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Abstract. In this paper, we will establish some new Lyapunov-type inequalities for some higher-
order half-linear differential equations with anti-periodic boundary conditions. Our results not
only improve the results in [9] for some cases, but also extend the results of [11].

1. Introduction

Integral inequalities are one kind of important inequalities that have received much
attention in recent years, due to their wide applications in the research of qualitative and
quantitative properties such as boundedness, global existence and stability of differen-
tial and integral equations (see [3]-[7], [10], [12]-[44] and the references therein).

In the feilds of integral inequalities, Lyapunov inequality, which with many of its
generalizations have proved to be useful tools in oscillation theory, disconjugacy and
eigenvalues problems of differential equations, was originally presented by Lyapunov
in [1] as follows:

If u(t) is a solution of
u′′ +q(t)u = 0 (1)

satisfying u(a) = u(b) = 0 (a < b) and u(t) �= 0 for t ∈ (a,b) , then

∫ b

a
|q(t)|dt >

4
b−a

.

In the last twenty years, a lot of efforts have been made to obtain Lyapunov-type
inequalities for higher-order differential equations. In particular, Çakmak [2] consid-
ered Lyapunov-type inequality for the following even higher-order linear differential
equation

u(2m)(t)+ r(t)u(t) = 0, (2)

where r ∈C([a,b], [0,∞)) , and he obtained the following result.
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THEOREM 1. ([2],Theorem 2) If there exists a nonzero solution u(t) of Eq.(2)
satisfying the following boundary conditions:

u(2i)(a) = u(2i)(b) = 0, i = 0,1,2, . . . ,m−1, (3)

then ∫ b

a
r(t)dt >

22m

(b−a)2m−1 . (4)

Later, Watanabe, Yamagishi and Kametaka [8] used one Sobolev inequality to get a
new Lyapunov-type inequality for Eq.(2):

∫ b

a
r(t)dt >

22m

(b−a)2m−1 ·
π2m

2(22m−1)ζ (2m)
,

where ζ (s) = Σ+∞
n=1

1
ns is the Riemann zeta function. Their result sharpened the result

of Çakmak [2].
Recently, Wang et al. [9] considered the following (m+ 1)-order half-linear dif-

ferential equation

(|u(m)|p−2u(m))′ +
m

∑
k=0

rk(t)|u(k)|p−2u(k) = 0 (5)

where m � 1, rk ∈C([a,b],R),k = 0,1,2, . . . ,m , p > 1, and they obtained the follow-
ing result.

THEOREM 2. ([9],Theorem 2.1) If there exists a nonzero solution u(t) of Eq.(5)
satisfying the following anti-periodic boundary conditions:

u(i)(a)+u(i)(b) = 0, i = 0,1,2, . . . ,m, (6)

then

m−1

∑
k=0

[(b−a)Cm−k]
p−1
2

∫ b

a
|rk(t)|dt +

∫ b

a
|rm(t)|dt > 2, (7)

where

Cn =
(22n−1)(b−a)2n−1ζ (2n)

22n−1π2n , n = 1,2, . . . , (8)

and ζ (s) = Σ+∞
n=1

1
ns is the Riemann zeta function for Re (s) > 1 .

On the other hand, Yang and Lo [11] obtained some Lyapunov-type inequalities
for higher-order linear differential equation

u(m) + αu(m−1) +
m−2

∑
k=0

rk(t)u(k) = 0, (9)
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on the interval (a,b) , under the following anti-periodic boundary

u(i)(a)+u(i)(b) = 0, i = 0,1, . . . ,m−1, (10)

where m � 2, pk ∈C([a,b],R),k = 0,1,2, . . . ,m−2.
We find that in Eq.(9), the coefficient α of u(m−1) is a constant. The natural ques-

tion now is: Can one obtain Lyapunov-type inequality for Eq.(9) with the coefficient of
u(m−1) is a function? Although Theorem 2.1 in [9] gives an affirmative answer to this
question, we find the result can be improved.

In the present paper, we shall use the Sobolev inequality established in [8] and
some techniques different from [9] to obtain some new Lyapunov-type inequalities for
Eq.(5) with p > 2 and the anti-periodic boundary conditions (6). Further, we will also
prove a new Lyapunov-type inequality for m-order linear differential equation

u(m) +
m−1

∑
k=0

rk(t)u(k) = 0 (11)

with the anti-periodic boundary conditions (10). Our work not only improves the result
in [9] for some cases but also extends the result of [11].

2. Main results

LEMMA 1. [8] For m � 1 , define the following Sobolev space:

Hm = {u|u(m) ∈ L2[a,b], u(k)(a)+u(k)(b) = 0, k = 0,1,2, . . . ,m−1}.
For any u ∈ Hm , there exists a positive constant Cm such that the Sobolev inequality

( sup
a�t�b

|u(t)|
)2

� Cm

∫ b

a
|u(m)(t)|2dt (12)

holds, where

Cm =
2(22m−1)(b−a)2m−1ζ (2m)

22mπ2m , m = 1,2, . . . , (13)

and the constants {Cm} are sharp, ζ (s) = Σ+∞
n=1

1
ns is the Riemann zeta function for

Re (s) > 1 .

THEOREM 3. Assume m∈N , p > 2 , rk ∈C([a,b],R),k = 0,1,2, . . . ,m. If u(t) is
a nonzero solution of Eq.(5) satisfying the anti-periodic boundary conditions (6), then

C
1
2
1 (b−a)

p−2
2p

(∫ b

a
|rm(t)|pdt

) 1
p
+C

p
2
1 · (b−a)

p−2
2

∫ b

a
r+
m−1(t)dt

+
m−2

∑
k=0

C
p−1
2

m−kC
1
2
1 (b−a)

p−2
2

∫ b

a
|rk(t)|dt > 1,

(14)

where r+
m−1(t) := max{rm−1(t),0}, and Ck , k = 1,2, . . . ,m, are defined as in (13).
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Proof. Let u(t) be a solution of Eq.(5) satisfying the anti-periodic boundary con-
ditions (6). It is easy to see that u(t) is an element of Hm. Multiplying Eq.(5) by
u(m−1)(t) and integrating over [a,b] , yields∫ b

a
(|u(m)(t)|p−2u(m)(t))′u(m−1)(t)dt +

m

∑
k=0

∫ b

a
rk(t)|u(k)(t)|p−2u(k)(t)u(m−1)(t)dt = 0.

(15)
Using integration by parts to the first integral on the left-hand side of (15) and (6), we
have∫ b

a
|u(m)(t)|pdt =

m

∑
k=0

∫ b

a
rk(t)|u(k)(t)|p−2u(k)(t)u(m−1)(t)dt

=
∫ b

a
rm(t)|u(m)(t)|p−2u(m)(t)u(m−1)(t)dt

+
∫ b

a
rm−1(t)|u(m−1)(t)|p−2u(m−1)(t)u(m−1)(t)dt

+
m−2

∑
k=0

∫ b

a
rk(t)|u(k)(t)|p−2u(k)(t)u(m−1)(t)dt

�
∫ b

a
|rm(t)||u(m)(t)|p−1|u(m−1)(t)|dt +

∫ b

a
r+
m−1(t)|u(m−1)(t)|pdt

+
m−2

∑
k=0

∫ b

a
|rk(t)||u(k)(t)|p−1|u(m−1)(t)|dt. (16)

Applying Hölder’s inequality

∫ b

a
| f (t)g(t)|dt �

(∫ b

a
| f (t)|αdt

) 1
α

(∫ b

a
|g(t)|β dt

) 1
β

(17)

to the first integral on the right-hand side of (16) with f (t) = |u(m)(t)|p−1, g(t) =
|rm(t)||u(m−1)(t)|, α = p

p−1 and β = p, we obtain that

∫ b

a
|rm(t)||u(m)(t)|p−1|u(m−1)(t)|dt

�
(∫ b

a
|u(m)(t)|pdt

) p−1
p

(∫ b

a
|rm(t)|p|u(m−1)(t)|pdt

) 1
p

�
(∫ b

a
|u(m)(t)|pdt

) p−1
p

sup
a�t�b

|u(m−1)(t)|
(∫ b

a
|rm(t)|pdt

) 1
p
. (18)

Since

u(k) ∈ Hm−k, k = 0,1, . . . ,m−1,

by Lemma 1, we have

sup
a�t�b

|u(k)(t)| � C
1
2
m−k

(∫ b

a
|u(m)(t)|2dt

) 1
2
, k = 0,1, · · · ,m−1. (19)
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Applying Hölder’s inequality (17) to the integral on the right-hand side of (19) with
f (t) = |u(m)(t)|2, g(t) = 1, α = p

2 and β = p
p−2 , we get

(∫ b

a
|u(m)(t)|2dt

) 1
2 �

(∫ b

a
|u(m)(t)|pdt

) 1
p
(b−a)

p−2
2p , k = 0,1, · · · ,m−1. (20)

From (18)-(20), we have

∫ b

a
|rm(t)||u(m)(t)|p−1|u(m−1)(t)|dt

�
(∫ b

a
|u(m)(t)|pdt

) p−1
p

C
1
2
1

(∫ b

a
|u(m)(t)|pdt

) 1
p (b−a)

p−2
2p

(∫ b

a
|rm(t)|pdt

) 1
p

=
∫ b

a
|u(m)(t)|pdt ·C

1
2
1 (b−a)

p−2
2p

(∫ b

a
|rm(t)|pdt

) 1
p
. (21)

On the other hand, for the second integral on the right-hand side of (16), from (19) and
(20), we obtain

∫ b

a
r+
m−1(t)|u(m−1)(t)|pdt

�
(

sup
a�t�b

|u(m−1)(t)|)p
∫ b

a
r+
m−1(t)dt

� C
p
2
1

∫ b

a
|u(m)(t)|pdt · (b−a)

p−2
2

∫ b

a
r+
m−1(t)dt, (22)

and for the third part on the right-hand side of (16), from (19) and (20), we have

m−2

∑
k=0

∫ b

a
|rk(t)||u(k)(t)|p−1|u(m−1)(t)|dt

�
m−2

∑
k=0

(
sup

a�t�b
|u(k)(t)|)p−1

sup
a�t�b

|u(m−1)(t)|
∫ b

a
|rk(t)|dt

�
m−2

∑
k=0

[
C

p−1
2

m−k

(∫ b

a
|u(m)(t)|pdt

) p−1
p

(b−a)
(p−2)(p−1)

2p ·

C
1
2
1

(∫ b

a
|u(m)(t)|pdt

) 1
p
(b−a)

p−2
2p

∫ b

a
|rk(t)|dt

]

=
∫ b

a
|u(m)(t)|pdt

m−2

∑
k=0

C
p−1
2

m−kC
1
2
1 (b−a)

p−2
2

∫ b

a
|rk(t)|dt. (23)
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By (16) and (21)-(23), we get

∫ b

a
|u(m)(t)|pdt �

∫ b

a
|u(m)(t)|pdt ·C

1
2
1 (b−a)

p−2
2p

(∫ b

a
|rm(t)|pdt

) 1
p

+ C
p
2
1

∫ b

a
|u(m)(t)|pdt · (b−a)

p−2
2

∫ b

a
r+
m−1(t)dt

+
∫ b

a
|u(m)(t)|pdt

m−2

∑
k=0

C
p−1
2

m−kC
1
2
1 (b−a)

p−2
2

∫ b

a
|rk(t)|dt. (24)

Now, we claim that
∫ b
a |u(m)(t)|pdt > 0. In fact, if the above inequality is not

true, we have
∫ b
a |u(m)(t)|pdt = 0, then u(m)(t) = 0 for t ∈ [a,b] . By the anti-periodic

conditions (6), we obtain u(t)= 0 for t ∈ [a,b] , which contradicts to u(t) �= 0, t ∈ [a,b] .
Thus dividing both sides of (24) by

∫ b
a |u(m)(t)|pdt , we obtain

1 � C
1
2
1 (b−a)

p−2
2p

(∫ b

a
|rm(t)|pdt

) 1
p
+C

p
2
1 · (b−a)

p−2
2

∫ b

a
r+
m−1(t)dt

+
m−2

∑
k=0

C
p−1
2

m−kC
1
2
1 (b−a)

p−2
2

∫ b

a
|rk(t)|dt. (25)

Moreover, this inequality is strict, since u(t) is not a constant. This completes the proof
of Theorem 3.

REMARK 1. The inequality obtained in Theorem 3 is sharper than (7) for the case
where p > 2 and rm(t) ≡ 0. When rm(t) ≡ 0, (7) reduces to

1
2

m−1

∑
k=0

[(b−a)Cm−k]
p−1
2

∫ b

a
|rk(t)|dt > 1. (26)

It is easy to see that the coefficients of
∫ b
a |rk(t)|dt , k = 0,1,2, . . . ,m−2 in (26) are the

same as those in (14), and the coefficient of
∫ b
a |rm−1(t)|dt in (26) is the same as the

coefficient of
∫ b
a r+

m−1(t)dt in (14). So by Theorem 3, the integral of |rm−1(t)| on the
left-hand side of (26) is replaced by the integral of r+

m−1(t) .

For Eq.(11), with a similar argument to the proof of Theorem 3, we have the fol-
lowing Theorem.

THEOREM 4. Assume m ∈ N , rk ∈C([a,b],R),k = 0,1,2, . . . ,m−1 . If u(t) is a
nonzero solution of Eq.(11) satisfying the anti-periodic boundary conditions (10), then

C
1
2
1

(∫ b

a
|rm−1(t)|2dt

) 1
2 +C1

∫ b

a
r+
m−2(t)dt +

m−3

∑
k=0

C
1
2
m−1−kC

1
2
1

∫ b

a
|rk(t)|dt > 1, (27)
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where r+
m−2(t) := max{rm−2(t),0}, and Ck , k = 1,2, . . . ,m−1, are defined as in (13).

Proof. Let u(t) be a solution of Eq.(11) satisfying the anti-periodic boundary con-
ditions (10). It is easy to see that u(t) is an element of Hm−1. Multiplying Eq.(11) by
u(m−2)(t) and integrating over [a,b] , yields

∫ b

a
u(m)(t)u(m−2)(t)dt +

m−1

∑
k=0

∫ b

a
rk(t)u(k)(t)u(m−2)(t)dt = 0. (28)

Using integration by parts to the first integral on the left-hand side of (28) and (10), we
have

∫ b

a
(u(m−1)(t))2dt =

m−1

∑
k=0

∫ b

a
rk(t)u(k)(t)u(m−2)(t)dt

=
∫ b

a
rm−1(t)u(m−1)(t)u(m−2)(t)dt

+
∫ b

a
rm−2(t)u(m−2)(t)u(m−2)(t)dt

+
m−3

∑
k=0

∫ b

a
rk(t)u(k)(t)u(m−2)(t)dt

�
∫ b

a
|rm−1(t)||u(m−1)(t)||u(m−2)(t)|dt +

∫ b

a
r+
m−2(t)|u(m−2)(t)|2dt

+
m−3

∑
k=0

∫ b

a
|rk(t)||u(k)(t)||u(m−2)(t)|dt. (29)

Applying Hölder’s inequality (17) to the first integral on the right-hand side of (29) with
f (t) = |u(m−1)(t)|, g(t) = |rm−1(t)||u(m−2)(t)|, α = 2 and β = 2, we obtain that

∫ b

a
|rm−1(t)||u(m−1)(t)||u(m−2)(t)|dt

�
(∫ b

a
|u(m−1)(t)|2dt

) 1
2
(∫ b

a
|rm−1(t)|2|u(m−2)(t)|2dt

) 1
2

�
(∫ b

a
|u(m−1)(t)|2dt

) 1
2

sup
a�t�b

|u(m−2)(t)|
(∫ b

a
|rm−1(t)|2dt

) 1
2
. (30)

Since

u(k) ∈ Hm−1−k, k = 0,1, . . . ,m−2,

by Lemma 1, we have

sup
a�t�b

|u(k)(t)| � C
1
2
m−1−k

(∫ b

a
|u(m−1)(t)|2dt

) 1
2
, k = 0,1, · · · ,m−2. (31)
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From (30)-(31), we have∫ b

a
|rm−1(t)||u(m−1)(t)||u(m−2)(t)|dt

�
(∫ b

a
|u(m−1)(t)|2dt

) 1
2
C

1
2
1

(∫ b

a
|u(m−1)(t)|2dt

) 1
2
(∫ b

a
|rm−1(t)|2dt

) 1
2

=
∫ b

a
|u(m−1)(t)|2dt ·C

1
2
1

(∫ b

a
|rm−1(t)|2dt

) 1
2
. (32)

On the other hand, for the second integral on the right-hand side of (29), from (31), we
get ∫ b

a
r+
m−2(t)|u(m−2)(t)|2dt

�
(

sup
a�t�b

|u(m−2)(t)|)2
∫ b

a
r+
m−2(t)dt

� C1

∫ b

a
|u(m−1)(t)|2dt

∫ b

a
r+
m−2(t)dt, (33)

and for the third part on the right-hand side of (29), we have

m−3

∑
k=0

∫ b

a
|rk(t)||u(k)(t)||u(m−2)(t)|dt

�
m−3

∑
k=0

(
sup

a�t�b
|u(k)(t)|) sup

a�t�b
|u(m−2)(t)|

∫ b

a
|rk(t)|dt

�
m−3

∑
k=0

[
C

1
2
m−1−k

(∫ b

a
|u(m−1)(t)|2dt

) 1
2 ·

C
1
2
1

(∫ b

a
|u(m−1)(t)|2dt

) 1
2
∫ b

a
|rk(t)|dt

]

=
∫ b

a
|u(m−1)(t)|2dt

m−3

∑
k=0

C
1
2
m−1−kC

1
2
1

∫ b

a
|rk(t)|dt. (34)

By (29) and (32)-(34), we get

∫ b

a
|u(m−1)(t)|2dt �

∫ b

a
|u(m−1)(t)|2dt ·C

1
2
1

(∫ b

a
|rm−1(t)|2dt

) 1
2

+ C1

∫ b

a
|u(m−1)(t)|2dt

∫ b

a
r+
m−2(t)dt

+
∫ b

a
|u(m−1)(t)|2dt

m−3

∑
k=0

C
1
2
m−1−kC

1
2
1

∫ b

a
|rk(t)|dt. (35)

The rest of the proof is similar to Theorem 3, and we omit it here.
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3. Examples

We list the first 6 values of ζ (2n) , n = 1,2, · · · ,6, in the following table:

n 1 2 3 4 5 6

ζ (2n) π2

6
π4

90
π6

945
π8

9450
π10

93555
691π12

638512875

By applying Theorem 3 and Theorem 4, we get the following inequalities:

EXAMPLE 1. Let us consider the following boundary value problem

(|u′′′ |u′′′
)′ +

3

∑
k=0

rk(t)|u(k)|u(k) = 0, (36)

with the anti-periodic boundary conditions

u(i)(a)+u(i)(b) = 0, i = 0,1,2,3. (37)

If u(t) is a nonzero solution of Eq.(36), then

(b−a)
2
3

2

(∫ b

a
|r3(t)|3dt

) 1
3 +

(b−a)2

8

∫ b

a
r+
2 (t)dt

+
(b−a)4

96

∫ b

a
|r1(t)|dt + (b−a)6

960

∫ b

a
|r0(t)|dt > 1.

(38)

Proof. From Theorem 3, let m = 3 and p = 3, we get

C
1
2
1 (b−a)

1
6

(∫ b

a
|r3(t)|3dt

) 1
3 +C

3
2
1 · (b−a)

1
2

∫ b

a
r+
2 (t)dt

+
1

∑
k=0

C3−kC
1
2
1 (b−a)

1
2

∫ b

a
|rk(t)|dt > 1.

(39)

From (15), ζ (2) = π2

6 , ζ (4) = π4

90 , ζ (6) = π6

945 and a simple computation, we have

C1 =
2(22−1)(b−a)2−1ζ (2)

22π2 =
b−a

4
, (40)

C2 =
2(24−1)(b−a)4−1ζ (4)

24π4 =
(b−a)3

48
, (41)

and

C3 =
2(26−1)(b−a)6−1ζ (6)

26π6 =
(b−a)5

480
. (42)

Thus, from (39)-(42), we obtain the result.
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EXAMPLE 2. Let us consider the following boundary value problem

u
′′′

+ r2(t)u
′′
+ r1(t)u′ + r0(t)u = 0, (43)

with the anti-periodic boundary conditions

u(i)(a)+u(i)(b) = 0, i = 0,1,2. (44)

If u(t) is a nonzero solution of Eq.(43), then

(b−a)
1
2

2

(∫ b

a
|r2(t)|2dt

) 1
2 +

b−a
4

∫ b

a
r+
1 (t)dt +

(b−a)2

8
√

3

∫ b

a
|r0(t)|dt > 1. (45)

Proof. From Theorem 4, let m = 3, we have

C
1
2
1

(∫ b

a
|r2(t)|2dt

) 1
2 +C1

∫ b

a
r+
1 (t)dt +C

1
2
2 C

1
2
1

∫ b

a
|r0(t)|dt > 1. (46)

From (40)-(41) and (46), we obtain the result.

Acknowledgement. The author is very grateful to referees and editors for their
valuable suggestions.
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