[0,∞) of a compact star-shaped about the origin, K ∈ R
n , is defined, for u ∈ Sn−1 , by

ρK(u) = ρ(K,u) = max{λ � 0 : λu ∈ K}. (2.1)

If ρK(·) is positive and continuous, then K is called a star body about the origin.
The set of star bodies about the origin in R

n is denoted by S n . Obviously, for K,L ∈
S n ,

K ⊆ L ⇔ ρK(u) � ρL(u), ∀ u ∈ Sn−1. (2.2)

If
ρK(u)
ρL(u)

is independent of u ∈ Sn−1 , then we say star bodies K and L are dilates.

If s > 0, we have

ρsK(u) = sρK(u), for all u ∈ Sn−1. (2.3)

If A ∈ GL(n) , we have

ρAK(u) = ρK(A−1u), for all u ∈ Sn−1. (2.4)
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Let K and L be two star bodies in R
n and 0 � λ � 1, then the log radial sum,

(1−λ ) ·K+̃0λ ·L , is defined by [9,24]

ρ(1−λ )·K+̃0λ ·L(u) = ρK(u)1−λ ρL(u)λ , ∀u ∈ Sn−1. (2.5)

In particular, if λ = 0, then (1−λ ) ·K+̃0λ ·L = K , If λ = 1, then (1−λ ) ·K+̃0λ ·L =
L .

The dual log mixed volume was defined by Gardner, Hug, Weil and Ye [9] (see
also [24]). Let K,L ∈ S n , the dual log mixed volume Ṽ0(K,L) is defined by

Ṽ0(K,L) =
1
n

∫
Sn−1

log(
ρL(u)
ρK(u)

)ρK(u)ndS(u). (2.6)

In particular, Ṽ0(K,K) = 0.
Moreover, they proved the following dual log-Minkowski inequality.

LEMMA 2.1. [9] If K and L are two star bodies in R
n , then

Ṽ0(K,L)
V (K)

� 1
n

log
V (L)
V (K)

, (2.7)

with equality if and only if K and L are dilates.

3. Main results

THEOREM 3.1. Let K ∈ S n and c > 0 . Then

I0(cK) =
1
c
I0K.

Proof. By (1.2) and (2.3), we obtain that, for ∀u ∈ Sn−1 ,

logρ(I0cK,u) =
1
n
− 1

nV (cK)

∫
Sn−1

ρ(cK,ν)n log |〈ν,u〉ρ(cK,ν)|dν

=
1
n
− 1

nV (K)

∫
Sn−1

ρ(K,ν)n log |〈ν,u〉ρ(K,ν)|dν − logc

= logρ(I0(K,u))− logc = log
ρ(I0K,u)

c
.

Thus, we have that I0(cK) =
1
c
I0K. �

It is well known that the Ip is GL(n) contravariant of weight
1
p

, i.e., for every

A ∈ GL(n) and every star body K ,

Ip(AK) = |detA| 1
p A−tIpK.

However, the logarithmic intersection operator I0 is GL(n) contravariant of weight 0.
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THEOREM 3.2. Let K ∈ S n , and A ∈ GL(n) . Then

I0(AK) = A−t I0K.

Proof. From (1.2) and (2.4), it follows that, for ∀u ∈ Sn−1 ,

logρ(I0AK,u) =
1
n
− 1

nV(AK)

∫
Sn−1

ρ(AK,ν)n log |〈ν,u〉ρ(AK,ν)|dν

=
1
n
− 1

n|A|V(K)

∫
Sn−1

ρ(K,A−1ν)n log |〈ν,u〉ρ(K,A−1ν)|dν

=
1
n
− 1

nV(K)

∫
Sn−1

ρ(K,v)n log |〈v,Atu〉ρ(K,v)|dv = logρ(I0K,Atu)

= logρ(A−tI0K,u). �

In order to prove Theorem 1.1, the following lemmas are required.

LEMMA 3.3. Let K,L1,L2 ∈ S n . If L1 ⊆ L2 , then

Ṽ0(K,L1) � Ṽ0(K,L2).

Proof. By (2.6), and the fact that the exponential function log(·) is increasing on
(0,∞) , we have

Ṽ0(K,L1) =
1
n

∫
Sn−1

log(
ρL1(u)
ρK(u)

)ρK(u)ndS(u) � 1
n

∫
Sn−1

log(
ρL2(u)
ρK(u)

)ρK(u)ndS(u)

= Ṽ0(K,L2). �

LEMMA 3.4. Let K,L ∈ S n . Then

Ṽ0(K, I0L)
V (K)

=
Ṽ0(L, I0K)

V (L)
.

Proof. From (1.2), (2.6) and Fubini’s theorem, it follows that

Ṽ0(K, I0L)
V (K)

=
1

nV (K)

∫
Sn−1

ρK(u)n log
ρI0L(u)
ρK(u)

du =
1

nV(K)

∫
Sn−1

ρK(u)n(logρI0L(u)−logρK(u))du

=
1

nV (K)

∫
Sn−1

ρK(u)n[
1
n
− 1

nV(L)

∫
Sn−1

ρL(v)n(log |〈u,v〉ρL(v)|+ logρK(u))dv]du
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=
1
n
− 1

n2V (K)V (L)

∫
Sn−1

ρK(u)n
∫

Sn−1
ρL(v)n log |〈u,v〉ρL(v)ρK(u)|dvdu

=
1
n
− 1

n2V (K)V (L)

∫
Sn−1

ρL(ν)n
∫

Sn−1
ρK(u)n log |〈u,ν〉ρL(ν)ρK(u)|dudν

=
1

nV (L)

∫
Sn−1

ρL(v)n[
1
n
− 1

nV(K)

∫
Sn−1

ρK(u)n(log |〈u,v〉ρK(u)|+ logρL(v))du]dv

=
1

nV (L)

∫
Sn−1

ρL(v)n(logρI0K(v)− logρL(v))dv =
Ṽ0(L, I0K)

V (L)
. �

Now, we consider the following the log-Busemann-Petty problem. Let K,L∈S n .
If

I0K ⊆ I0L,

does it follow that
V (K) � V (L)?

Just as the classical Busemann-Petty problem, we will show that the log-Busemann-
Petty problem has an affirmative answer if K is a logarithmic intersection body.

Proof of Theorem 1.1. Since K is a logarithmic intersection body, there exists a
star body M such that K = I0M . Using Lemma 3.4 and Lemma 3.3, we can conclude
that

Ṽ0(L,K)
V (L)

=
Ṽ0(L, I0M)

V (L)
=

Ṽ0(M, I0L)
V (M)

� Ṽ0(M, I0K)
V (M)

=
Ṽ0(K, I0M)

V (K)
= 0.

Applying the dual log-Minkowski inequality (2.7), we obtain that

V (K) � V (L),

with equality if and only if K and L are dilates. Obviously, if V (K) = V (L) , we must
have K = L . �
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