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Abstract. We establish an exponential stability result for a delayed Hopfield neural network.
This is proved in case one or more of the activation functions fails to satisfy the standard Lip-
schitz continuity condition. We use a nonlinear version of Halanay inequality, which we prove
here.

1. Introduction

The most important and fundamental reservoir properties are porosity and per-
meability. They give a clear insight on the amount of fluid contained in a reservoir
and its ability to migrate. These properties are determined by well-logging and wire-
line measurement which are considered expensive processes and may lead to erroneous
interpretations. In the last three decades, it has been found that Artificial Neural Net-
works (ANNs) are capable of overcoming these difficulties. They become an extremely
attractive and powerful tool for prediction, pattern recognition, forecasting, diagnosis,
identification, drill bit selection, classification and optimization of field operations.

ANNs have been designed to forecast reservoir properties using data from geo-
physical well logs with a high accuracy [3,20,22]. They have proved their efficiency
even when limited data is available [1,27]. ANNs when combined with fuzzy logic
form an excellent tool for the reservoir characterization [15,17]. They are also used in
history matching [21,23].

In this paper we consider a neural network of Hopfield type

x′i(t) = −dixi(t)+∑m
j=1 ai j fi j (x j(t))+∑m

j=1 bi jgi j (x j(t− τ j))+ ci,

i = 1, ...,m, for t > 0, with x j(t) = x0 j(t), t ∈ [−τ j,0] where τ j and x0 j(t) are given
continuous real-valued functions. Here ai j, bi j, ci and di are nonnegative constants ,
i, j = 1, ...,m , and fi j,gi j are the activation functions of the signal transmission which
will be specified below. Our arguments work even for more general models, for in-
stance, for variable delays (time-dependent delays) τ j(t). To avoid distracting the at-
tention of the reader from the main contribution in this paper, we shall treat a simpler
model.
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The most important question addressed for this type of problems is the stability
(after, of course, the well-posedness). In the beginning, explicit nice activation func-
tions have been considered like the sigmoid function, hyperbolic tangent, Gaussian
radial basis function and linear functions. Then, these functions have been enlarged
to bounded, monotone and differentiable functions. In turn, the latter conditions have
been dropped later one by one. Nowadays, most of the papers in the market assume the
Lipschitz condition [2,5,14,19,24,25]. The case of discontinuous activation functions
has been also investigated in [2,4,13,18,36] (see also references therein). In many pa-
pers, it is rather the conditions on the different parameters which are improved. The
necessity of considering non-Lipschitz continuous activation functions has been high-
lighted, for instance, in the book of Kosko [16] and in [10]. Some attempts have been
made to weaken the Lipschitz condition (without appealing to the boundedness and
monotonicity) in [26,29-35,40,41,37-39]. In particular, Hölder continuous activation
functions were studied in [9,28,29,32,33]. Bihari-type inequalities have been used there
and therefore, unless we make some restrictive conditions, the stability is only of ’local’
character. It is also worthy mentioning the QUAD condition (see, for instance, [8]): a
function is said to be QUAD (Δ,ω) (Δ is an n×n diagonal matrix and ω is a positive
scalar) if for any x,y ∈ Rn, we have

(x− y)T [ f (x,t)− f (y,t)]− (x− y)TΔ(x− y) � −ω(x− y)T (x− y).

In this work, we consider the case where one of the components is not Lipschitz
continuous. Namely, we treat the situation where the functions fi0 and gi0 correspond-
ing to component number i0, are not necessarily Lipschitz continuous. They satisfy a
relation of the form

|h(x)−h(y)| � ϕ(|x− y|) = |x− y| h̃(|x− y|), t > 0 (1)

for some (non-decreasing) function h̃. We prove an exponential stability result.
Writing the QUAD condition in the form

(x− y)T [ f (x,t)− f (y,t)] � (x− y)T (Δ−ωIn)(x− y),

it appears that this class does not cover functions satisfying (1) as our coefficients are
nonlinear functions of the (difference between the) variables.

Existence and uniqueness:
We recall that, for the problem

x′(t) = f (t,x(t)), x(t0) = x0, (2)

Peano’s theorem assures the local existence of at least one solution under the only
condition of continuity of f (in a neighborhood of (t0,x0)). There are several gen-
eralizations of Lipschitz condition ensuring uniqueness of solutions: Nagumo, Perron,
Osgood, Kamke, Tonelli, etc (which we may find in classical ordinary differential equa-
tions books). For instance, uniqueness of solutions has been proved (by Nagumo and
Osgood) under the condition

| f (t,x)− f (t,y)| � φ(|x− y|), t > 0,
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(or even only a one-sided relation) where φ(u) is a function of ’continuity-modulus’
type satisfying ∫ δ

0

du
φ(u)

= ∞, δ > 0. (3)

DEFINITION 1. A function φ : [0,+∞) → [0,+∞) such that φ(0) = 0, φ(u) > 0
for u > 0, is said to satisfy Osgood criterion if (3) holds for some δ > 0.

Some researchers require that φ be nondecreasing. This result is generalized to
the case

| f (t,x)| � ω ′(t)
ω(t)

φ(|x|),

where ω ′(t) > 0, a.e. on [0,a] and f (t,x)
ω ′(t) → 0 as t → ∞ uniformly in |x| < M (See

[7]).
We also have other generalizations (due to Kamke and Perron, see [11]), to the

case
| f (t,x)− f (t,y)| � φ(|t− t0| , |x− y|).

The function φ is such that the only solution of

z′(t) = φ(t,z(t)),

on any interval (0,a) satisfying z(t) = o(t) as t → 0 is the zero solution.
Most of the existing results hold also for the case of a system of equations.
The question now is: What if the nonlinearity f fails to be Lipschitz or satisfy the

established conditions with respect to one of the components?
In [6], the author Cid proves that we have uniqueness if the function f fails to be

Lipschitz continuous with respect to one of the components provided that it is Lipschitz
with respect to all the other remaining components including the first one ”t ”. More
precisely, he introduced the following definition.

DEFINITION 2. The function f : U ⊂ Rn+1 → Rn, where U is an open set, is said
to be Lipschitz continuous when fixing component i0 ∈ {0,1, ...,n} if there exists a
constant L > 0 such that∥∥ f (v0, ...,wi0 , ...,vn)− f (v0, ...,wi0 , ..., vn)

∥∥
∞

� L
∥∥(v0, ...,vi0−1,vi0+1, ...,vn)− (v0, ..., vi0−1, vi0+1, ..., vn)

∥∥
∞

for all (v0, ...,wi0 , ...,vn),(v0, ...,wi0 , ..., vn) ∈U.
The theorem below was shown

THEOREM 1. Assume that f is continuous and locally Lipschitz continuous when
fixing a component i0 ∈ {0,1, ...,n}. Then, for (t0,x0)∈U, there exists a > 0 such that
(2) has a unique solution in [t0−a,t0 +a] provided that either i0 = 0 or fi0(t0,x0) �= 0.

Notice that this theorem ensures the uniqueness only when we do not start from the
equilibrium. For the uniqueness of the equilibrium, we appeal to the Osgood condition.
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REMARK 1. In case i0 = 0, we recover the well-known standard Lipschitz con-
dition with respect to x (that is with respect to all the components except the first one
which is t ).

REMARK 2. For the one-dimensional case (one equation), the condition f (t0,x0) �=
0 has been relaxed in [12].

REMARK 3. In [6], the author claims that his result can be generalized to other
criteria such as the ones by Kamke, Osgood, Perron, Nagumo, etc, including, of course,
the autonomous case (therefore, this will be also the case for our present result).

We shall provide a proof based on a nonlinear version of Halanay inequality.

2. A nonlinear version of Halanay inequality

In this section we prove the following lemma which generalizes the standard Ha-
lanay inequality from the linear case to the nonlinear case. Indeed, the first Halanay
inequality was proved for the linear case ξ (z) ≡ z.

LEMMA 1. Let z(t) be a nonnegative differentiable function satisfying{
z′(t) � −az(t)+ supt−τ�s�t [ξ (z(s))] , t � 0,

z(t) = ϕ(t), −τ � t � 0,

where ξ (z) = zη(z) for some continuous function η(z) for z � 0 with η(0) < a. Then,
there exists y > 0 and α > 0 such that

z(t) � ye−αt , t � 0

when
sup

−τ�s�0
|ϕ(s)eαs| � y.

Notice that we can always assume w.l.o.g. that η(z) is non-decreasing. We refer
to the next section for a remark on the singular case nearby zero.

Proof. Let
y := sup{y � 0 : η(y) < a} .

As η(0) < a, it is clear that y > 0.Consider, yδ := δ y, 0 < δ < 1 and define

ψ(α) := −a+ α + eατη(yδ ).

Notice that ψ(0) = −a+ η(yδ ) < 0 because yδ < y .

On the other hand, limα→∞ ψ(α) = ∞. Therefore, for any number b such that
0 < b < a−η(yδ ), there exists an αb > 0 such that

ψ(αb) := −a+ αb + eαbτ η(yδ ) = −b < 0.
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We claim that, if sup−τ�s�0 |ϕ(s)eαbs| � yδ , then zαb(t) < yδ where

zαb(t) :=

{
z(t)eαbt , t > 0,

ϕ(t)eαbt , −τ � t � 0.

We argue by contradiction. Assume that t∗ > 0 is the first time

zαb(t) < yδ , −τ � t < t∗,

zαb(t∗) = yδ and z′αb
(t∗) � 0. As η may be assumed non-decreasing, we obtain

0 � z′αb
(t∗) = z′(t∗)eαbt∗ + αbz(t∗)eαbt∗

� eαbt∗
{
−az(t∗)+ sup

t∗−τ�s�t∗
[z(s)η(z(s))]

}
+ αbz(t∗)eαbt∗

� (−a+ αb) z(t∗)eαbt∗ + eαbt∗ sup
t∗−τ�s�t∗

[z(s)η(z(s))]

� (−a+ αb) zαb(t∗)+ eαbτ sup
t∗−τ�s�t∗

[
zαb(s)η(zαb (s))

]
and therefore

0 � z′αb
(t∗) < (−a+ αb) yδ + eαbτ sup

t∗−τ�s�t∗
[yδ η(yδ )]

or
0 � z′αb

(t∗) < [(−a+ αb)+ eαbτ η(yδ )] yδ < 0.

This is a contradiction and therefore zαb(t) � yδ , ∀t > 0. Hence, in view of the defini-
tion of zαb(t,), we obtain

z(t) � yδ e−αbt , t > 0.

This finishes the proof. �

We shall combine this nonlinear version of Halanay inequality with a Lyapunov
type functional to get local exponential stability of the system (see the result in next
section).

3. Exponential stability

In this section we prove that the system

x′i(t) = −dixi(t)+∑m
j=1 ai j f j (x j(t))+∑m

j=1 bi jg j (x j(t − τ))+ ci, (4)

i = 1, ...,m, t > 0 with x j(t) = x0 j(t), t ∈ [−τ,0], x0 j(t) are given continuous real-
valued functions, is locally asymptotically stable in an exponential manner. We assume
that fi and gi are (locally) Lipschitz continuous when fixing component i0 ∈ {1, ...,n}
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in an open set U ⊂ Rn. By the Theorem 1 we have local existence and uniqueness.
After a priori estimates, the solution may be continued to a global one.

For fi0 and gi0 we assume that∣∣ fi0 (
xi0

)− fi0
(
xi0

)∣∣ � Φ fi0

(∣∣xi0 − xi0

∣∣) =
∣∣xi0 − xi0

∣∣ f̃i0
(∣∣xi0 − xi0

∣∣) , t � 0 (5)

and∣∣gi0

(
xi0

)−gi0

(
xi0

)∣∣ � Φgi0

(∣∣xi0 − xi0

∣∣) =
∣∣xi0 − xi0

∣∣ g̃i0

(∣∣xi0 − xi0

∣∣) , t � 0. (6)

Notice that w.l.o.g. f i0 and g̃i0 may be assumed non-decreasing functions. Some clar-

ification is in order here. This claim is not quite correct if f i0 or g̃i0 presents some
singularity at 0. This is, for instance, the case if we consider Log-Lipschitz functions
(like x |lnx|), which are not Lipschitz but satisfy the Osgood condition (without the
nondecreasingness assumptions). Indeed, the lnx is unbounded nearby zero and there-
fore we cannot pass to the sup to have non-decreasing functions. Fortunately, here in
our argument below, we need rather the functions x f̃i0(x) and xg̃i0(x), x � 0 to be non-
decreasing and this is clear in our case. Moreover, here we need f̃i0(x) and g̃i0(x) to be
defined at zero (see the statement of the theorem below or the end of its proof).

We denote by Li and Ki the Lipschitz constants of fi and gi respectively (with
respect to the other components, i �= i0 and including t ).

DEFINITION 3. We say that the system (4) is globally asymptotically stable if, for
any two solutions x j(t) and x j(t) (with x0 j and x0 j as initial data), there is δ > 0
such that

lim
t→∞

∥∥x j(t)− x j(t)
∥∥ = 0

provided that
∥∥x0 j − x0 j

∥∥ < δ for a certain norm (of the initial data, see relation (8) for
our case). It is said to be exponentially asymptotically stable if there exist two positive
constants M and ν such that∥∥x j(t)− x j(t)

∥∥ � Me−νt , t > 0.

If xi(t) = x∗i , i = 1, ...,m where x∗i , i = 1, ...,m is the equilibrium, that is solution
of

0 = −dix
∗
i +∑m

j=1 ai j f j
(
x∗j

)
+∑m

j=1 bi jg j
(
x∗j

)
+ ci, i = 1, ...,m (7)

then we get the usual (local) exponential stability of this equilibrium.
We denote by ∥∥x j(t)− x j(t)

∥∥ := ∑m
i=1 |xi(t)− xi(t)| , (8)

yi(t) = xi(t)− xi(t) , y(t) = ∑m
i=1 |yi(t)| and d := min1�i�m di .

THEOREM 2. Assume that fi and gi are (locally) Lipschitz continuous when fix-
ing component i0 ∈ {1, ...,m} and fi0 and gi0 satisfy (5) and (6), resp., if

a := d∗ = min{d,β}−∑m
i=1 ∑ j �=i0

Lj
∣∣ai j

∣∣+ eβ τ ∑m
i=1 ∑ j �=i0

Kj
∣∣bi j

∣∣ > 0
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and
2
[(

∑m
i=1

∣∣aii0

∣∣) f̃i0 (0)+
(
∑m

i=1

∣∣bii0

∣∣) g̃i0 (0)
]
< a,

then, solutions of (4), not starting (both) from the equilibrium, are exponentially locally
stable, for some β > 0.

The theorem states that, the difference of any two solutions converges to zero
exponentially provided that their initial data are close enough and both not starting
from the equilibrium.

REMARK 4. In this theorem, the ”Lipschitz continuity when fixing a component”
condition may be generalized to at least the condition of type (1). This will be clear
from our argument.

Proof of Theorem 2. Let xi(t) and xi(t) , i = 1, ...,m , be two solutions of (4) with
x0 j and x0 j as initial data, resp. Using our system (4), we see that

D+ |yi(t)| � −di |yi(t)|+∑ j �=i0
Lj

∣∣ai j
∣∣ ∣∣y j(t)

∣∣+∑ j �=i0
Kj

∣∣bi j
∣∣ ∣∣y j(t − τ)

∣∣ (9)

+
∣∣aii0

∣∣ ∣∣yi0(t)
∣∣ f̃i0

(∣∣yi0(t)
∣∣)+

∣∣bii0

∣∣ ∣∣yi0(t− τ)
∣∣ g̃i0

(∣∣yi0(t− τ)
∣∣) , t � 0,

i = 1, ...,m, where D+ denotes the right Dini derivative and we designate by ∑ j �=i0 the
summation ∑m

j=1, j �=i0
. If

V (t) := e−β t
∫ t

t−τ
eβ (s+τ)∑m

i=1

[
∑ j �=i0

Kj
∣∣bi j

∣∣ ∣∣y j(s)
∣∣]ds, t � 0, (10)

W (t) := y(t)+V(t), t � 0, (11)

for some β > 0 to be determined later, then from (9)-(11), we have

D+W (t)

� −dy(t)−βV(t)+
(
∑m

i=1 ∑ j �=i0
Lj

∣∣ai j
∣∣)y(t)

+eβ τ ∑m
i=1 ∑ j �=i0

Kj
∣∣bi j

∣∣ ∣∣y j(t)
∣∣

+∑m
i=1

[∣∣aii0

∣∣ ∣∣yi0(t)
∣∣ f̃i0

(∣∣yi0(t)
∣∣)+

∣∣bii0

∣∣ ∣∣yi0(t − τ)
∣∣ g̃i0

(∣∣yi0(t − τ)
∣∣)] , t � 0

or

D+W (t) � −d∗W (t)+
(
∑m

i=1 ∑ j �=i0
Lj

∣∣ai j
∣∣)W (t)

+eβ τ
(
∑m

i=1 ∑ j �=i0
Kj

∣∣bi j
∣∣)W (t)+

(
∑m

i=1

∣∣aii0

∣∣)W (t) f̃i0 (W (t)) (12)

+
(
∑m

i=1

∣∣bii0

∣∣)W (t − τ) g̃i0 (W (t − τ)) , t � 0,

where d∗ = min{d,β}. Arranging terms in (12), we find

D+W (t) � −
[
d∗ −∑m

i=1 ∑ j �=i0
Lj

∣∣ai j
∣∣− eβ τ ∑m

i=1 ∑ j �=i0
Kj

∣∣bi j
∣∣]W (t)

+
(
∑m

i=1

∣∣aii0

∣∣)W (t) f̃i0 (W (t))+
(
∑m

i=1

∣∣bii0

∣∣)W (t− τ) g̃i0 (W (t− τ)) ,t � 0
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or
D+W (t) � −aW(t)+ sup

t−τ�s�t
[W (s)η(W (s))] , t � 0, (13)

where
a := d∗ −∑m

i=1 ∑ j �=i0
Lj

∣∣ai j
∣∣− eβ τ ∑m

i=1 ∑ j �=i0
Kj

∣∣bi j
∣∣ > 0 (14)

and
η(W (t)) := 2

[(
∑m

i=1

∣∣aii0

∣∣) f̃i0 (W (s))+
(
∑m

i=1

∣∣bii0

∣∣) g̃i0 (W (s))
]
.

By our assumption

η(0) = 2
[(

∑m
i=1

∣∣aii0

∣∣) f̃i0 (0)+
(
∑m

i=1

∣∣bii0

∣∣) g̃i0 (0)
]
< a (15)

and Lemma 1 is applicable. Therefore, there exist an M > 0 and α > 0 such that

W (t) � Me−αt , t � 0

whenever

sup
−τ�s�0

|y0(s)eαs|+
∫ 0

−τ
eβ (σ+τ)∑m

i=1

[
∑ j �=i0

Kj
∣∣bi j

∣∣ ∣∣y0 j(σ)
∣∣]dσ � M. (16)

This completes the proof. �

REMARK 5. Regarding the stability of the equilibrium state, we first have exis-
tence of a unique equilibrium in case fi and gi are Lipschitz continuous when fixing
component i0 ∈ {1, ...,n} and fi0 and gi0 are of Osgood type (that is Φ fi0

and Φgi0
satisfy Osgood criterion (3)) or in the even more general situation when all fi and gi

satisfy Osgood condition. In case the modulus of continuity is of the form |x| h̃(|x|)
with h̃(|x|) defined at 0, then the equilibrium is locally exponentially stable under the
previous conditions.

4. Example

In this section we consider the following example

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′1(t) = −d1x1(t)+a11 f1(x1(t))+a12 f2(x2(t))+b11g1(x1(t− τ))
+b12 g2(x2(t − τ)) + c1, t > 0,

x′2(t) = −d2x2(t)+a21 f1(x1(t))+a22 f2(x2(t))+b21g1(x1(t− τ))
+b22 g2(x2(t − τ)) + c2, t > 0,

xi(t) = x0i(t), t ∈ [−τ,0], i = 1,2.

(17)

In both cases: existence of a unique equilibrium (Theorem 3) or not (Theorem 2), we
may take f1(x) and g1(x) any two Lipschitz continuous functions, say f1(x) = x and
g1(x) = tanhx (with f2(0) = 0) and f2(x) and g2(x) any two non-Lipschitz continuous
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functions with modulus of continuity, say x2 and x3, resp. The inputs are irrelevant as
we will compare our system (17) (after subtraction) with the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D+y1(t) = −d1 |y1(t)|+ |a11|L1 |y1(t)|+ |b11| K1 |y1(t− τ)|
+ |a12| |y2(t)| f̃2 (|y2(t)|)+ |b12| |y2(t − τ)| g̃2 (|y2(t− τ)|) , t > 0

D+y2(t) = −d2 |y2(t)|+ |a21|L1 |y1(t)|+ |b21| K1 |y1(t− τ)|
+ |a22| |y2(t)| f̃2 (|y2(t)|)+ |b22| |y2(t − τ)| g̃2 (|y2(t− τ)|) , t > 0

yi(t) = y0i(t), t ∈ [−τ,0], i = 1,2.
(18)

We select the different parameters so as to satisfy the conditions. Let a11 = 0.5, a12 =
2, a21 = 0.7, a22 = 1, b11 = 0.3, b12 = 3, b21 = 0.4, b22 = 4, β = 4, τ = 0.2,
d1 = 5, d2 = 6. Clearly L1 = K1 = 1, d∗ = min{d1,d2,β} = 1 and the condition (15)
is satisfied. The system (18) reads⎧⎪⎨

⎪⎩
D+y1(t) = −|y1(t)|+0.3 |y1(t)|+0.5 |y1(t− τ)|+2 |y2(t)|2 +3 |y2(t− τ)|3 ,

D+y2(t) = −2 |y2(t)|+0.4 |y1(t)|+0.2 |y1(t− τ)|+ |y2(t)|2 +2 |y2(t − τ)|3 ,

yi(t) = y0i(t), t ∈ [−τ,0], i = 1,2.

The assumption (14) holds as

d∗ −∑m
i=1 ∑ j �=i0

Lj
∣∣ai j

∣∣− eβ τ ∑m
i=1 ∑ j �=i0

Kj
∣∣bi j

∣∣
=d∗ −L1 (|a11|+ |a21|)−K1e

β τ (|b11|+ |b21|) = 4− (1.2)− (0.7)e0.8 � 1.24.

Therefore, Lemma 1 applies and gives the local exponential stability provided that the
initial data satisfy

sup
−τ�s�0

|y0(s)eαs|+(0.7)
∫ 0

−0.2
e4(σ+0.2) |y01(σ)|dσ � M

where y0(s) = |y01(s)|+ |y02(s)| , α = αb and M = yδ in the proof of Lemma 1.
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