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Abstract. In this paper, a new identity of the Weyl-Heisenberg frame using a rotation operator
has been investigated in Hilbert space. The characterization and significance of Rotor frame
inequalities have been discussed by using rotation and translation operators. Also discussed the
application of Rotor frames using a rotation operator. Finally, the reconstruction theorem has
been investigated for recovers original data. In this work, we would like to highlight that the
reconstruction theorem used to obtain the energy of the signal and reconstruct the original signal
with eradicated the garbage vector using frame operator in Hilbert space. Today, this technique
is very useful in communication systems.

1. Introduction

Frames are a generalization of orthonormal basis and redundant systems of vec-
tors in Hilbert space. Linear independence property allows for a basis that every vector
in the space to be written as linear combinations. It has some difficulties to process
for practical problems. However, a frame allows each element in the space to be writ-
ten as a linear combination of the vector in the frames. Here, linear independence
between the frame elements is not required. This fact becomes important in commu-
nication systems, signal processing, image processing, coding theory, sampling theory,
and cryptography. Today, frames play an important role not only in theory but also in
many applications in Engineering and Technology.

Frames for Hilbert spaces were formally defined by R. J. Duffin and A. C. Schaf-
fer [1] in 1952 to deal with no harmonic Fourier series. Daubechies, Grossmann and
Meyer discussed the context of Painless non-orthogonal expansions [3] in 1986. Peter
G. Casazza and Ole Christensen provided some results and properties for operators and
frames have been discussed in [5]. The five name team Radu Balan, Peter Casazza
and Dan Edidin, Laura Walters, and Eric Weber have discussed about signal recon-
struction and they provided some results in frame theory without phase as the paper
[6]. The authors K. Raju Pillai and S. Palaniammal have discussed linearity, stability,
and properties of frames in Hilbert space with application in communication systems
in [4, 7, 11]. The matrix absolute value and some properties in the matrix theory has
been discussed by Rajendra Bhatia in the paper [8]. A theorem to recover the signal
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for frames has been discussed in [9, 12, 15]. Parseval frames for ICC groups and ap-
proximating the inverse frame multiplier or operator from localized frames have been
investigated in [2, 10, 13]. Harp frame and Harp frame operator has been discussed in
finite-dimensional Hilbert space and provided some result and properties of Harp frame
operator on Hilbert space in [14]. Some characterization Weyl-Heisenberg frame has
been discussed by C. Easwaran Nambudiri and K. Parthasarathy in [16, 17].

Zhong-Qi Xiang has established several new inequalities for g-frames in Hilbert
C∗ -modules which are different in structure and also present some equalities and in-
equalities for g-frames in Hilbert C∗ -modules in [18, 19].

In this work, we have investigated a new identity of Weyl-Heisenberg frame in
Hilbert space. The characterization and significance of Rotor frames have been pro-
vided in Hilbert space. Finally, Signal Reconstruction Technique has been discussed in
the Hilbert space.

2. Preliminaries and notations

Let H be finite dimensional Hilbert space, L(H) be a set of all bounded linear
operator on H and J is finite or countable index set and it has been used thought paper.
We can define the operators T : l2 → H as follows,

T : l2 → H, Ta = ∑
n∈J

an fn, for all a = {an} ∈ l2 (2.1)

is called synthesis operator or pre frame operator and the ad joint operator is given by

T ∗ : H → l2, T ∗ f = {〈 f , fn〉}n∈J (2.2)

which is the analysis operator.
The composition operator T with its adjoint T ∗ and it denoted by S = TT ∗ such

that
S : H → H S f = ∑

n∈J

〈 f , fn〉 fn, for all f ∈ H (2.3)

is called the frame operator. The frame operator S satisfies linearity, positive and in-
vertible condition in Hilbert space.

The distance between an element f ∈H and a subspace H1 ⊆H such that d( f ,H1)
= infg∈H1 ‖ f −g‖ . We can find a condition implying that { fn}n∈J is a conditional Riesz
frame.

3. Definition and classifications of the frames

DEFINITION 3.1. Let H be Hilbert space and a sequence { fn}n∈J ⊂ H is called
an ordinary frames, if there exists constants A,B > 0, such that

A‖ f‖2 � ∑
n∈J

|〈 f , fn〉|2 � B‖ f‖2 , for all f ∈ H (3.1)

where A and B are lower and upper frame bounds for the frames { fn}n∈J .
Next, we discussed classifications of the frames as follows:



NEW INEQUALITIES FOR ROTOR FRAMES IN HILBERT SPACE 979

1. The maximum number A > 0 and minimum number B > 0 satisfying the frame
inequalities for all f ∈ H are called the optimal bounds.

2. A frame is a tight frame if A = B .

3. A frame is normalized tight frame if A = B = 1.

4. A frame is exact frames if it ceases to be a frame when any one of its elements is
removed.

5. A frame is exact if and only if it is a Riesz basis.

6. In the sense that at least one vector can be abandoned from the frame and the
remaining set of vectors or signal will still form a frame for H and that is a
non-exact frame is called over complete.

7. A frame (gn) ∈ H is called an alternate dual frame (or a pseudo-dual) for ( fn) ∈
H if f = ∑n∈J 〈 f , fn〉gn , for all f ∈ H .

8. S−1 fn is the canonical dual of ( fn) and if ( fn) is a normalized tight frames, then
S = I and so the frame equals its canonical dual.

9. If K is any invertible operator in Hilbert space, K : H → H and it is defined for
lower frame bounds, it follows that

A‖K∗ f‖2 � ∑
n∈J

|〈 f , fn〉|2 � B‖ f‖2 , for all f ∈ H (3.2)

where A and B are lower and upper frame bounds for the K -frames { fn}n∈J .

The next definition gives Weyl-Heisenberg frame which is used modulation and
translation operator as follows.

4. Weyl-Heisenberg frame in Hilbert space

DEFINITION 4.1. The translation and modulation operator can be written as fol-
lows. For all a,b ∈ R , (Ta f ) (x) = f (x−a) and (Eb f ) (x) = e2π ibx f (x) acting on
L2 (R) . The Weyl-Heisenberg frame operator defined as follows

S : H −→ H and S f = ∑
m,n∈J

〈 f ,EmbTnag〉EmbTnag, for all g ∈ L2(R) (4.1)

and {EmbTnag} , for n,m ∈ J generated by a single function through translation and
modulation is called Weyl-Heisenberg frame. This is a special class of frame in L2 (R) ,
where Tnag(x) = g(x−na) and Embg(x) = e2π imbxg(x) translation and modulation
operator respectively.

Necessary condition for Weyl-Heisenberg frames is given as g∈ L2 (R) and a,b >
0 in R, we say that(g,a,b) generates a Weyl-Heisenberg frames, if {EmbTnag}n,m∈J is
a frame in L2 (R) .
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DEFINITION 4.2. Let H be a Hilbert space and for g ∈ L2 (R) and there exists
constants A,B > 0, so that {EmbTnag} is called Weyl-Heisenberg frames, if satisfies
the inequalities, for all n,m ∈ J such that

A‖ f‖2 � ∑
m,n∈J

| 〈 f ,EmbTnag〉 |2 � B‖ f‖2, for all f ∈ H (4.2)

where a and b are frame parameters.
Now, we have provided a special operator to define the Rotor frame in Hilbert

space in the next section.

5. Rotor frames in Hilbert space

In this section, we have investigatedRotor frames which is a special class of frames
in finite dimensional Hilbert space L2 (R)∈H of the form

{
Rnφ Tmτg : n,m ∈ J

}
which

is a generator by a single function through Rnφ and Tmτ are rotation and translation
operator respectively.

The frame operator of the Rotor frame commutes with involved Rnφ and Tmτ and
satisfies the condition of positive, invertible and bounded linear operator. These two
operators are given by Rnφg(n) = g(n)eiφn and Tmτg(m) = g(m− τ) , where

φn = [H1,H2]

=C−1 {sup |x,y| : x ∈ H1ΘH2,y ∈ H2ΘH1} and ‖x‖ = ‖y‖ = 1.

and H1 and H2 are subspace of Hilbert space. The cosine of the angle of two subspaces
is denoted by C [H1,H2] . If two subspaces are orthogonal, the cosine of the angle is
zero. Here, we find the angle between a frame in subspace H1 and reference frame in
subspace H2 in H. If two subspaces are closed, then its cosine of the angle is less than
1 and its converse is also true.

DEFINITION 5.1. [Rotor frames] Let H be finite dimensional Hilbert space and{
Rnφ Tmτg : n,m ∈ J

}
in H is called Rotor frame if there exist constant Ai > 0 and

Bi > 0 and for all i ∈ J′ ⊆ J such that

Ai ‖ f‖2 � ∑
n,m∈J

∣∣ f ,Rnφ Tmτg
∣∣2 � Bi ‖ f‖2 , for all f ∈ H (5.1)

where Rnφ and Tmτ are rotation and translation operator respectively.

EXAMPLE 5.2. Let H1 and H2 be two subspaces of Hilbert space H and here
φn = [H1,H2] = C−1 (sup{|〈 f ,g〉| : f ∈ H1ΘH2,g ∈ H2ΘH1 and ‖ f‖ = ‖g‖ = 1}) , the
cosine of the angle of two subspaces is denoted by C [H1,H2] .

Let f1 = (1,0,0)T and g1 =
(

1√
2
, 1√

2
,0

)T
be any two elements in H , its inner
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product is 〈 f1,g1〉 =
〈

(1,0,0)T ,
(

1√
2
, 1√

2
,0

)T
〉

= 1√
2
. Therefore, |〈 f1,g1〉|= 1√

2
.

φ1 = [H1,H2] = C−1 (sup{|〈 f1,g1〉| : f1 ∈ H1ΘH2,g1 ∈ H2ΘH1})
= C−1

(
sup

{
1/

√
2 : f1 ∈ H1ΘH2,g1 ∈ H2ΘH1

})
= (cos)−1

(
1/

√
2
)

.

Therefore, we get φ1 = π
4 .

Suppose f2 = (1,0,0)T , g2 =
(

1
2 , 1

2 ,0
)T

in H and its inner product 〈 f2,g2〉 =〈
(1,0,0)T ,

(
1
2 , 1

2 ,0
)T

〉
= 1

2 .

Therefore |〈 f2,g2〉| = 1
2 .

φ2 = [H1,H2] = C−1 (sup{|〈 f2,g2〉| : f2 ∈ H1ΘH2,g2 ∈ H2ΘH1})

= C−1
(

sup

{
1
2

: f2 ∈ H1ΘH2,g2 ∈ H2ΘH1

})

= (cos)−1
(
1/

√
2
)

.

Therefore, we have φ1 = π
3 is angle of rotation.

The following theorem shown that the relation between the ordinary frames and
Rotor frames.

THEOREM 5.3. Let { fn}m
n=1 be a frame in Hm , for all m ∈ J with A and B are

optimal frame bounds. If Rxnθn is rotation operator in Hm , then {Rxnθn ( fn)}m
n=1 is a

frame and RxnθnSR∗
xnθn

is frame operator.

Proof. Since norm of rotation operator is unity, then Rxnθn is non singular and also
invertible operator. 〈

RxnθnSR∗
xnθn

f , f
〉

=
〈
SR∗

xnθn
f ,R∗

xnθn
f
〉

�
〈
SR∗

xnθn
f ,R∗

xnθn
f
〉

�
〈
R∗

xnθn
S f ,R∗

xnθn
f
〉

�
〈
S f ,RxnθnR

∗
xnθn

f
〉

�〈S f , f 〉 .
Hence, as follows

〈
RxnθnSR∗

xnθn
f , f

〉
�

m

∑
n=1

|〈 f , fn〉|2 . (5.2)

Similarly, as follows 〈
RxnθnSR∗

xnθn
f , f

〉
�

m

∑
n=1

|〈 f , fn〉|2 . (5.3)
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From (5.2) and (5.3) , as follows

〈
RxnθnSR∗

xnθn
f , f

〉
=

m

∑
n=1

|〈 f , fn〉|2 .

Therefore, it satisfies frames inequality condition and {Rxnθn ( fn)}m
n=1 is a frame

and RxnθnSR∗
xnθn

is frame operator.
Next, we need to show that rotation operator commutes with frame operator:

S (Rxnθn f ) =
m

∑
n=1

〈Rxnθn f , fn〉 fn

�
m

∑
n=1

〈
f ,R∗

xnθn
fn

〉
fn

�
m

∑
n=1

〈 f , fn〉R∗
xnθn

fn

�R∗
xnθn

m

∑
n=1

〈 f , fn〉 fn.

Therefore we have,
SRxnθn � RxnθnS. (5.4)

Similarly we have,
SRxnθn � RxnθnS (5.5)

from above two inequalities (5.4) and (5.5) and we get SRxnθn = RxnθnS .
Hence, the proof is completed. �
The following corollary discussed that sum of the spectral values and angle of

rotation of the signal in H .

COROLLARY 5.4. If Rxnθn is a rotation operator in Hm and S is frame opera-
tor of the frames { fn}m

n=1 in Hm which is real or complex finite Hilbert space, then∥∥∥R∗
xnθn

SRxnθn fn
∥∥∥2

= TraceS and θ = cos−1

(‖R∗
xnθn

SRxnθn fn‖2−1
2

)
, where θ is rotation

angle in R.

Proof. Let f = ei , product of Eigen values of rotation operator is unity and it has
been used Rotation matrix theorem. Hence the proof is completed. �

THEOREM 5.5. Let Rxnθn be a rotation operator in Hm and Hm be real or image
finite Hilbert space, then

(i) Rxnθn is orthogonal.

(ii) If { fn}m
n=1 is orthogonal vector in Mm and for all Rxnθn in R3×3 ∈ Hm , then

∑m
n=1‖Rxnθn‖2 � 3‖ fn‖2 it satisfies the condition of Bessel’s sequence with upper

bound 3.
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THEOREM 5.6. Let {gn}m
n=1 be a frames in Hm with lower and upper frame

bounds are A and B respectively. If Rxnθn and Tmτ are rotation and translation oper-
ator in Hm , then Rtm (gn,xn,θn) =

{(
Rxnθn/Tmτ

)
gn

}
n∈J

is Rotor frame in Hm .

Proof. Let Rtm (gn,xn,θn) = { fn}n∈J and {gn}m
n=1 is a frames in Hm , then,

S f =
m

∑
n=1

〈 f ,gn〉gn, for all f ∈ Hm

and ∣∣〈 f ,
(
Rxnθn/Tmτ

)
gn

〉∣∣ � ‖ f‖∥∥(
Rxnθn/Tmτ

)
gn

∥∥
and if Bn =

∥∥(
Rxnθn/Tmτ

)
gn

∥∥2
, then,

∑
n∈J

|〈 f , fn〉|2 � Bn ‖ f‖2 , for all f ∈ Hm. (5.6)

For all f ∈ Hm ,

A‖ f‖2 = 〈s f , f 〉

=
m

∑
n=1

|〈 f ,gn〉|2

� k
m

∑
n=1

∣∣〈 f ,
(
Rxnθn/Tmτ

)
gn

〉∣∣2
A‖ f‖2 � k

m

∑
n=1

∣∣〈 f ,
(
Rxnθn/Tmτ

)
gn

〉∣∣2
A
k
‖ f‖2 � k

m

∑
n=1

∣∣〈 f ,
(
Rxnθn/Tmτ

)
gn

〉∣∣2 .

Therefore,

An ‖ f‖2 � k
m

∑
n=1

∣∣〈 f ,
(
Rxnθn/Tmτ

)
gn

〉∣∣2 (5.7)

from above two inequalities (5.6) and (5.7) , such that

An ‖ f‖2 � k
m

∑
n=1

∣∣〈 f ,
(
Rxnθn/Tmτ

)
gn

〉∣∣2 � Bn ‖ f‖2 .

Therefore
{(

Rxnθn/Tmτ

)
gn

}
n∈J

is a Rotor frames in Hm , where An and Bn are lower
and upper Rotor frame bounds. �

5.1. What is the necessary and sufficient condition for Rotor frames in H?

REMARK. Converse of above theorem is true when
(
Rxnθn/Tmτ

)
is orthogonal and

determinant of rotation operator is 1 and we have Rxnθn/Tmτ is orthogonal if and only if
R−1

xnθn/Tmτ
= RT

xnθn/Tmτ
.
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In finite dimensional space, any rotation can be expressed as combination of finite
rotation about their axis. The rows (or columns) of rotation are orthogonal vectors and
rotation preserves the length of the vector and angle between two vectors.

The Rotor frames concept is effectively used in robot’s spatial localization. In
order to locate a robot in space, it is needed to have such mathematical tool that al-
lows the space localization of its elements or sequences. In two dimension and three
dimension, the positioning have two and three degree of freedom respectively. There-
fore elements or sequences position is defined by two linear independent components in
two dimension space. In three dimension space, we need to use three linear independent
components. The more Instinctive form used to specifying the position of elements is
the Cartesian coordinate systems.

An element completed is defined in the space through its position. In the case of
a robot, its end link position and indicate their orientation which is defined by three
linear independent components. Here, rotation operator has been used to transform
coordinates of one system to other system. The Euclidean transformation is defined by
fn = Rgn +T and it becomes the following form

fn =
[

R T
0 1

]
gn

The rotation and translation operator have been used in Robot spatial localization
for its movement in various angles. Rotor frames and these two operator has been used
for accurate activities of Robot. For locate a robot in space it is required to have a
mathematical concept that allows the space localization of its sequence.

The positioning have two degrees of freedom in two dimensional space and there-
fore a point’s position will be defined by two linear independent vector. In the case of
a three-dimensional space it will be required to use three linear independent vector and
so on. In this section, the rotation matrix and the homogeneous transformation matrix
concept has been used to find robot’s localization.

NUMERICAL EXAMPLE 5.7. A system OUVW has been rotated 90◦ around the
OX axis and then translated by vector (4,−2,6) which regards to system OXYZ . Let
gn = (−1,2,−5)T be coordinates (vector) and the equation has been used to obtain
rotation and translated coordinates as follows:

fn =

⎡
⎢⎢⎣

1 0 0 4
0 0 −1 −2
0 1 0 6
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
−1
2
−5
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
3
8
1

⎤
⎥⎥⎦ .

In this way, it has been observed that rotation is followed by translation and vice versa
which then calculates the coordinate vectors using the concept of translation followed
by rotation, but, both are not equal in finite dimensional space. To obtain reconstruction
the original coordinates or position which has used rotation operator R to reach the
coordinate from another coordinate in the finite dimensional space in Hm , It has been
used following way, for all n ∈ N and R is rotation operator in Hm such that Rn

θn
fm =

fm , for all θn = 2π
n . Here, n depends upon the angle which number of rotations in finite

dimensional space.
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6. Signal reconstruction theorem in Hilbert space

Next, we have discussed that how do obtain the energy of signal and also provided
the reconstruction of filtered signal. The two orthogonal frames F = ( fn)∈H1 and G =
(gn) ∈H2 ,for all n∈ J with analysis and synthesis operator has been vividly discussed.

The application of frames inequalities in communication systems have been pro-
vided in this section. Suppose, we denoted the original signal τ ∈ H1 and garbage
vector as σ ∈ H2 . Here analysis operator T ∗ is ad joint operator of T which generated
the keys in this system. Here, the analysis operator is assumed as the tensor product of
finite number of matrices. The analysis operator can be formed from just first row of
entries in each Hadamard array which is used to minimize the size of the key. However,
to recover the original signal, it is essential that the recipient of the signal with noise to
know the analysis operator Tfn and synthesis operator T ∗

fn . Composition of analysis
and synthesis operator is denoted by S = T ∗

fnTfn . For encoding the original signal, the
sender multiplies the original signal τ by Tfn and add the garbage vector g to gener-
ated the noisy signal hn,m = Tfnτ +Tgnσ ∈ H and the reconstruction technique which
is vulnerable to a known original signal and it has been transformed or encoded the
information using analysis operator. We want to reconstruct the original information
from the noisy signal which used synthesis operator.

The energy and reconstructed the original information using the frame operator
have been discussed in the following theorem.

THEOREM 6.1. [Reconstruction theorem] If S is invertible and self adjoint oper-
ator in Hilbert space H and { fn}n∈J be Parseval frame in H, the following inequalities
are satisfies

1. If hn,m = SRT
xnθn

and g are frames and garbage vector in H , then

‖p‖ �
√
‖hn,m‖2−‖g‖2. (6.1)

2. If T ∗
fn is rotation operator and Parseval frames fn in H , then

T ∗
fn(hn,m) � τ, (6.2)

where Tfn = RT
xnθn

, τ is the original signal and T ∗
fn(hn,m) is filtered signal in H.

Proof. Since H1 and H2 are closed subspaces of Hilbert space H which is or-
thonormal and theorem 5.3. Suppose for all τ ∈ H1 and (garbage vector) σ ∈ H2 and
by using synthesis operator and adding some garbage vector with the original informa-
tion we have noisy signal that is hn,m = Tfnτ +Tgnσ ∈ H . We proved that hn,m is also
Parseval frames in H as follows, As we know S is frame operator in H and it becomes

〈S f , f 〉� ∑m,n∈N |〈 f ,hn,m〉|2 and T ∗
fnTgn =

{
I if fn = gn,

0 if fn = gn.
A vector is removed from

Parseval frames hn,m (also frame) that is exact frame and we have En,m = hn,m −Tgnσ
is also frames in H .
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Table 1: Wavelength (in meter) for Sampling Frequency to speech signal

S.NO FcHz FsHz Wavelength (in meter)
1 625 1308 2.29×105

2 625 1418 2.12×105

3 645 1428 2.10×105

4 885 1900 1.58×105

5 965 2000 1.50×105

6 1165 3000 1.00×105

Table 2: Lower and upper sideband frequencies for speech signal

S.NO FcHz FsHz |Fc− kFs| |Fc + kFs|
1 625 1308 683 1933
2 625 1418 128 2708
3 645 1428 567 3423
4 885 1900 1640 5440
5 965 2000 2825 6825
6 1165 3000 3990 9990

Since { fn}n∈J is Parseval frames, S = T ∗
fnTfn = I and we have, the filtered in-

formation is reconstructed using the operator which less than or equal to the original
information τ .

Hence, the proof of the above Theorem 6.1 is completed. �

Suppose, we would like to transmit the signal f (t) = t3sinc(t − 2) , for all t ∈
[−4,4] and we have good representation of signal. It has been used by the rotation
operator to modulate the original signal and reconstruct the original signal using the
operator as shown in following figures. The information signal is shown in the top
of all figures and encoded signal is displayed in the middle of every figure, then the
reconstruct signal or filter signal wave form is displayed in the bottom of all figures
with different frequencies and it has been reduced the reconstruction error by using the
operator.

Modulation is enormously required in communication systems due to the follow-
ing motivation that is practical antenna length, operating range and wireless communi-
cation. The energy of signal depends upon its frequency and the greater frequency of
the signal and greater energy possessed by it. If the speech signal frequency is small,
then these cannot be transmitted over large distance of radiated directly into space. The
technique of changing frequency of a carrier wave in accordance with the intensity of
the signal. Amplitude, frequency and phase modulations are three type of the modula-
tion. We have used frequency modulation to speech signal with power spectral density
in various frequencies.
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We conclude that the Rotor frames, rotation and translation operators have been
effectively used in communication system in finite dimensional Hilbert space and also
used in signal reconstruction and spectrum analysis in communication systems by using
rotation and translation operators in Hilbert space.
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