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GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS

ZULIANG LU, FEI HUANG, LI LIN, FEI CAI AND YIN YANG

(Communicated by J. Pečarić)

Abstract. In this paper, the Legendre Galerkin spectral method is applied to solve the constrained
optimal control problems governed by general elliptic equations. Under some reasonable as-
sumptions, by using the orthogonal projection operator, we derive a priori error estimates for the
spectral approximation of optimal control problems. Then, we obtain a posteriori error estimates
for both the state and the control approximation, where we use the L2 -norm for estimating the
control approximation error, and the H1 -norm or L2 -norm for the state and co-state approxima-
tion error. Finally, some numerical experiments are presented to test our theoretical results.

1. Introduction

During the past decades, optimal control problems have wide applications in the
operation of physical, social, economic processes, and other fields. Therefore, the study
of optimal control problems have received considerable attention. Finite element meth-
ods seem to be the most popular used numerical method in solving optimal control
problems (see, e.g., [17, 21, 20]). Spectral method as a kind of numerical method
also can be used to approximate the solutions of optimal control problems (see, e.g.,
[22, 13, 8, 4]). Meanwhile, other numerical methods, such as finite volume method,
mixed finite element method etc., have also been applied to approximate the solutions
of optimal control problems (see, e.g., [3, 5, 6, 9, 2, 11, 7, 18]).

Spectral method can provide very accurate approximations with a relatively small
number of unknowns when the solutions are smooth by employing global polynomials
functions. Recently, due to this advantage, spectral method has attracted thousands
of scholars and researchers. There are some literatures to study the optimal control
problems governed by partial differential equations. In [12], the spectral method has
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been used to approximate unconstrained optimal control problems. From [8, 4], we
knew that the authors derived a priori and posterior error estimates for the spectral
approximation of constrained optimal control problems. The authors investigated the
Legendre Galerkin spectral approximation of elliptic optimal control problems with
integral state and control constraints in [13]. The goals of this paper is to establish a
priori error estimate and a posteriori error estimates for the Legendre Galerkin spectral
methods for general elliptic optimal control problems.

In this paper, we study the integral constraint optimal control problems, where
the objective function is general functional. Under some reasonable assumptions, we
obtain an optimal a priori error estimate and a posteriori error estimates for general
optimal control problems governed by elliptic equation. As far as I known, the authors
have obtained a priori and a posteriori error estimates for the Legendre-Galerkin spec-
tral methods for quadratic elliptic optimal control problems in [8], where the objective
functional is quadratic functional min

u∈K

{
1
2

∫
Ω(y− y0)2 + 1

2

∫
Ω u2

}
. Moreover, the elliptic

equations in this paper are much more general than the equations in [8].

In this paper, we adopt the standard notation Wm,p(Ω) for Sobolev spaces on Ω
with a norm ‖v‖Wm,p(Ω) given by ‖v‖Wm,p(Ω) = ∑

|α |�m
‖Dαv‖p

Lp(Ω), and the semi-norm

| v |Wm,p(Ω)= ∑
|α |=m

‖Dαv‖p
Lp(Ω) . We set Wm,p

0 (Ω) = {v ∈ Wm,p(Ω) : v |∂Ω= 0} . For

p = 2, we denote Hm(Ω) = Wm,2(Ω) , Hm
0 (Ω) = Wm,2

0 (Ω) . As usual, we use (·, ·) to
denote the L2(Ω)-inner product.

Now, we will discuss the following general elliptic optimal control problems:

min
u∈K

{g(y)+ j(u)} , (1.1)

−div(A∇y) = f +Bu, in Ω, y|∂Ω = 0, (1.2)

where Ω∈R
2 be a convex open domain with a Lipschitz boundary ∂Ω , B is a bounded

continuous linear operator, g and j are convex functionals. Furthermore, we assume
that the coefficient matrix A ∈ W 2,∞(Ω) is a symmetric positive definite matrix and
there is a constant c > 0 satisfying for any vector X ∈ R

2 , XtAX � c‖X‖2
R2 . K is a set

defined by

K =
{

v ∈ L2(Ω) :
∫

Ω
vdx � 0

}
.

This paper embraces seven parts as follows. In Section 2, we present some nota-
tions and the Legendre Galerkin spectral approximation for the optimal control prob-
lems. In Section 3, we derive a priori error estimate between the exact solution and
the spectral approximation. In Section 4, we show the L2 −H1 posteriori error esti-
mates for both the state and the control approximation. And in Section 5, we obtain
the L2 −L2 posteriori error estimates. Next, two numerical experiments are presented
to test our theoretical results in the Section 6. Finally, we give a conclusion and some
possible future work in the Section 7.
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2. Legendre Gelerkin spectral approximation

In this section, we study Legendre Gelerkin spectral approximation of the general
elliptic optimal control problems (1.1)–(1.2). We first introduce a weak formulation of
the problem. Let V = H1

0 (Ω) and U = L2(Ω) . Let

a(y,w) =
∫

Ω
(A∇y) · (∇w)dx, ∀y,w ∈V,

(u,v)U =
∫

Ω
uvdx, ∀(u,v) ∈U ×U.

Then the standard weak formulation for the state equation reads: find y(u) ∈ V such
that

a(y(u),w) = ( f +Bu,w), ∀w ∈V.

Therefore, the optimal control problems (1.1)–(1.2) can be restated as: find (y,u) such
that

min
u∈K

{g(y)+ j(u)} , (2.1)

a(y(u),w) = ( f +Bu,w), ∀w ∈V. (2.2)

From [16], we can know that the optimal control problems (2.1)–(2.2) has a unique
solution (y∗,u∗) and (y∗,u∗) is the solution if and only if there is a co-state p∗ ∈V such
that the triplet (y∗, p∗,u∗) satisfies the following optimality conditions:

a(y∗,w) = ( f +Bu∗,w), ∀w ∈V, (2.3)

a(q, p∗) = (g′(y∗),q), ∀q ∈V, (2.4)

( j′(u∗)+B∗p∗,v−u∗)U � 0, ∀v ∈ K ⊂U. (2.5)

We use Legendre Galerkin spectral method to investigate the spectral approxima-
tion of the optimal control problems (2.1)–(2.2), and assume that Ω = (−1,1)2 . Firstly,
let us introduce some basic notations which will be used in the sequel. For xi, i = 1,2,
we denote by Lr(xi) the r th degree Legendre polynomial in the variable xi , and we set

Xi
N = span{L0(xi), L1(xi), · · · , LN(xi)},

where N � 0 is an integer. We define a product space such as

XN =
2

∏
i=1

Xi
N .

We introduce the finite dimensional spaces VN = XN
⋂

V , UN = XN
⋂

U , and KN =
XN

⋂
K . C and c denotes a general positive constant independet of N .
Then the Legendre Galerkin approximation for optimal control problems are:

min
uN∈KN⊂UN

{g(yN)+ j(uN)} , (2.6)
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a(yN ,wN) = ( f +BuN,wN), ∀wN ∈VN ⊂ H1
0 (Ω). (2.7)

This is a finite dimensional optimization problem and may be solved by existing
mathematical programming methods such as the steepest decent method, the conjugate
gradient method, the trust domain method, and the sequential quadratic programming
method.

It follows that the optimal control problems have one solution (y∗N ,u∗N) , and (y∗N ,u∗N)
is the solution if and only if there is a co-state p∗N ∈VN such that the triplet (y∗N , p∗N ,u∗N)
satisfies the following optimality conditions:

a(y∗N ,wN) = ( f +Bu∗N,wN), ∀wN ∈VN , (2.8)

a(qN , p∗N) = (g′(y∗N),qN), ∀qN ∈VN , (2.9)

( j′(u∗N)+B∗p∗N ,vN −u∗N)U � 0, ∀vN ∈ KN . (2.10)

Let y(u) and yN(uN) be the solutions of (2.2) and (2.7) respectively. Set

J(u) = {g(y)+ j(u)} ,

JN(uN) = {g(yN)+ j(uN)} .

We show that u∗N converges to u∗ in spectral accuracy provided the data are sufficient
smooth. Define J(·) and JN(·) as before, it can be shown that (see [16]):

(J′(u∗),v)U = ( j′(u∗)+B∗p∗,v)U , (2.11)

(J′N(u∗N),v)U = ( j′(u∗N)+B∗p∗N ,v)U , (2.12)

(J′(u∗N),v)U = ( j′(u∗N)+B∗p(u∗N),v)U , (2.13)

where B∗ is the adjoint operator of B and (y(u∗N), p(u∗N)) is the solution of the auxiliary
equation.

a(y(u∗N),w)U = ( f +Bu∗N ,w), ∀w ∈V = H1
0 (Ω), (2.14)

a(q, p(u∗N))U = (g′(y(u∗N)),q), ∀q ∈V = H1
0 (Ω). (2.15)

It is clearly that J(·) is uniformly convex. Then there is a c > 0 independent of N ,
such that

(J′(u∗)− J′(u∗N),u∗ −u∗N)U � c‖u∗ −u∗N‖2
L2(Ω), (2.16)

where u∗ and u∗N are the solutions of (2.1)–(2.2) and (2.6)–(2.7), respectively.
For any u∈L2(Ω) , we define the orthogonal projection operator PN : L2(Ω)→UN

which satisfies
(PNu−u,wN) = 0, ∀wN ∈UN .

From [10], we can know that

PNu = ∑
max

1�i�2
{ki}�N

ûkφk, ûk =
2

∏
i=1

(
ki +

1
2

)∫
Ω

u(x)φk(x)dx,
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where k = (k1,k2) and φk(x) = Lk1(x1)Lk2(x2) .
For any u ∈ H1

0 (Ω), P0
1,N : H1

0 (Ω) →VN is defined by

∫
Ω

∇(u−P0
1,Nu) ·∇wdx = 0, ∀w ∈VN .

The following Lemma is important for deriving a priori error estimate and a posteriori
error estimates of residual type. It can be found in [10].

LEMMA 2.1. For all u ∈ Hm(Ω) (m � 0) , we have

‖u−PNu‖Hl(Ω) � CNσ(l)−m‖u‖Hm(Ω), 0 � l � m,

where σ(l) = 0 if l = 0 , and σ(l) = 2l− 1
2 for l > 0 . If u ∈ H1

0 (Ω)∩Hm(Ω) , m � 1 ,
then we have

‖u−P0
1,Nu‖Hμ (Ω) � CNμ−m‖u‖Hm(Ω), 0 � μ � 1.

3. An optimal a priori error estimates

In this section, we will discuss a priori error estimate for the spectral approxima-
tion of optimal control problems. By using Lemma 2.1, we can derive the following
result.

THEOREM 3.1. Let (y∗, p∗,u∗) and (y∗N , p∗N ,u∗N) be the solutions of (2.3)–(2.5)
and (2.8)–(2.10) , respectively. Assume that g′ and j′ are Lipschitz continuous in a
neighborhood of y∗ and the solution (y∗, p∗,u∗) is sufficient regular. Then for any
integer k > 0 there exists C > 0 , independent of N , such that

‖u∗−u∗N‖L2(Ω) +‖y∗− y∗N‖H1(Ω) +‖p∗− p∗N‖H1(Ω) � CN−k, ∀k ∈ Z
+. (3.1)

Proof. For any vN ∈ KN , from (2.5), (2.10), (2.11), and (2.13), and the Schwartz
inequality, we obtain

c‖u∗−u∗N‖2
L2(Ω) �(J′(u∗),u∗ −u∗N)U − (J′(u∗N),u∗ −u∗N)U

=( j′(u∗)+B∗p∗,u∗ −u∗N)U +( j′(u∗N)+B∗p(u∗N),u∗N −u∗)U
=( j′(u∗)+B∗p∗,u∗ − vN)U +( j′(u∗)+B∗p∗,vN −u∗N)U

+( j′(u∗N)+B∗p∗N ,u∗N − vN)U +( j′(u∗N)+B∗p∗N ,vN −u∗)U
+(B∗(p∗N − p(u∗N)),u∗ −u∗N)U

�( j′(u∗)+B∗p∗,vN −u∗)U +( j′(u∗N)− j′(u∗),vN −u∗)U
+( j′(u∗)+B∗p∗,vN −u∗)U +(B∗(p∗N − p(u∗N)),vN −u∗)U
+(B∗(p(u∗N)− p∗),vN −u∗)U +(B∗(p∗N − p(u∗N)),u∗ −u∗N)U



994 Z. LU, F. HUANG, L. LIN, F. CAI AND Y. YANG

�2( j′(u∗)+B∗p∗,vN −u∗)U
+‖ j′(u∗N)− j′(u∗)‖L2(Ω)‖vN −u∗‖L2(Ω)

+‖p∗N − p(u∗N)‖L2(Ω)‖vN −u∗‖L2(Ω)

+‖p(u∗N)− p∗‖L2(Ω)‖vN −u∗‖L2(Ω)

+‖p∗N − p(u∗N)‖L2(Ω)‖u∗ −u∗N‖L2(Ω)

�2( j′(u∗)+B∗p∗,vN −u∗)U + δ‖ j′(u∗N)− j′(u∗)‖2
L2(Ω)

+C(δ )‖vN −u∗‖2
L2(Ω) +C(δ )‖p∗N − p(u∗N)‖2

L2(Ω)

+ δ‖p(u∗N)− p∗‖2
L2(Ω) + δ‖u∗−u∗N‖2

L2(Ω), (3.2)

where δ > 0 is a sufficient small constant. Using the triangle inequality, we have

‖y∗N − y∗‖H1(Ω) � ‖y∗N − y(u∗N)‖H1(Ω) +‖y(u∗N)− y∗‖H1(Ω), (3.3)

‖p∗N − p∗‖H1(Ω) � ‖p∗N − p(u∗N)‖H1(Ω) +‖p(u∗N)− p∗‖H1(Ω). (3.4)

We can obtain the following error equation from (2.3) and (2.14):

a(y(u∗N)− y∗,w) = (B(u∗N −u∗),w), ∀w ∈V.

Let w = y(u∗N)− y∗ in above equation, we show

‖y(u∗N)− y∗‖H1(Ω) � c‖u∗N −u∗‖L2(Ω), (3.5)

where c = c(Ω) > 0 is the coefficient of the following Poincare inequality

‖w‖H1
0 (Ω) � C(Ω)‖∇w‖L2(Ω),

From (2.8) and (2.13), we can prove

a(y∗N − y(u∗N),wN) = 0, ∀wN ∈VN . (3.6)

Therefore, ‖y∗N − y(u∗N)‖H1(Ω) can be computed as follows:

‖y∗N − y(u∗N)‖2
H1(Ω) �Ca(y∗N − y(u∗N),y∗N − y(u∗N))

=Ca(y∗N − y(u∗N),y∗N − y(u∗N)+wN)
�C‖y∗N − y(u∗N)‖H1(Ω) · inf

wN∈VN
‖y(u∗N)−wN‖H1(Ω).

By using Lemma 2.1, we obtain

‖y∗N − y(u∗N)‖H1(Ω) �C inf
wN∈VN

‖y(u∗N)−wN‖H1(Ω)

�C‖y(u∗N)−P0
1,Ny(u∗N)‖H1(Ω) � CN−k, ∀k ∈ Z

+,
(3.7)

where P0
1,N is the orthogonal projection operator defined in section 2.
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For the co-state variable, we can obtain the error equation from 2.4 and 2.15

a(q, p(u∗N)− p∗) = (g′(y(u∗N)−g′(y∗),q). (3.8)

Similarly, assuming that g′ is Lipschitz continuous in a neighborhood of y∗ , we have

‖p(u∗N)− p∗‖H1(Ω) � c‖y(u∗N)− y∗‖L2(Ω) � c‖u∗N −u∗‖L2(Ω). (3.9)

Due to (2.9) and (2.15), we have

‖p(u∗N)− p∗N‖2
H1(Ω) �C(‖p(u∗N)− p∗N −PN(p(u∗N)− p∗N)‖H1(Ω)‖p(u∗N)− p∗N‖H1(Ω)

+‖g′(y(u∗N))−g′(y∗N)‖L2(Ω)‖p(u∗N)−p∗N−PN(p(u∗N)−p∗N)‖L2(Ω)

+‖g′(y(u∗N))−g′(y∗N)‖L2(Ω)‖p(u∗N)− p∗N‖L2(Ω))

�C(‖p(u∗N)− p∗N −PN(p(u∗N)− p∗N)‖H1(Ω)‖p(u∗N)− p∗N‖H1(Ω)

+‖y(u∗N)− y∗N‖L2(Ω)‖p(u∗N)− p∗N −PN(p(u∗N)− p∗N)‖L2(Ω)

+‖y(u∗N)− y∗N‖L2(Ω)‖p(u∗N)− p∗N‖L2(Ω))

�CN−2k, ∀k ∈ Z
+. (3.10)

Then, applying (3.9)–(3.10) in (3.2) to obtain

c‖u∗−u∗N‖2
L2(Ω) �2( j′(u∗)+B∗p∗,vN −u∗)U +C(δ )‖vN −u∗‖2

L2(Ω)

+C(δ )N−2k +(1+2c)δ‖u∗−u∗N‖2
L2(Ω),

(3.11)

where δ > 0 is a sufficient small constant. So, we choose δ = c/2(1+ 2c) to derive
that

‖u∗ −u∗N‖2
L2(Ω) � 2( j′(u∗)+B∗p∗,vN −u∗)U +C(δ )‖vN −u∗‖2

L2(Ω) +C(δ )N−2k.

(3.12)
Now, setting vN = PNu∗ ∈UN in (3.12), where PN is the L2 orthogonal projection

operator defined in section 2. We have

( j′(u∗)+B∗p∗,vN −u∗)U =( j′(u∗)+B∗p∗ −PN( j′(u∗)+B∗p∗),PNu∗−u∗)U
�‖ j′(u∗)+B∗p∗ −PN( j′(u∗)+B∗p∗)‖L2(Ω)‖PNu∗ −u∗‖L2(Ω)

�CN−2k, (3.13)

where PN( j′(u∗)+B∗p∗) ∈UN . And further, we also have

(u∗ −PNu∗,v) = 0, ∀v ∈ PN ,

especially letting v = 1 ∈ PN we have

(u∗ −PNu∗,v) =
∫

Ω
(u∗ −PNu∗)dx = 0,
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thus ∫
Ω

PNu∗dx =
∫

Ω
u∗dx � 0.

Then vN ∈ KN ⊂UN . It follows from Lemma 2.1 that

‖u∗ − vN‖L2(Ω) � CN−k. (3.14)

Applying (3.13) and (3.14) in (3.12), we can obtain

‖u∗−u∗N‖L2(Ω) � CN−k. (3.15)

Finally, we deduce the error estimates (3.1) from (3.5)–(3.10), (3.13) and (3.15). �

4. L2−H1 posteriori error estimates

In this section, we derive a posteriori error estimates for the spectral approximation
of optimal control problems. We use the L2 -norm for estimating the control approxi-
mation error, and the H1 -norm for the state and co-state approximation error.

The following Theorem is important to obtain the error estimates of the interme-
diate variable.

THEOREM 4.1. Let (y(u∗N), p(u∗N)) and ( y∗N , p∗N) be the solutions of (2.14)–
(2.15) and (2.8)–(2.9) , respectively. Assume that g′ is Lipschitz continuous in a
neighborhood of y∗ . Then

‖y(u∗N)− y∗N‖H1(Ω) +‖p(u∗N)− p∗N‖H1(Ω) � Cη1, (4.1)

where the estimator η1 is defined as

η1 = N−1‖g′(y∗N)+ Δp∗N‖L2(Ω) +N−1‖ f +Bu∗N + Δy∗N‖L2(Ω).

Proof. Setting ey = y(u∗N)− y∗N , and letting eN
y = P0

1,Ney ∈ VN be the orthogonal

projection of ey , where P0
1,N is the orthogonal projection operator defined in section 2.

Then, using (3.6), (2.8), and (2.14), we have

c−1‖y(u∗N)− y∗N‖2
H1(Ω) �(∇ey,∇ey) = (∇(ey − eN

y ),∇ey)

=( f +Bu∗N + Δy∗N ,ey − eN
y )

�CN−2‖ f +Bu∗N + Δy∗N‖2
L2(Ω) + δ‖y(u∗N)− y∗N‖2

H1(Ω).

(4.2)

Choosing that δ = 1
2c , we have

‖y(u∗N)− y∗N‖2
H1(Ω) � CN−2‖ f +Bu∗N + Δy∗N‖2

L2(Ω). (4.3)
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Similarly, setting ep = p(u∗N)− p∗N , and letting eN
p = P0

1,Nep ∈ VN be the orthogonal
projection of ep . Then it follows from (2.9) and (2.15) that

c−1‖p(u∗N)− p∗N‖2
H1(Ω) �(∇ep,∇ep) = (∇(ep − eN

p ),∇ep)+ (∇eN
p ,∇ep)

=(g′(y(u∗N))+ Δp∗N ,ep− eN
p )+ (g′(y(u∗N))−g′(y∗N),eN

p )

=(g′(y∗N)+ Δp∗N,ep− eN
p )+ (g′(y(u∗N))−g′(y∗N),ep)

�‖g′(y∗N)+ Δp∗N‖L2(Ω) · ‖ep− eN
p‖L2(Ω) (4.4)

+(g′(y(u∗N))−g′(y∗N),ep)

�CN−1‖g′(y∗N)+ Δp∗N‖L2(Ω)‖ep‖H1(Ω)

+‖g′(y(u∗N))−g′(y∗N)‖L2(Ω)‖ep‖L2(Ω)

�CN−2‖g′(y∗N)+ Δp∗N‖2
L2(Ω) +C‖y(u∗N)− y∗N‖2

L2(Ω)

+2δ‖ep‖2
H1(Ω).

Choosing that δ = 1
4c , we have

‖p(u∗N)− p∗N‖2
H1(Ω) � CN−2‖g′(y∗N)+ Δp∗N‖2

L2(Ω) +C‖y(u∗N)− y∗N‖2
L2(Ω). (4.5)

Then, we combine (4.3) and (4.5) to derive our estimate (4.1). �
We now prove the following theorem.

THEOREM 4.2. Let (y∗, p∗,u∗) and (y∗N , p∗N ,u∗N) be the solutions of (2.3)–(2.5)
and (2.8)–(2.10) , respectively. Assume that g′ is Lipschitz continuous in a neighbor-
hood of y∗ . Then we have that

‖u∗−u∗N‖L2(Ω) +‖y∗− y∗N‖H1(Ω) +‖p∗− p∗N‖H1(Ω) � Cη1, (4.6)

where η1 is defined in Theorem 4.1.

Proof. Let y(u∗N) and p(u∗N) be the intermediate variables defined in (2.14) and
(2.15). For vN = PNu∗ ∈ XN , it follows from (2.11)–(2.13), and (2.16) that

c‖u∗ −u∗N‖2
L2(Ω) �(J′(u∗),u∗ −u∗N)U − (J′(u∗N),u∗ −u∗N)U

�− (J′(u∗N),u∗ −u∗N)U
=(J′N(u∗N),u∗N −u∗)U +(J′N(u∗N)− J′(u∗N),u∗ −u∗N)U
�(J′N(u∗N),vN −u∗)U +(J′N(u∗N)− J′(u∗N),u∗ −u∗N)U
=(J′N(u∗N)− J′(u∗N),u∗ −u∗N)U
=(B∗(p∗N − p(u∗N)),u∗ −u∗N)
�C‖p(u∗N)− p∗N‖L2(Ω)‖u∗ −u∗N‖L2(Ω).

(4.7)

Therefore, from Theorem 4.1, we have

‖u∗ −u∗N‖L2(Ω) � C‖p∗N − p(u∗N)‖L2(Ω). (4.8)
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Using the triangle inequality, we have

‖y∗ − y∗N‖H1(Ω) � ‖y∗ − y(u∗N)‖H1(Ω) +‖y(u∗N)− y∗N‖H1(Ω),

‖p∗ − p∗N‖H1(Ω) � ‖p∗ − p(u∗N)‖H1(Ω) +‖p(u∗N)− p∗N‖H1(Ω).
(4.9)

By using (3.5), (3.9), (4.8)–(4.9), and Theorem 4.1, we can obtain the result (4.6). �

5. L2 −L2 posteriori error estimates

In this section, we use the L2 -norm for estimating the control, the state and co-
state approximation error. In order to obtain L2−L2 posteriori error estimates, we first
assume an auxiliary problem, then we use the orthogonal projection operator P0

1,N to
get this estimates.

We assume that the auxiliary problem:

−Δϕ = f , x ∈ Ω, ψ |∂Ω = 0, (5.1)

possesses the following regularity estimates (see [14], for example):

‖ϕ‖H2(Ω) � C‖ f‖L2(Ω). (5.2)

Then, we can show that:

THEOREM 5.1. Let (y(u∗N), p(u∗N)) and (y∗N , p∗N) be the solutions of (2.14)–(2.15)
and (2.8)–(2.9) , respectively. Assume that g′ is Lipschitz continuous in a neighbor-
hood of y∗ . Then

‖p(u∗N)− p∗N‖L2(Ω) +‖y(u∗N)− y∗N‖L2(Ω) � Cη2, (5.3)

where
η2 = N−2‖g′(y∗N)+ Δp∗N‖L2(Ω) +N−2‖ f +Bu∗N + Δy∗N‖L2(Ω).

Proof. Let ϕ be the solution of (5.1) with f (x) = y(u∗N)− y∗N , letting ϕN =
P0

1,Nϕ ∈ VN be the orthogonal projection of ϕ , where P0
1,N is the orthogonal projec-

tion operator. Then it follows from (2.8), (2.14), and Lemma 2.1 that

‖y(u∗N)− y∗N‖2
L2(Ω) =(∇ϕ ,∇(y(u∗N)− y∗N))

=(∇(ϕ −ϕN),∇(y(u∗N)− y∗N))+ (∇ϕN ,∇(y(u∗N)− y∗N))

=( f +Bu∗N + Δy∗N,ϕ −ϕN)

�CN−2‖ f +Bu∗N + Δy∗N‖L2(Ω) · ‖ψ‖H2(Ω)

�CN−2‖ f +Bu∗N + Δy∗N‖L2(Ω) · ‖ f‖L2(Ω).

(5.4)

Then
‖y(u∗N)− y∗N‖L2(Ω) � CN−2‖ f +Bu∗N + Δy∗N‖L2(Ω). (5.5)
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Similarly, let ϕ be the solution of (5.1) with f (x) = p(u∗N)− p∗N , let ϕN = P0
1,Nϕ ∈VN

be the orthogonal projection of ϕ . Then it follows from (2.9), (2.14), and Lemma 2.1
that

‖p(u∗N)− p∗N‖2
L2(Ω) =(∇ϕ ,∇(p(u∗N)− p∗N))

=(∇(ϕ −ϕN),∇(p(u∗N)− p∗N))+ (∇ϕN ,∇(p(u∗N)− p∗N))

=(g′(y(u∗N))+ Δp∗N ,ϕ −ϕN)+ (g′(y(u∗N))−g′(y∗N),ϕN)

=(g′(y∗N)+ Δp∗N,ϕ −ϕN)+ (g′(y(u∗N))−g′(y∗N),ϕ) (5.6)

�C
(
N−2‖g′(y∗N)+ Δp∗N‖L2(Ω) +‖y(u∗N)− y∗N‖L2(Ω)

)
· ‖ϕ‖H2(Ω)

�C
(
N−2‖g′(y∗N)+ Δp∗N‖L2(Ω) +‖y(u∗N)− y∗N‖L2(Ω)

)
· ‖ f‖L2(Ω).

So that

‖p(u∗N)− p∗N‖L2(Ω) � CN−2‖g′(y∗N)+ Δp∗N‖L2(Ω) +C‖y(u∗N)− y∗N‖L2(Ω). (5.7)

Thus (5.5)–(5.6) implies (5.3). �

According to above Theorem, we can derive the following Theorem.

THEOREM 5.2. Let (y∗, p∗,u∗) and (y∗N , p∗N ,u∗N) be the solutions of (2.3)–(2.5)
and (2.8)–(2.10) respectively. Assume that g′ is Lipschitz continuous in a neighbor-
hood of y∗ . Then, we have

‖u∗−u∗N‖L2(Ω) +‖y∗− y∗N‖L2(Ω) +‖p∗− p∗N‖L2(Ω) � Cη2, (5.8)

where η2 is defined in Theorem 5.1.

Proof. Using the triangle inequality, we have

‖y∗− y∗N‖L2(Ω) � ‖y∗− y(u∗N)‖L2(Ω) +‖y(u∗N)− y∗N‖L2(Ω),

‖p∗− p∗N‖L2(Ω) � ‖p∗ − p(u∗N)‖L2(Ω) +‖p(u∗N)− p∗N‖L2(Ω).
(5.9)

From (3.5), (5.9), (4.8), and Theorem 5.1, we have

‖y∗ − y∗N‖L2(Ω) � Cη2, (5.10)

By using (3.9), (5.9), (4.8), and Theorem 5.1, we get

‖p∗− p∗N‖L2(Ω) � Cη2, (5.11)

Finally, we can obtain the result (5.8) from (5.10)–(5.11). �
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6. Numerical examples

In this section, we will carry out two numerical examples for the one-demensional
and two-dimensional cases to demonstrate our theoretical estimates. We consider the
following elliptic optimal control problem

min
u∈K

J(u) =
{ 1

2

∫
Ω(y− y0)2 + 1

2

∫
Ω u2

}
, (6.1)

−Δy = f +u, in Ω, y|∂Ω = 0, (6.2)

where K is a set defined by

K =
{

v ∈ L2(Ω) :
∫

Ω
v � 0

}
.

By using the gradient projection algorithm, we can solve the control problem (6.1)–
(6.2), and give the interative scheme as follows:{

(un+ 1
2
,v) = (un,v)−ρn(J′(un),v), ∀ v ∈ K,

un+1 = Pk(un+ 1
2
), (6.3)

where ρn will be specified later, and the projection operator PK : U → K satisfies for
any w ∈U that (PKw−w,PKw−w) = min

u∈K
(u−w,−w), which is equivalent to (PKw−

w,PKw−w) � 0.
Let Un be the coordinates of un in R

n and J′(Un) be the gradient of J(Un) , then
the matrix form of the above algorithm reads as Un+ 1

2
=Un−ρnM−1

n J′(Un), where Mn

is the preconditioner, for above scheme we have the following convergence result [15].

LEMMA 6.1. Assume that J′ is lipschitz and uniformly monotone in the sense
that there are positive constants C, c such that

|J′(u)− J′(v)| � C‖u− v‖U, ∀ u,v ∈U,

(J′(u)− J′(v),u− v) � c‖u− v‖2
U, ∀ u,v ∈U.

Then there are 0 < δ < 1 , ε > 0 such that

‖u−un‖ � δ n‖u−u0‖, n = 0,1,3, · · · ,
provided ρn � ε .

We will select ρn satisfying 0 � 1+ρn(Cρn−c)� δ to guarantee the convergence
of the algorithm (6.3). It is not difficult to prove that

J(u) =
1
2

∫
Ω
(y(u)− y0)2 +

1
2

∫
Ω

u2,

satisfies all of the conditions in Theorem 3.1. Thus we can apply the above algorithm
to solve the discrete elliptic optimal control problem (2.8)–(2.10). Let UN and KN be
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defined in section 2, and PKN : UN → KN be the discrete projection operator satisfying
for any w ∈UN that

(PKNw−w,PKNw−w) = min
u∈K

(u−w,u−w),

which is equivalent to

(PKNw−w,v−PKNw) � 0, ∀ v ∈ KN .

It follows from Theorem 3.2 that for any uN ∈UN

PKN uN = −min{0,uN}+uN.

Then, from (6.3), we have

un+1 = PKNun+ 1
2

= −min{0,un+ 1
2
}+un+ 1

2
.

Thus, we can derive the following algorithm for solving the discrete general linear
elliptic control problem (2.8)–(2.10).

Algorithm 1: Let u0
N = 0, and

(∇yn
N ,∇wN) = (un

N ,wN), ∀ wN ∈VN ,

(∇qN ,∇Pn
N) = (yN − y0,qN), ∀ qN ∈VN ,

(u
n+ 1

2
N ,vN) = (un

N ,vN)−ρ(Pn
N + α(un

N −u0),vN), ∀ vN ∈UN ,

un+1
N = PK(u

n+ 1
2

N ) = −min

(
0,u

n+ 1
2

N +u
n+ 1

2
N

)
.

6.1. One-dimensional case

We now consider the problem (6.1)–(6.2) on domain Ω = (−1,1) , associated with
the exact solutions

u = π2 sinπx, p = sin2πx,

y = sinπx, f = 0,

y0 = 4π2 sin2πx+ sinπx.

We denote Ln(x) be the n th-degree Legendre polynomial [19] and

φk(x) = 1√
4k+6

(Lk(x)−Lk+2(x)), YN = span{φi(x)}N−2
i=0 ,

UN = span{Li(x); i = 0, · · · ,N}.

It can be verified that

a jk = (φ ′
k,φ

′
j) =

{
1, k = j,
0, k �= j.
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b jk = bk j = (φk,φ j) =

⎧⎪⎨
⎪⎩

ckc j

(
2

2 j+1 + 2
2 j+5

)
, k = j,

−ckc j
2

2k+1 , k = j +2,
0, otherwise.

Then we can present yN , y∗N , uN as follows

yN =
N−2

∑
i=0

yiφi(x), y∗N =
N−2

∑
i=0

y∗i φi(x), uN =
N

∑
i=0

uiLi(x).
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Figure 1: The exact solutions and its spectral solutions of u in one-dimensional case
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Figure 2: The exact solutions and its spectral solutions of y in one-dimensional case



LEGENDRE GALERKIN SPECTRAL METHODS OF GENERAL ELLIPTIC CONTROL 1003

−1 −0.5 0 0.5 1
−10

−5

0

5

10

15

N=13

exact solution
spectral solution

Figure 3: The errors of different N(N = 5,7,9,11,13) base on different norms

The approximation errors are presented in Table 1 and Figure 3, which show that
the errors decrease rapidly. We also plot the exact solutions and the spectral solutions
of u and y with N = 13 in Figures 1-2. Both Table 1 and Figures 1-2 suggest that the
spectral method provides very accurate approximation for the elliptic optimal control
problems with a relatively small number of unknowns as the approximated solutions
are sufficiently regular.

Table 1: The values of discretization errors
N 5 7 9 11 13

‖u−uN‖L2 2.643E-01 6.982E-02 7.481E-03 6.953E-04 5.970E-05
‖y− yN‖H1 7.976E-03 2.879E-04 6.658E-06 1.429E-07 1.987E-08

6.2. Tow-dimensional case

By using [8], we can construct the discrete space for state and co-state and the
equivalent matrix equations for the algorithm 1. In this example, we consider the op-
timal control problem (6.1)–(6.2) on domain Ω = (−1,1)2 , associated with the exact
solutions

u = 2π2 sinπx1 sinπx2, p = 2sinπx1 sinπx2,

y = sinπx1 sinπx2, f = 0,

y0 = 5sinπx1 sinπx2.
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Figure 4: The errors of different N (N = 5,7,9,11,13) base on different norms

Let YN and UN be as follows

YN = span{φi(x1)φ j(x2)}N−2
i, j=0,

UN = span{Li(x1)Lj(x2); i, j = 0, · · · ,N}.
The approximation errors are presented in Table 2 and Figure 4. From the numer-

ical example, we can find that the numerical results demonstrate our theoretical results.

Table 2: The values of discretization errors in two-dimensional case
N 5 7 9 11 13

‖u−uN‖L2 3.489E-01 7.839E-02 9.853E-03 8.467E-04 4.931E-05
‖y− yN‖H1 9.572E-03 4.795E-04 1.097E-05 2.657E-07 3.515E-08

7. Conclusion and future work

In this paper, we consider a priori error estimate and a posteriori error estimates
for the Legendre Galerkin spectral element approximation of optimal control problems
governed by general elliptic equations. Under some reasonable assumptions, we obtain
a priori error estimate for both the state and the control approximation. Then we also
obtain a posteriori error estimates, where use the L2 -norm for estimating the control
approximation error, and the H1 -norm for the state and co-state approximation error.
Furthermore, we derive the L2−L2 error estimate for the control, the state and co-state
approximation in L2 -norm. To our best knowledge in the context of optimal control
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problems, these error estimates for the general elliptic optimal control problems are
new.

In future, we shall consider the Legendre Galerkin spectral method for nonlinear
parabolic optimal control problems. Furthermore, we shall consider a posteriori error
estimates and superconvergence of the Legendre Galerkin spectral element solutions
for nonlinear parabolic optimal control problems.

Acknowledgement. The authors express their thanks to the referees for their helpful
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