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ON THE REFINEMENT OF QUANTUM HERMITE-HADAMARD
INEQUALITIES FOR CONTINUOUS CONVEX FUNCTIONS

JULALAK PRABSEANG, KAMSING NONLAOPON* AND SOTIRIS K. NTOUYAS

(Communicated by J. Pecari¢)

Abstract. The purpose of this paper is to establish some new refinement of quantum Hermite-
Hadamard inequalities for continuous convex functions. Several known results are reduced as
special cases.

1. Introduction

Quantum calculus (or g-calculus) is centered on the idea of deriving g-analogous
results to the usual calculus, without the use of limits. Many of the formulas of g-
calculus become the classical mathematical formulas when ¢ tends to 1. The first
mathematician who introduced g-calculus was Euler, starting in the eighteenth cen-
tury. Jackson [15] started the study of g-calculus in a systematic way and presented
q-definite integrals. The subject of g-calculus has large applications in various areas
of pure and applied sciences. In recent years, many researchers have been increasingly
interested in the topic of g-calculus. For recent developments on g-calculus, we refer
to [4, 10, 16, 17, 11, 22,21, 23, 25] and the references therein.

Convex functions are important in many areas of mathematics. There are many
results in theory of inequalities established for convex functions and one of the most
important and fundamental inequality in analysis is the following Hermite-Hadamard
inequality:

THEOREM 1.1. Let ¢ : [u,v] — R be a convex function with u < v. Then

1 v
¢<M;V><v_u/u q)(z)dzéw. (1)

Hermite-Hadamard inequality was first discovered by Hermite [13] in 1883 and re-
discovered ten years later by Hadamard [12]. Over the years many researchers have
investigated several inequalities related to Hermite-Hadamard’s inequality and a vari-
ety of refinement of Hermite-Hadamard’s inequality see [1, 2, 5, 6, 14, 18, 19, 20] and
references therein for more information.
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In 2014, Tariboon and Ntouyas [27] introduced the concept of g-calculus on finite
interval of [u,v]. The g-derivative and g-integral are defined and some basic properties
are given. Also, g-Hermite-Hadamard inequality, as well as various other important
integral inequalities are obtained. Alp et al. in [3] improved the g-Hermite-Hadamard
inequality.

In 2019, Prabseang et al. [24] established the g-Hermite-Hadamard inequality
for double integral and obtained refinement of Hermite-Hadamard inequality for g-
differentiable convex functions.

The main purpose of this paper is to establish refinements of quantum Hermite-
Hadamard inequalities for continuous convex functions. The obtained results, in special
cases when ¢ tends to 1, led to known results.

Our main theorem are presented in Section 3, while some needed concepts, defi-
nitions, and results from g-calculus are recalled in Section 2.

2. Preliminaries

In this section, we recall some known concepts and basic results from ¢-calculus.
Throughout this section, we let J = [u,v] C R be an interval and ¢ be a constant with
0<g<1.

DEFINITION 2.1. Let ¢ : J — R be a continuous function and z € J. Then the
g-derivative of ¢ on J at z is defined by

0(z) — ¢(qz+ (1 —q)u)
(1—¢q)(z—u)

For z = u, we define ,D,¢(u) = %21; wDg®(2).

uDg9(2) = , forz # u. (D

A function ¢ is g-differentiable on J if ,D,¢(z) exists for all z € J. Moreover,
if u =0 in (2.1), then oDy = Dy¢, where D, is the well-known g-derivative of the
function ¢(z), which is defined by

Dy0(z) = gz (2

see [17], for more details.
In addition, we shall define higher-order g-derivatives of functions on J.

DEFINITION 2.2. Let ¢ : J — R be a continuous function. The second-order
q-derivative of ¢ on J, denoted by uDéq) (provided that ,D4¢ is g-differentiable on
J), is defined by

uDéq) = qu(qu¢)~ 3)
Similarly, provided that uDg’lq) is g-differentiable on J for some integer n > 2, the
n'" -order g-derivative of ¢ on J is defined by
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EXAMPLE 2.1. Let ¢ :J — R with ¢(z) =z +c¢, where c€E R and 0 < g < 1.
Then for z # u, we have

(22 4c)— [(qz—i— (1—q)u)*+ c]

Dol +¢) = (-
~ (1+9)2> —2quz— (1 — q)u?
(z—u)
=(1+g)z+(1—qu (5)

For z =u, we have ,Dy¢(u) = lim ,D,¢(z) =2u.
7—u

DEFINITION 2.3. Let ¢ : / C R — R be a continuous function. Then the g-
integral on J is defined by

/uz¢(t) udqt=(l—q)(z—u)iqnq)(qnﬁ(l—qn)u) (6)

n=0

forxeJ.
If u =0 in (6), then we have the classical g-integral of the function ¢(z), which
is defined by

/0 9() odgt = (1-q)z2 3, 4"9(4"2) )
n=0
for z € [0,0); see [17] for more details.

EXAMPLE 2.2. Let ¢ : J — R with ¢(z) = cz, where c € R and 0 < ¢ < 1. Then

we have
v v
/ 0(z) uqu:/ ez udyz
u u

=c(l—q)(v—u) Y, q"(q"v+ (1 —¢")u)

n=0
clv—u)(v+qu
_ ey .
+q
Note that if ¢ — 1, then we have the classical integration
v v 2 _ 2
/ q)(z)dz:/ czdz = M 9)
u u 2

THEOREM 2.1. Let ¢ : J — R be a continuous function. Then we have the fol-
lowing:

() uDg [y 9(t) udgt = ¢(2);
() [ZuDg0 (1) udgt = ¢(z) — ¢(c) for c € (u,z).
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THEOREM 2.2. Let ¢,g:J — R be continuous functions and o € R. Then we
have the following:

W) [ lo@)+g(0)] udgt = [ 0(1), dgt + [, 8(1),dqgt;
(i) fy (09)(1) udgt = o [; §(t) udyt
(i) [7 0(1)uDyg(t) udgt = (92)I5 — 7 (gt + (1 — q)u)uDy@ (1) udyt for ¢ € (u,z).

For the proofs of Theorem 2.1 and Theorem 2.2, see [26].

3. Main results

In this section, we present refinement of g-Hermite-Hadamard inequalities on the
interval J = [u,v].

THEOREM 3.1. Let ¢ :J — R be a continuous convex function on J and 0 < g <
1. Then the following inequalities:

qutv Z+y
o(W) < e [ [0 (55) s
"1 az+ Py Bz+ oy
A o)
< [ o)y "

are valid for all o, >0 with o+ 3 > 0.

Proof. Since f is convex on J, it follows that

T

for all z,y € J and o, > 0 with + 3 > 0. Taking double g-integration on both
sides of (2) on J x J, we obtain the second part of (1).
On the other hand, by using the Jensen’s inequality, we have

(a5 o) i [ [ 0(552)

Since
// Z—I—y dood qu—+v
(v—u)? acuay = l1+q’

this yields the first part of (1).
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REMARK 3.1. If g — 1, then (1) reduces to
u+v z+y
o(5) < imam [ [ o (5
v ] oz+ By Bz+ oy
(v—u>2/u [3le(Garg) o (farg) e
l v
<— [0z,

which readily appeared in [8].

THEOREM 3.2. Let ¢ :J — R be a continuous convex function on J and 0 < g <
1. Then the following inequalities

21+22+ -+ 2z
0 (2

a+tut+ -
<(v—u)"*l/ / ¢<1 2n—1 1)“dqzl udqz2 - udgzn-1,  (3)
and

. ”+V 2+t 4z
(ll) (P(ql +q < v—u / / ( ! 2 n) udqzl uqu2"' uqun
< v_u/ ¢(2) udqz, 4)

are valid for all n € N with n > 3.

Proof. Define

b e | 2+t nt -t -2
:77 2:7? "'7yn:7'
n—1 n—1 n—1
Note that
Vit+yt+-+yvn itttz

n n
and thus, by Jensen’s inequality, we have

¢(y1+yz+ +yn> 1

n

that is

o (Artta) Ll fat et (b
n n n—1 n—1

+¢ (Zn +n_'|iZn2)] ]
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Taking g-integration on both sides of the above inequality on J”, we obtain

v v Z+Z +...+Z
/ / (Z) (%) uqul quZ2"' uqun

v ez,
¢<u) ozt adgin -

v \4 e
/ ¢ (M) wdgzy - uqun]~
u

n—1
Since
v v + + n—
(P a n-l uquI uqun
u u n—1
v Vot tz
:/ /‘P( : n—1 ”) udqZy - udqzn
v v Znt ot e
:/ / (P( : n—1 2) udgzi - udgn
u u -
v v Z ++Zn7
~v=w [ [0 (71> it i
u u -
we get

ot
V_u/ / (m ) Z”)quzludqzz'“udqzn

zZit2+ -+
gm/u /M (P< n—1 )uqul udqzz-" uqun—l

which proves (3).
On the other hand, by the Jensen’s inequality, we have

C A 2n
( / / <z1+zz+ z ) ot adyia - uqun)

1 Q+++n
<<v—u>"/u / 0 <—> udgZ1 udyza - udgin:

Since

1 /V.”/V A+t + dozy dozr e doz _qutv
(V—M)"u ., n ulgll utg<2 utgin 1+q7

the first inequality in (4) is proved. The second inequality follows from (i). The proof
is completed.
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REMARK 3.2. If g — 1, then (4) reduces to

q)(u—) = u/ / <21+12+ "‘Z")dmdzg---dznéﬁ/uv‘p@dz’

which readily appeared in [8].

COROLLARY 3.1. Let ¢ : J — R be a continuous convex function on J and 0 <
q < 1. Then we have

qutv i+ o
¢<1—|—q>\ (v—u)? // ( )udqzluquzgm/u 0(2) udgz. (5)

REMARK 3.3. If g — 1, then (5) reduces to

1 v
¢<u42—v)\ — // <Z1+22)dz1d12<m/u 0 (z)dz,

which readily appeared in [7].

THEOREM 3.3. Let ¢ : J — R be a continuous convex function and 0 < q < 1.
Then the following inequalities

qu+v 1 /V /V 1121 +hza+- - +thin
< wdozt wdozo wdazn
o ( 1+q) ) ; (0 T 421 udg2o 42
1 v

< ¢ (2)udyz (6)

V—UJu

arevalid forall t; >0 (i=1,2,...,n) with Ztl-z T, >0 and n € N.
i=1

Proof. By the Jensen’s inequality, we have

0 <t111+t222+---+tnzn

- ) < Tin[n¢<zl>+z2¢<@>+--~+rn¢<Zn>J

forall z; € J and #; > 0 where i =1,2,...,n. Taking g-integration on both sides of the
above inequality on J", we obtain

v Vo (hzithiat -+
/ / ¢ ( T 1 n) uquI uquZ"' uqun
u u n

i‘/v“"/v [l1¢(21) +12¢(ZZ)+"'+tn¢(Zn)] udqzl uqu2"' udqzn

v—u"l/(b udyz,

which yields the second part of (6).
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On the other hand, by the Jensen’s inequality and
1 v V(i +hit g qu—+v
W/ / ( T, nn)“dqzludqzz'--uqu": I+q’
we have

T,

qu+v 1 v V(thzi+hot ez,
(88 o (5) )
1 v Voo (hzit+hot g
— /m/q)(ll 222 "")quzludqzz“'uquw

T,

This completes the proof.

REMARK 3.4. If g — 1, then (6) reduces to
u-+v 1 v v hz1+ho+ -+t
< dzidzy -+ dzy
¢< 2 ) v—u)"/u /uq)< Ty )Zl @ ¢
1 v
<— [ oz
v—uJy

which readily appeared in [8].
COROLLARY 3.2. Let ¢ : J — R be a continuous convex function on J and 0 <

q < 1. Then we have

(0 (6]1’/‘—:_;> / / (P Nz +l212 qZI uqu2
< V_ML 0(2) udyz
qd)(ul) +0(v) . -
+q

REMARK 3.5. If g — 1, then (7) reduces to

’ (u;") S (v_lu)z /MVLV(Z’(lla +1z2)dz1dz)

1 v
< v—u/u 0 (z)dz

_ 9 +9()
2

)

which readily appeared in [7].
THEOREM 3.4. Let ¢ : J — R be a continuous convex function and 0 < q < 1

Then the following inequalities

"+
¢<‘Iu—|—v) / / <21+22+ z )uqu1 wyza+ o

I+g¢g
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1 v v Nz +nha+ -+
o [ [0 ()

v_u/¢> dyz,

n
arevalidforall t; >0 (i=1,2,...,n) with Zti:Tn >0 and n € N.
i=1

Proof. Let us consider the elements

1z +h+ -+, a1+ttt th—12n
)=

Y1 = Tn y Y2 = Tn PR
hz1+1322+ -tz
Yn = .
T,

A simple calculation shows that

yityat- Y1+ yn uatao+-t+ -1+,

n n

By using the Jensen’s inequality, we can write

-+ttt 1 nz +hot ez
¢<1 2 ><_[¢<11 222 )+

n n T,
bzttt
+o ( 221 3Z2T 1&;” .

Taking g-integration on both sides of the above inequality on J", we obtain
++-+
/ / (Zl 2 o ) quZI uquZ et uqun
thiz1+ -+
|:/ (Z)(lZl nZn) uquI"'uqun+"'

0z +tzp+--+t
+/ / ¢<221 322 IZn) uquI"'uqun:|-

:l'—‘

T,

Since

Hhz) +h+ -+ 13
q) < T, - n) udqzl"' udqzn

nz +hn Attt
/¢<1Z1 222 nZn> wdazt gz

T,

I
\ \\

0zl +1322+ -+ 13
(P( 1 - 1 n) quZl"' udqzna

883

uqun

)
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we get

Q+++z2
/ / < n) udqzl uqu2"' uqun
v—u n

1zl +h+ -+t
<(‘,_u)n/u /u ¢< T, ) udgZi udqza -+ udgzn.

Using Theorems 3.3 and 3.2, we can get the desired result.

REMARK 3.6. If g — 1, then (8) reduces to

o <u+v) < / / <21+zz+ +Z">dzld22---dzn
2 (v—u)" n
<7/”./¢<1Z1—|— 222 + +"Z")d21dzz---dzn
(V_u)" u u 1,

1 v
<o [ 6,

which readily appeared in [9].

4. Conclusion

In this paper, we have obtained some new results on refinements of quantum

Hermite-Hadamard inequalities for continuous convex functions. Our results can be
reduced to the classical inequality formulas as special cases when g — 1. It is expected
that this paper may stimulate further research in this field.
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