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EXTENDING A RESULT OF HAYNSWORTH

QIAN LI, QINGWEN WANG AND SHENG DONG ∗

(Communicated by M. Krnić)

Abstract. Haynsworth [4] refined a determinant inequality for two positive definite matrices.
We extend Haynsworth’s result to more than two positive definite matrices and obtain some
inequalities for sum of positive definite matrices. Moreover, we show some generalizations of
these to sector matrices.

1. Introduction

Let Mn be the set of n× n complex matrices. If X is positive semidefinite, we
put X � 0, and X > 0 means that X is positive definite. For two Hermitian matrices
X ,Y ∈ Mn,X � Y means X −Y is positive semidefinite.

If X =
(

X11 X12

X21 X22

)
with X11 nonsingular, the Schur complement of X11 in X is

defined as
X/X11 = X22−X21X

−1
11 X12.

And it holds
detX = detX11 det(X/X11). (1)

For A ∈ Mn , recall the Cartesian decomposition (see, e.g. [6, p.7])

A = RA+ iSA,

where

RA =
1
2
(A+A∗), SA =

1
2i

(A−A∗).

The matrix A ∈ Mn is accretive-dissipative if RA and SA are positive definie. Rele-
vant studies on this class of matrices can be found in [2, 7, 11].

The numerical range of A ∈ Mn is defined by

W (A) = {x∗Ax|x ∈ C
n,x∗x = 1}.

Also, for α ∈ [0, π
2 ) , let Sα be the sector in the complex plane given by

Sα = {z ∈ C|Rz > 0, |Sz| � (Rz) tan(α)}.
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If W (A) ⊂ S0 , then A is positive definite. As 0 /∈ Sα , if W (A) ⊂ Sα , then A is nec-
essarily nonsingular. For more details on matrices with numerical ranges in a sector,
please refer to [9, 1, 10].

Let A,B ∈ Mn be positive definite matrices. It is well known that

det(A+B) � detA+detB. (2)

A simple generalization of inequality (2) could be

det

(
m

∑
i=1

Ai

)
�

m

∑
i=1

detAi, (3)

where Ai ∈ Mn, i = 1, . . . ,m are positive definite matrices.
In [4], Haynsworth proved the following refinement of (2),

det(A+B) �
(

1+
n−1

∑
k=1

detB(k)

detA(k)

)
detA+

(
1+

n−1

∑
k=1

detA(k)

detB(k)

)
detB. (4)

where A(k),B(k),k = 1, . . . ,n− 1, denote the k -th leading principal submatrices of A
and B , respectively.

For Haynsworth’s inequality (4), Hartfiel [3] gave an improvement, Lin [5] ex-
tended their results to sector matrices, Hou and Dong [5] gave some results related to
three positive definite matrices.

In this paper, by some properties for the Schur complement, we extend Hayns-
worth’s inequality (4) to more than two positive definite matrices, and obtain some
refinements of (3). Moreover, we give some generalizations of the results obtained to
sector matrices.

2. Main results

In this section, we first give some lemmas which will be used in the proof of our
main results.

LEMMA 1. [6, Corollary 7.7.4] If A,B ∈ Mn such that A � B > 0 , then detA �
detB.

LEMMA 2. [4, Theorem 2] Suppose A,B ∈ Mn are positive definite. Let A(k)

and B(k),k = 1, . . . ,n− 1, denote the k -th leading principal submatrices of A and B
respectively. Then (

A+B
)
/
(
A(k) +B(k))� A/A(k) +B/B(k).

LEMMA 3. [6, Theorem 7.8.19] Let A ∈ Mn . If R(A) > 0 , then

det(RA) � |detA|.
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LEMMA 4. [9, Lemma 2.6] Let A ∈ Mn with W (A) ⊂ Sα . Then

secn(α)det(RA) � |detA|.

LEMMA 5. [9, Proposition 2.1] Let A ∈ Mn be partitioned as A =
(

A11 A12

A21 A22

)
with A11 square. If W (A) ⊂ Sα , then W (A11) ⊂ Sα .

LEMMA 6. Suppose Ai ∈ Mn, i = 1, . . . ,m, are positive definite. Let A(k)
i ,k =

1, . . . ,n−1, denote the k -th leading principal submatrices of Ai . Then

det

((
m

∑
i=1

Ai

)
/

(
m

∑
i=1

A(k)
i

))
�

m

∑
i=1

detAi

detA(k)
i

.

Proof. For Ai, i = 1, . . . ,m , by Lemma 2, we obtain(
m

∑
i=1

Ai

)
/

(
m

∑
i=1

A(k)
i

)
�

m

∑
i=1

(
Ai/A(k)

i

)
.

Taking determinants on both sides, by Lemma 1, we get

det

((
m

∑
i=1

Ai

)
/

(
m

∑
i=1

Ak
i

))
� det

( m

∑
i=1

(
Ai/Ak

i

))
.

By (3) and (1), we have

det

( m

∑
i=1

(
Ai/A(k)

i

))
�

m

∑
i=1

det
(
Ai/A(k)

i

)
.

=
m

∑
i=1

detAi

detA(k)
i

.

This completes the proof. �
Now, we give the following extension of Haynsworth’s inequality (4).

THEOREM 1. Suppose Ai ∈ Mn, i = 1, . . . ,m, are positive definite. Let A(k)
i ,k =

1, . . . ,n−1, denote the k -th leading principal submatrices of Ai . Then

det

(
m

∑
i=1

Ai

)
�

m

∑
i=1

⎛
⎝1+

n−1

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

⎞
⎠detAi. (5)

Proof. We prove the theorem by induction on n . For n = 2, we get

det

(
m

∑
i=1

Ai

)
=det

(
m

∑
i=1

A(1)
i

)
·det

((
m

∑
i=1

Ai

)
/

(
m

∑
i=1

A(1)
i

))
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�det

(
m

∑
i=1

A(1)
i

)
·

m

∑
i=1

detAi

detA(1)
i

�
(

m

∑
i=1

detA(1)
i

)
·

m

∑
i=1

detAi

detA(1)
i

=
m

∑
i=1

(
1+

∑m
j=1, j �=i detA(1)

j

detA(1)
i

)
detAi,

where the first equality above is by (1); the first inequality is due to Lemma 6. This
proves (5) for n = 2.

Suppose the inequality (5) holds for all Ai of order less than or equal to n−1. If
Ai, i = 1, . . . ,m , are of order n , by (1) and Lemma 6, we have

det

(
m

∑
i=1

Ai

)
=det

(
m

∑
i=1

A(n−1)
i

)
·det

((
m

∑
i=1

Ai

)
/

(
m

∑
i=1

A(n−1)
i

))

�det

(
m

∑
i=1

A(n−1)
i

)
·

m

∑
i=1

detAi

detA(n−1)
i

.

By the induction hypothesis

det

(
m

∑
i=1

A(n−1)
i

)
�

m

∑
i=1

(
1+

n−2

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
detA(n−1)

i ,

we get

det

(
m

∑
i=1

Ai

)
�

m

∑
i=1

(
1+

n−2

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
detA(n−1)

i ·
m

∑
h=1

detAh

detA(n−1)
h

=
m

∑
i=1,h=1,i=h

(
1+

n−2

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
detA(n−1)

i · detAh

detA(n−1)
h

+
m

∑
i=1,h=1,i�=h

(
1+

n−2

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
detA(n−1)

i · detAh

detA(n−1)
h

=
m

∑
i=1

(
1+

n−2

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
·detAi

+
m

∑
i=1,h=1,i�=h

(
1+

n−2

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
detA(n−1)

i · detAh

detA(n−1)
h

�
m

∑
i=1

(
1+

n−2

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
·detAi
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+
m

∑
i=1,h=1,i�=h

detA(n−1)
i · detAh

detA(n−1)
h

=
m

∑
i=1

(
1+

n−1

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
·detAi.

This completes the proof of Theorem 1. �
The following two inequalities are refinements of (3).

THEOREM 2. Suppose Ai ∈ Mn, i = 1, . . . ,m, are positive definite. Let A(k)
i ,k =

1, . . . ,n−1, denote the k -th leading principal submatrices of Ai . Then

det

(
m

∑
i=1

Ai

)
�

m

∑
i=1

detAi +2(n−1)
m

∑
i, j=1,i�= j

√
detAiA j. (6)

Proof. By (5), we get

det
( m

∑
i=1

Ai

)
�

m

∑
i=1

(
1+

n−1

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

)
detAi

=
m

∑
i=1

detAi +
m

∑
i=1

(
n−1

∑
k=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

·detAi

)

=
m

∑
i=1

detAi +
n−1

∑
k=1

(
m

∑
i=1

∑m
j=1, j �=i detA(k)

j

detA(k)
i

·detAi

)

=
m

∑
i=1

detAi +
n−1

∑
k=1

⎛
⎝ m

∑
i, j=1,i�= j

⎛
⎝detA(k)

j

detA(k)
i

·detAi +
detA(k)

i

detA(k)
j

·detAj

⎞
⎠
⎞
⎠

�
m

∑
i=1

detAi +
n−1

∑
k=1

m

∑
i, j=1,i�= j

2
√

detAi ·detAj

=
m

∑
i=1

detAi +2(n−1)
m

∑
i, j=1,i�= j

√
detAiA j,

the proof is completed. �

THEOREM 3. Suppose Ai ∈ Mn, i = 1, . . . ,m, are positive definite. Let A(k)
i ,k =

1, . . . ,n−1, denote the k -th leading principal submatrices of Ai . Then

det

(
m

∑
i=1

Ai

)
�

m

∑
i=1

detAi +m(m−1)(n−1)

(
m

∏
i=1

detAi

) 1
m

.
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Proof. This follows from inequality (6) and the arithmetic-geometric inequal-
ity. �

Next, we extend Theorem 1, Theorem 2 and Theorem 3 to sector matrices. The
generalization of Theorem 1 is as follows.

THEOREM 4. Suppose Ai ∈Mn , W (Ai)⊂ Sα , i = 1, . . . ,m,α ∈ [0, π
2 ) . Let A(k)

i ,k =
1, . . . ,n−1, denote the k -th leading principal submatrices of Ai . Then

secn(α)

∣∣∣∣∣det

(
m

∑
i=1

Ai

)∣∣∣∣∣�
m

∑
i=1

⎛
⎝1+

n−1

∑
k=1

cosk(α)
∑m

j=1, j �=i

∣∣∣detA(k)
j

∣∣∣∣∣∣detA(k)
i

∣∣∣
⎞
⎠ |detAi|.

Proof. From W (Ai) ⊂ Sα , i = 1, . . . ,m , we get W (∑m
i=1 Ai) ⊂ Sα and W (A(k)

i ) ⊂
Sα ,k = 1, . . . ,n−1. Then∣∣∣∣∣det

(
m

∑
i=1

Ai

)∣∣∣∣∣�det

(
R

(
m

∑
i=1

Ai

))

=det

(
m

∑
i=1

RAi

)

�
m

∑
i=1

⎛
⎝1+

n−1

∑
k=1

∑m
j=1, j �=i det

(
RA(k)

j

)
det
(
RA(k)

i

)
⎞
⎠det(RAi)

�
m

∑
i=1

⎛
⎝1+

n−1

∑
k=1

cosk(α)
∑m

j=1, j �=i

∣∣∣detA(k)
j

∣∣∣∣∣∣detA(k)
i

∣∣∣
⎞
⎠cosn(α)|detAi|,

where the first inequality above is due to Lemma 3; the second is by inequality (5) and
the last inequality holds by Lemma 3 and Lemma 4.

Then, multiplying both sides by secn(α) yields the desired inequality, and this
completes the proof of Theorem 4. �

Apparently, Theorem 4 reduces to Theorem 1 when α = 0. Note that if A is
accretive-dissipative, then W (e−iπ/4A) ⊂ Sπ/4 . Thus, we get the following corollary.

COROLLARY 1. Suppose Ai ∈ Mn, i = 1, . . . ,m, are accretive-dissipative. Let

A(k)
i ,k = 1, . . . ,n−1, denote the k -th leading principal submatrices of Ai . Then

2
n
2

∣∣∣∣∣det

(
m

∑
i=1

Ai

)∣∣∣∣∣�
m

∑
i=1

⎛
⎝1+

n−1

∑
k=1

1

2k/2

∑m
j=1, j �=i

∣∣∣detA(k)
j

∣∣∣∣∣∣detA(k)
i

∣∣∣
⎞
⎠ |detAi|.

The generalizations of Theorem 2 and Theorem 3 to sector matrices are as follows.
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THEOREM 5. Let Ai ∈ Mn,W (A) ⊂ Sα ,α ∈ [0, π
2 ), i = 1, . . . ,m. Then

secn(α)

∣∣∣∣∣det

(
m

∑
i=1

Ai

)∣∣∣∣∣�
m

∑
i=1

|detAi|+2(n−1)
m

∑
i, j=1,i�= j

√
|detAiA j|.

COROLLARY 2. Let Ai ∈ Mn, i = 1, . . . ,m, be accretive-dissipative. Then

2
n
2

∣∣∣∣∣det

(
m

∑
i=1

Ai

)∣∣∣∣∣�
m

∑
i=1

|detAi|+2(n−1)
m

∑
i, j=1,i�= j

√
|detAiA j|.

THEOREM 6. Let Ai ∈ Mn,W (A) ⊂ Sα ,α ∈ [0, π
2 ), i = 1, . . . ,m. Then

secn(α)

∣∣∣∣∣det

(
m

∑
i=1

Ai

)∣∣∣∣∣�
m

∑
i=1

|detAi|+m(m−1)(n−1)

(
m

∏
i=1

|detAi|
) 1

m

.

COROLLARY 3. Let Ai ∈ Mn, i = 1, . . . ,m, be accretive-dissipative. Then

2
n
2

∣∣∣∣∣det

(
m

∑
i=1

Ai

)∣∣∣∣∣�
m

∑
i=1

|detAi|+m(m−1)(n−1)

(
m

∏
i=1

|detAi|
) 1

m

.
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