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STABILITY INEQUALITIES INVOLVING
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Abstract. In the centered surround system S(2) {P,Γ} , where Γ is an ellipse and its eccentricity
e ∈ [0,1), and P is one of the foci of Γ, we establish the following stability inequalities:√

4π
15

× e√
1− e2

� ‖̃F‖�
√

2× e√
1− e2

,

where ‖̃F‖ is the coefficient of variation of the gravity norm ‖F‖ and the coefficient
√

2 of
e/
√

1− e2 is the best constant. We also demonstrate the applications of the inequalities in the
temperature change research, and obtain an approximate temperature coefficient of variation
formula and an approximate temperature mean variance formula as follows:

T̃ ≈ 1.164752397618432 · · · × e√
1− e2

and
VarT ≈ 1.2897992775023233 · · · × e

(1− e2)3/2
×R−2

Γ .

1. Introduction

Stability is an essential attribute of any random variable [1, 2, 3, 4, 5, 6, 7, 8]. The
variance [2, 3, 4] and the coefficient of variation [5, 6] are important stability features of
a random variable, their research and applications are important topics in mathematics
and physics, especially the theory of satellite.

It is well known that there are eight planets in the solar system, i.e., Mercury,
Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune, which are the moons of the
Sun. In space science, we are concerned with the stability of the radiation energy [9, 10]
of the Sun since which will directly affect our daily life. Since the radiation energy is
related to the gravity [11] of the Sun and the temperature on a planet is dependent on
the radiation energy, so we are special concerned with the stability of the gravity norm
of the Sun.

In space science, we need to know that the law of temperature change on a planet,
especially the temperature coefficient of variation. Unfortunately, it is very difficult

Mathematics subject classification (2010): 26D15, 26E60, 51K05, 52A40, 62J10.
Keywords and phrases: Centered surround system, gravity norm, coefficient of variation, Newton for-

mula, Euler formula.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-14-66

1007

http://dx.doi.org/10.7153/jmi-2020-14-66


1008 J. WEN, T. HAN AND J. YUAN

that to measure the temperature coefficient of variation on a planet. Therefore, it is of
theoretical significance that to study the temperature coefficient of variation on a planet
by means of the mathematics.

At present, the research of the climate change on the Earth is a hot topic in the
world. Since the rain and the air humidity are related to the temperature and our daily
life is dependent on the rain and the air humidity, it is of application value that to study
the temperature coefficient of variation on the Earth.

In this paper, our motivation is to study the stability of the temperature on a planet.
To this end, we first introduce the basic concepts on the stability and the surround
system, as well as we illustrate the background and the significance of these concepts
in space science. Next, we establish several identities and inequalities involving the
centered surround system S(2){P,Γ} [12, 13, 14, 15, 16, 17]. Next, we prove a sta-
bility inequalities in the centered surround system S(2){P,Γ} . Finally, we demonstrate
the applications of our results in the temperature change research, and obtain an ap-
proximate temperature coefficient of variation formula and an approximate temperature
mean variance formula.

In recent years, Jiajin Wen etc. systematically studied the theory of surround sys-
tem and obtained some results which have the application value, see [12, 13, 14, 15, 16,
17]. One of the theoretical significance of this paper is that use the computer to deal
with some complex computational geometry problems, and the another is to establish
the geometric and physics theories on satellite motion. The application value of this
paper is to analyze the stability of the temperature on a planet, especially the Earth.
A large number of mathematics, physics and computer theories are used in this paper,
especially the computational geometry, numerical analysis and the inequality theories,
and the series [18] is the crucial one.

2. Basic concepts and main result

Let Ω ⊂ R
m be a measurable set where R � (−∞,∞), and let X ∈ Ω be a contin-

uous random variable and its probability density function p : Ω → (0,∞) be integral,
as well as let the function ϕ : Ω → (0,∞) be integral. Then the functionals

Eϕ �
∫

Ω
pϕ, Varϕ � Eϕ2− (Eϕ)2,Varϕ �

√
Varϕ and ϕ̃ � Varϕ

Eϕ
(1)

are the mathematical expectation, variance, mean variance and the coefficient of vari-
ation of the random variable ϕ (X) , respectively [3, 4, 5, 6, 18].

The coefficient of variation ϕ̃ is an important stability feature of the random vari-
able ϕ(X) . If the mean variance Varϕ is very small and the mathematical expectation
Eϕ is very large, then the coefficient of variation ϕ̃ is very small. Conversely, if the co-
efficient of variation ϕ̃ is very small, then the mean variance Varϕ is very small or the
mathematical expectation Eϕ is very large. This is the significance of the coefficient
of variation ϕ̃ in the analysis of variance.

The theory of satellite is important in space science. In [12, 13, 14, 15, 16, 17,
19], the authors systematically studied the theory of satellite and obtained some results
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which have the application background. But in space science, the centered surround
system S(2){P,Γ} [12, 13, 14, 15, 16, 17] has its special properties, that is, where the
Γ is an ellipse and P is one of the foci of the ellipse [19]. Therefore, it is necessary for
us to do further research on this centered surround system.

Let the particle A ∈ R
2 be regarded as the Earth, and let its motion trajectory be

the ellipse

Γ �
{

xi+ yj ∈ R
2 :

x2

a2 +
y2

b2 = 1, x,y ∈ R, a � b > 0

}
, (2)

where and in the future 0 = (0,0), i = (1,0), j = (0,1), and let the particle P � −ci ,
where c =

√
a2−b2 � 0, be regarded as the Sun which is a focus of the ellipse Γ, and

the eccentricity of the ellipse Γ is e � c/a ∈ [0,1). Then the set S(2){P,Γ} � {P,Γ} is
a centered surround system [12, 13, 14, 15, 16, 17].

Let the masses of the Earth A and the Sun P be m > 0 and M > 0, respectively.
Then, according to the law of universal gravitation, the gravity of the Earth A to the
Sun P is

F =
GmM (A−P)

‖A−P‖3 , (3)

where G is the gravitational constant in the solar system. Without loss of generality,
here we assume that GmM = 1.

We say that

‖F‖ =
1

‖A−P‖2 (4)

is the gravity norm of the gravity F. When the Earth A traverse one cycle along its
orbit Γ , the mean of the gravity norm ‖F‖ is

‖F‖ =
1
|Γ|
∮

Γ

1
‖A−P‖2 , (5)

where the |Γ| � ∮
Γ ds is the length of the ellipse Γ.

In [3, 15, 20], the authors extended the classic gravity F and defined the λ -gravity
as follows:

Fλ =
A−P

‖A−P‖λ+1
, (6)

where λ ∈ (0,∞), F2 = F, and the ‖Fλ‖ = ‖A−P‖−λ is the λ -gravity norm of the
λ -gravity Fλ . They also defined the mean λ -gravity norm of the λ -gravity Fλ as
follows:

‖Fλ‖ � 1
|Γ|
∮

Γ

1

‖A−P‖λ , (7)

where

‖F‖ � ‖F2‖ =
1
|Γ|
∮

Γ

1
‖A−P‖2 (8)

is the mean gravity norm of the gravity F.
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In the solar system, the gravity of the particle A to the another particle P is F ,
while for other galaxy in the universe, the gravity may be Fλ where λ ∈ (0,2)∪
(2,+∞). For example, in the black hole of the universe, we conjecture that the gravity
is Fλ [15], where λ ∈ (0,2) is very small. This is the significance of the λ -gravity Fλ
in space science.

In [3], the authors defined the planet system in an abstract Euclidean space [21, 22]
and the λ -gravity function in the planet system, and obtained some results which have
the application background. In [15], the authors obtained the following isoperimetric
inequality [23, 24]:

‖Fλ‖ �
(

2π
|Γ|
)λ

, ∀ λ � 2, (9)

where the Γ is a smooth and convex Jordan closed curve in R
2 [25, 26]. Equality in

(9) holds if and only if Γ is a circle and P is the center of the circle.
In [16], the authors improved and expanded the inequality (9), and obtained the

following isoperimetric inequalities:(
1+

5
2π

× e2

1− e2

)(
2π
|Γ|
)2

� ‖F‖ �
(

1+
16−π

4π
× e2

1− e2

)(
2π
|Γ|
)2

, (10)

where Γ is an ellipse and P is one of the foci of the ellipse, and e ∈ [0,1). Equalities
in (10) hold if and only if Γ is a circle and P is the center of the circle.

In [17], the authors proved that : For the centered 2-surround system S(2){P,Γ, l} ,
we have the following isoperimetric inequalities:

exp
(

1
|Γ|
∮

Γ logrP

)
exp
(

1
|Γ|
∮

Γ logrP

) � 1
2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|
)]

(11)

and(
1
|Γ|
∮

Γ r2
P

)1/2

1
|Γ|
∮

Γ rP
� 1

2

[
sec

lπ
|Γ| + cot

lπ
|Γ| log

(
tan

lπ
|Γ| + sec

lπ
|Γ|
)]

when 0 < ∠APA+ � τ,

(12)
where τ = 2.49342812654089 . . ., and τ/2 is the unique real root of the following
equation:

d2[secθ + cotθ log(tanθ + secθ )]
dθ 2 = 0, θ ∈

(
0,

π
2

)
, (13)

and Γ is a smooth and convex Jordan closed curve in R
2 . Equalities in (11) and (12)

hold if and only if Γ is a circle and P is the center of the circle.
In the centered surround system S(2){P,Γ} , we may also think that the ‖F‖ as a

random variable, which follows a uniform distribution, that is , the probability density
function of the ‖F‖ is p : Γ → (0,∞), p(A) = 1/|Γ|. Then, by (1), the mathematical
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expectation E‖F‖ , variance Var‖F‖ , mean variance Var‖F‖ and the coefficient of

variation ‖̃F‖ of the random variable ‖F‖ are

E‖F‖ = ‖F‖, Var‖F‖ = ‖F4‖−
(
‖F‖

)2
, Var‖F‖ =

√
Var‖F‖ and ‖̃F‖ =

Var‖F‖
E‖F‖ ,

(14)
respectively. This is the significance of the λ -gravity Fλ in the analysis of variance.

In general, the coefficient of variation ‖̃F‖ can not be expressed by the elementary
functions since which involves the elliptic integral [27]. In order to facilitate the appli-
cations, in this paper, we will find the sharp lower and upper bounds of the coefficient
of variation ‖̃F‖.

Our main result is as follows.

THEOREM 2.1. (Stability inequalities) Let S(2){P,Γ} be a centered surround
system, where Γ is an ellipse and its eccentricity e ∈ [0,1), and P is one of the foci of
Γ . Then we have the following inequalities:√

4π
15

× e√
1− e2

� ‖̃F‖ �
√

2× e√
1− e2

, (15)

where the coefficient
√

2 of e/
√

1− e2 in (15) is the best constant.

In Section 5, we will display the applications of Theorem 2.1 in space science.

3. Preliminaries

In order to prove Theorem 2.1, we need to introduce some preparatory knowledge
as follows.

For the ellipse Γ in (2), we say that

RΓ �
√

a|Γ|
2π

(16)

is a quasi-radius of the ellipse Γ.
We remark here that, by the isoperimetric inequalities [15, 23, 24]:

πab = AreaD(Γ) � |Γ|2
4π

and the p -mean inequality [15, 20, 28, 29, 30, 31, 32, 33]:

|Γ|
2π

=
1
2π

∫ 2π

0

√
a2 sin2 θ +b2 cos2 θdθ

�

√
1
2π

∫ 2π

0

(
a2 sin2 θ +b2 cos2 θ

)
dθ =

√
a2 +b2

2
,
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we have

b �
√

a
√

ab � RΓ �

√
a

√
a2 +b2

2
� a. (17)

Equations in (17) hold if and on if a = b . Therefore, the quasi-radius RΓ is a mean of
the positive real a and b .

In order to prove Theorems 2.1, we need to establish several identities and inequal-
ities as follows.

According to the theory of mathematical analysis, we have the following Lemmas
3.1 and 3.2.

LEMMA 3.1. (See Lemma 1 in [16]) Let f : R → R be a periodic function with
the period T > 0. Then we have∫ T+t

t
f (x)dx =

∫ T

0
f (x)dx, ∀t ∈ R. (18)

LEMMA 3.2. (See Lemma 2 in [16]) For any continuous function g : [0,1]→ R,
we have

1
2π

∫ 2π

0
g
(
cos2 θ

)
dθ =

2
π

∫ π
2

0
g
(
cos2 θ

)
dθ . (19)

LEMMA 3.3. (Mean gravity norm formula) Under the hypotheses in Theorem
2.1, we have

‖F‖ = R−2
Γ

[
2
π

∫ π
2

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ

]
. (20)

Proof. Since

Γ = {xi+ yj : x = acosθ , y = bsinθ , θ ∈ [0,2π ]} ,

we have

‖A−P‖ =
√

(acosθ + c)2 +(bsinθ )2

=
√

a2 cos2 θ +2accosθ + c2 +b2 sin2 θ

=
√

a2 cos2 θ +2accosθ + c2 +(a2− c2)sin2 θ

=
√

a2 +2accosθ + c2 cos2 θ = a+ ccosθ
= a(1+ ecosθ ),

that is,
‖A−P‖= a(1+ ecosθ ). (21)
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Since

ds
dθ

=

√(
dx
dθ

)2

+
(

dy
dθ

)2

= a
√

1− e2 cos2 θ , (22)

by (21) and (22), we have

‖F‖ =
1
|Γ|
∮

Γ

1
‖A−P‖2 � 1

|Γ|
∮

Γ

1
‖A−P‖2 ds

=
1
|Γ|
∫ 2π

0

1

a2 (1+ ecosθ )2

√(
dx
dθ

)2

+
(

dy
dθ

)2

dθ

=
1
|Γ|
∫ 2π

0

a
√

1− e2 cos2 θ
a2 (1+ ecosθ )2 dθ

=
1

a|Γ|
∫ 2π

0

√
1− ecosθ

(1+ ecosθ )3/2
dθ ,

that is,

‖F‖ =
1

a|Γ|
∫ 2π

0

√
1− ecosθ

(1+ ecosθ )3/2
dθ . (23)

In (23), set θ = ϑ −π . Since the cosine function cosx is a periodic function with
the period 2π , by Lemma 3.1, we have

‖F‖ =
1

a|Γ|
∫ 2π

0

√
1− ecosθ

(1+ ecosθ )3/2
dθ

=
1

a|Γ|
∫ 2π+π

π

√
1− ecos(ϑ −π)

[1+ ecos(ϑ −π)]3/2
d(ϑ −π)

=
1

a|Γ|
∫ 2π+π

π

√
1+ ecosϑ

(1− ecosϑ)3/2
dϑ

=
1

a|Γ|
∫ 2π

0

√
1+ ecosϑ

(1− ecosϑ)3/2
dϑ

=
1

a|Γ|
∫ 2π

0

√
1+ ecosθ

(1− ecosθ )3/2
dθ ,

that is,

‖F‖ =
1

a|Γ|
∫ 2π

0

√
1+ ecosθ

(1− ecosθ )3/2
dθ . (24)



1014 J. WEN, T. HAN AND J. YUAN

By (23) and (24), we get

‖F‖ =
1

a|Γ|
∫ 2π

0

1
2

[ √
1− ecosθ

(1+ ecosθ )3/2
+

√
1+ ecosθ

(1− ecosθ )3/2

]
dθ

=
1

a|Γ|
∫ 2π

0

1
2

(1− ecosθ )2 +(1+ ecosθ )2

(1+ ecosθ )3/2 (1− ecosθ )3/2
dθ

=
1

a|Γ|
∫ 2π

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ ,

that is,

‖F‖ =
1

a|Γ|
∫ 2π

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ . (25)

On the other hand, by (16) and (22), we have

|Γ| = a
∫ 2π

0

√
1− e2 cos2 θdθ ⇔

(
2π
|Γ|
)2( 2

π

∫ π
2

0

√
1− e2 cos2 θdθ

)
= R−2

Γ . (26)

According to (25), (26) and Lemma 3.2, we get

‖F‖ =
1

a|Γ|
∫ 2π

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ

= R−2
Γ

[
1
2π

∫ 2π

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ

]

= R−2
Γ

[
2
π

∫ π
2

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ

]
.

That is, formula (20) is proved. The proof of Lemma 3.3 is completed. �

LEMMA 3.4. (Mean 4-gravity norm formula) Under the hypotheses in Theorem
2.1, we have

‖F4‖ = R−4
Γ

(
2
π

∫ π
2

0

√
1− e2 cos2 θdθ

)[
2
π

∫ π
2

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

]
. (27)

Proof. By (21) and (22), we have

‖F4‖ =
1
|Γ|
∮

Γ

1
‖A−P‖4 ds

=
1
|Γ|
∫ 2π

0

1

a4 (1+ ecosθ )4

√(
dx
dθ

)2

+
(

dy
dθ

)2

dθ
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=
1
|Γ|
∫ 2π

0

a
√

1− e2 cos2 θ
a4 (1+ ecosθ )4 dθ

=
1

a3|Γ|
∫ 2π

0

√
1− ecosθ

(1+ ecosθ )7/2
dθ ,

that is,

‖F4‖ =
1

a3|Γ|
∫ 2π

0

√
1− ecosθ

(1+ ecosθ )7/2
dθ . (28)

In (28), set θ = ϑ −π . Since the cosine function cosx is a periodic function with
the period 2π , by Lemma 3.1, we have

‖F4‖ =
1

a|Γ|
∫ 2π

0

√
1− ecosθ

(1+ ecosθ )3/2
dθ

=
1

a3|Γ|
∫ 2π+π

π

√
1− ecos(ϑ −π)

[1+ ecos(ϑ −π)]7/2
d(ϑ −π)

=
1

a3|Γ|
∫ 2π+π

π

√
1+ ecosϑ

(1− ecosϑ)7/2
dϑ

=
1

a3|Γ|
∫ 2π

0

√
1+ ecosθ

(1− ecosθ )7/2
dθ ,

that is,

‖F4‖ =
1

a3|Γ|
∫ 2π

0

√
1+ ecosθ

(1− ecosθ )7/2
dθ . (29)

By (28) and (29), we get

‖F4‖ =
1

a3|Γ|
∫ 2π

0

1
2

[ √
1− ecosθ

(1+ ecosθ )7/2
+

√
1+ ecosθ

(1− ecosθ )7/2

]
dθ

=
1

a3|Γ|
∫ 2π

0

1
2

(1− ecosθ )4 +(1+ ecosθ )4

(1+ ecosθ )7/2 (1− ecosθ )7/2
dθ

=
1

a3|Γ|
∫ 2π

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ ,

that is,

‖F4‖ =
1

a3|Γ|
∫ 2π

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ . (30)
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According to (26), (30) and Lemma 3.2, we get

‖F4‖ =
1

a3|Γ|
∫ 2π

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

=
1

|Γ|4
(∫ 2π

0

√
1− e2 cos2 θdθ

)3 ∫ 2π

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

=
(

2π
|Γ|
)4( 1

2π

∫ 2π

0

√
1− e2 cos2 θdθ

)3
[

1
2π

∫ 2π

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

]

=
(

2π
|Γ|
)4( 2

π

∫ π
2

0

√
1− e2 cos2 θdθ

)3
[

2
π

∫ π
2

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

]

= R−4
Γ

(
2
π

∫ π
2

0

√
1− e2 cos2 θdθ

)[
2
π

∫ π
2

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

]
.

That is, formula (27) is proved. This ends the proof of Lemma 3.4. �

According to the theory of mathematical analysis, we have the following Lemma
3.5.

LEMMA 3.5. (See Lemma 5 in [16]) For any positive integer n, we have

2
π

∫ π
2

0
cos2n θdθ =

(2n−1)!!
(2n)!!

. (31)

where

(2n)!! = 2×4×6×·· ·× (2n) and (2n−1)!! = 1×3×5×·· ·× (2n−1). (32)

LEMMA 3.6. For any e ∈ [0,1), we have

2
π

∫ π
2

0

√
1− e2 cos2 θdθ = 1− e2

∞

∑
n=1

un

4n2−1
e2(n−1), (33)

where the sequence {un}∞
n=0 is defined as follows:

{un}∞
n=0 : u0 � 1,un �

n

∏
k=1

(
1− 1

4k2

)
=

(2n+1)!!(2n−1)!!
[(2n)!!]2

, ∀n � 1. (34)

Proof. By 0 � e < 1, 0 � e2 cos2 θ < 1 and the Newton formula

(1+ x)μ = 1+
∞

∑
n=1

1
n!

n

∏
k=1

(μ +1− k)xn, ∀x ∈ (−1,1), (35)
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we get √
1− e2 cos2 θ =

(
1− e2 cos2 θ

)1/2

= 1+
∞

∑
n=1

1
n!

n

∏
k=1

(
1
2

+1− k

)(−e2 cos2 θ
)n

= 1− e2
∞

∑
n=1

(2n−3)!!
(2n)!!

e2(n−1) cos2n θ

= 1− e2
∞

∑
n=1

(2n−1)!!
(2n−1)(2n)!!

e2(n−1) cos2n θ ,

that is √
1− e2 cos2 θ = 1− e2

∞

∑
n=1

(2n−1)!!
(2n−1)(2n)!!

e2(n−1) cos2n θ . (36)

By (36) and Lemma 3.5, we get

2
π

∫ π
2

0

√
1− e2 cos2 θdθ = 1− e2

∞

∑
n=1

(2n−1)!!
(2n−1)(2n)!!

e2(n−1)
(

2
π

∫ π
2

0
cos2n θdθ

)
= 1− e2

∞

∑
n=1

(2n−1)!!
(2n−1)(2n)!!

e2(n−1) (2n−1)!!
(2n)!!

= 1− e2
∞

∑
n=1

1
(2n−1)(2n+1)

(2n+1)!!(2n−1)!!
[(2n)!!]2

e2(n−1)

= 1− e2
∞

∑
n=1

un

4n2−1
e2(n−1).

That is, (33) is proved. The proof of Lemma 3.6 is completed. �

LEMMA 3.7. For any e ∈ [0,1), we have

2
π

∫ π
2

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ = 1+
∞

∑
n=1

4n+1
2n+1

une2n, (37)

where the sequence {un}∞
n=0 is defined by (34) .

Proof. By the Newton formula (35), we get

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

= 2
(
1− e2 cos2 θ

)−3/2− (1− e2 cos2 θ
)−1/2

= 1+2
∞

∑
n=1

1
n!

n

∏
k=1

(
−3

2
+1− k

)(−e2 cos2 θ
)n

−
∞

∑
n=1

1
n!

n

∏
k=1

(
−1

2
+1− k

)(−e2 cos2 θ
)n
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= 1+2e2
∞

∑
n=1

(2n+1)!!
(2n)!!

e2(n−1) cos2n θ

−e2
∞

∑
n=1

(2n−1)!!
(2n)!!

e2(n−1) cos2n θ

= 1+ e2
∞

∑
n=1

2(2n+1)!!− (2n−1)!!
(2n)!!

e2(n−1) cos2n θ

= 1+ e2
∞

∑
n=1

2(2n+1)(2n−1)!!− (2n−1)!!
(2n)!!

e2(n−1) cos2n θ

= 1+ e2
∞

∑
n=1

(4n+1)(2n−1)!!
(2n)!!

e2(n−1) cos2n θ ,

that is

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

= 1+ e2
∞

∑
n=1

(4n+1)(2n−1)!!
(2n)!!

e2(n−1) cos2n θ . (38)

By (38) and Lemma 3.5, we get

2
π

∫ π
2

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ = 1+ e2
∞

∑
n=1

(4n+1)(2n−1)!!
(2n)!!

e2(n−1)
(

2
π

∫ π
2

0
cos2n θdθ

)
= 1+ e2

∞

∑
n=1

(4n+1)(2n−1)!!
(2n)!!

e2(n−1) (2n−1)!!
(2n)!!

= 1+ e2
∞

∑
n=1

4n+1
2n+1

(2n+1)
[
(2n−1)!!

(2n)!!

]2

e2(n−1)

= 1+ e2
∞

∑
n=1

4n+1
2n+1

(2n+1)!!(2n−1)!!
[(2n)!!]2

e2(n−1)

= 1+ e2
∞

∑
n=1

4n+1
2n+1

une2(n−1).

That is, the identity (37) holds. This ends the proof of Lemma 3.7. �

LEMMA 3.8. For any e ∈ [0,1), we have

2
π

∫ π
2

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ = 1+
∞

∑
n=1

[
1+

16
15

n(2n+3)
]
une2n, (39)

where the sequence {un}∞
n=0 is defined by (34) .
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Proof. By the Newton formula (35), we get

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

=

(
1− e2 cos2 θ

)2 +8
(
e2 cos2 θ −1

)
+8

(1− e2 cos2 θ )7/2

=
(
1− e2 cos2 θ

)−3/2−8
(
1− e2 cos2 θ

)−5/2
+8
(
1− e2 cos2 θ

)−7/2

= 1+
∞

∑
n=1

1
n!

n

∏
k=1

(
−3

2
+1− k

)(−e2 cos2 θ
)n

−8

[
1+

∞

∑
n=1

1
n!

n

∏
k=1

(
−5

2
+1− k

)(−e2 cos2 θ
)n]

+8

[
1+

∞

∑
n=1

1
n!

n

∏
k=1

(
−7

2
+1− k

)(−e2 cos2 θ
)n]

= 1+
∞

∑
n=1

1
2nn!

n

∏
k=1

(2k+1)
(
e2 cos2 θ

)n−8
∞

∑
n=1

1
2nn!

n

∏
k=1

(2k+3)
(
e2 cos2 θ

)n
+8

∞

∑
n=1

1
2nn!

n

∏
k=1

(2k+5)
(
e2 cos2 θ

)n
= 1+

∞

∑
n=1

(2n+1)!!
(2n)!!

(
e2 cos2 θ

)n−8
∞

∑
n=1

2n+3
3!!

(2n+1)!!
(2n)!!

(
e2 cos2 θ

)n
+8

∞

∑
n=1

(2n+3)(2n+5)
5!!

(2n+1)!!
(2n)!!

(
e2 cos2 θ

)n
= 1+

∞

∑
n=1

[
1− 8(2n+3)

3!!
+

8(2n+3)(2n+5)
5!!

]
(2n+1)!!

(2n)!!
(
e2 cos2 θ

)n
= 1+ e2

∞

∑
n=1

[
1+

16
15

n(2n+3)
]

(2n+1)!!
(2n)!!

cos2n θe2(n−1),

that is

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

= 1+ e2
∞

∑
n=1

[
1+

16
15

n(2n+3)
]

(2n+1)!!
(2n)!!

cos2n θe2(n−1).

(40)
By (40) and Lemma 3.5, we get

2
π

∫ π
2

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

= 1+ e2
∞

∑
n=1

[
1+

16
15

n(2n+3)
]

(2n+1)!!
(2n)!!

(
2
π

∫ π
2

0
cos2n θdθ

)
e2(n−1)
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= 1+ e2
∞

∑
n=1

[
1+

16
15

n(2n+3)
]

(2n+1)!!(2n−1)!!
[(2n)!!]2

e2(n−1)

= 1+ e2
∞

∑
n=1

[
1+

16
15

n(2n+3)
]
une2(n−1).

That is, the identity (39) is proved. The proof of Lemma 3.8 is completed. �

LEMMA 3.9. For any e ∈ [0,1), we have

Var‖F‖ = R−4
Γ

∞

∑
n=1

e2n ∑
i+ j=n, i, j�0

wi, juiu j, (41)

where the sequence {un}∞
n=0 is defined by (34) , and

wi, j � − 1
4i2−1

[
1+

16
15

j(2 j +3)
]
− 4i+1

2i+1
× 4 j +1

2 j +1
. (42)

Proof. Set

an = − un

4n2−1
, bn =

[
1+

16
15

n(2n+3)
]
un, cn =

4n+1
2n+1

un, ∀n � 0. (43)

Then a0 = b0 = c0 = 1. By Lemmas 3.3, 3.4, 3.6, 3.7 and 3.8, we have

Var‖F‖ = R−4
Γ ϖ(e), (44)

where

ϖ(e) =
(

2
π

∫ π
2

0

√
1− e2 cos2 θdθ

)[
2
π

∫ π
2

0

1+6e2 cos2 θ + e4 cos4 θ
(1− e2 cos2 θ )7/2

dθ

]

−
[

2
π

∫ π
2

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ

]2

=

(
∞

∑
n=0

ane2n

)(
∞

∑
n=0

bne2n

)
−
(

∞

∑
n=0

cne2n

)2

=
∞

∑
n=0

e2n ∑
i+ j=n, i, j�0

aib j −
∞

∑
n=0

e2n ∑
i+ j=n, i, j�0

cic j

=
∞

∑
n=0

e2n ∑
i+ j=n, i, j�0

(aib j − cic j)

=
∞

∑
n=0

e2n ∑
i+ j=n, i, j�0

{
− 1

4i2−1

[
1+

16
15

j(2 j +3)
]
− 4i+1

2i+1
× 4 j +1

2 j +1

}
uiu j

=
∞

∑
n=1

e2n ∑
i+ j=n, i, j�0

{
− 1

4i2−1

[
1+

16
15

j(2 j +3)
]
− 4i+1

2i+1
× 4 j +1

2 j +1

}
uiu j
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=
∞

∑
n=1

e2n ∑
i+ j=n, i, j�0

wi, juiu j,

that is,

ϖ(e) =
∞

∑
n=1

e2n ∑
i+ j=n, i, j�0

wi, juiu j. (45)

By (44) and (45), we see that the identity (41) holds. This ends the proof of Lemma
3.9. �

LEMMA 3.10. For any positive integer n, we have

2
π

< un <
4
π
× 2n+1

4n+1
, (46)

where the sequence {un}∞
n=0 is defined by (34) .

Proof. Recall the following famous Euler formula:

sinx = x
∞

∏
n=1

(
1− x2

π2n2

)
, ∀x ∈ R. (47)

In (47), set x = π/2, we get

lim
n→∞

un = lim
n→∞

n

∏
k=1

(
1− 1

4k2

)
=

∞

∏
n=1

(
1− 1

4n2

)
=

2
π

. (48)

Since the sequence {un}∞
n=1 is strictly decreasing, by (48), we get

un > lim
n→∞

un =
2
π

.

This proves the first inequality in (46).
We define a new sequence {u∗n}∞

n=1 as follows:

{u∗n}∞
n=1 : u∗n � 4n+1

2n+1
un. (49)

By (48), we have

lim
n→∞

u∗n =
4
π

. (50)

By means of the command Expand[ ] of the Mathematica software, we have

u∗n+1

u∗n
=

4n+5
2n+3

× 2n+1
4n+1

[
1− 1

4(n+1)2

]
=

16n3 +36n2 +24n+5
16n3 +36n2 +24n+4

> 1.

Hence the sequence {u∗n}∞
n=1 is strictly increasing. Therefore, by (50), we have

5
4

= u∗1 � u∗n =
4n+1
2n+1

un < lim
n→∞

u∗n =
4
π
⇒ un <

4
π
× 2n+1

4n+1
. (51)

That is, the second inequalities in (46) is also proved. This ends the proof of Lemma
3.10. �
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LEMMA 3.11. For any positive integer n, we have

2
π

un−1 < uiu j � un, ∀i, j : i+ j = n and i, j � 0, (52)

where the sequence {un}∞
n=0 is defined by (34) .

Proof. By Lemma 3.10, inequalities (52) is true when n = 1. In what follows we
assume that n � 2.

When i = 0 or i = n , we have

un = uiu j =
(

1− 1
4n2

)
un−1 �

(
1− 1

4×22

)
un−1 =

15
16

un−1 >
2
π

un−1.

Hence inequalities (52) holds. Now we assume that 1 � i � n−1.
Since the sequence {ui}∞

i=0 is strictly decreasing, by Lemma 3.10, we have

uiu j = un−iui >
2
π

ui � 2
π

un−1.

Hence the first inequalities in (52) holds.
Now we prove the second inequalities in (52) also holds as follows.
Since uiu j = u jui, without loss of generality, we can assume that

1 � i � j ⇔ 1 � i � n
2
⇔ 1 � i �

[n
2

]
,

where the [◦] is the Gauss function [21].

We define a new sequence {vi}[n/2]
i=0 as follows:

{vi}[n/2]
i=0 : v0 � un, vi � uiu j = uiun−i, ∀i � 1.

Then
1 � i �

[n
2

]
⇒ 1 � i � n

2
⇒ 0 < 2i < 2(n− i+1),

and

vi

vi−1
=

uiun−i

ui−1un−i+1
=

1−1/(2i)2

1−1/[2(n− i+1)]2
< 1, ∀i : 1 � i �

[n
2

]
.

Hence the sequence {vi}[n/2]
i=1 is strictly decreasing. So we get

uiu j = vi � v1 = u1un−1 =
3
4

(
1− 1

4n2

)−1

un <
3
4

(
1− 1

4

)−1

un = un, ∀i : 1 � i �
[n
2

]
.

That is, the second inequalities in (52) also holds. This ends the proof of Lemma
3.11. �
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LEMMA 3.12. Let n be a positive integer. Then we have

lim
n→∞

(
n

∑
i=1

1
2i−1

− 1
2

logn

)
= η , (53)

and

η +
1
2

logn <
n

∑
i=1

1
2i−1

� 1+
1
2

logn, ∀n � 1, (54)

where

η � 1
2

γ + log2 = 0.9817550130107103 · · ·, (55)

and

γ � lim
n→∞

(
n

∑
i=1

1
i
− logn

)
= 0.5772156649015301 · · ·

is the Euler’s constant.

Proof. We define an auxiliary sequence as follows:

{xn}∞
n=1 : xn �

n

∑
i=1

1
2i−1

− 1
2

logn. (56)

Then

xn+1− xn =
1

2n+1
− 1

2
[log(n+1)− logn] � ϕ(n),

where

ϕ : [1,∞) → R, ϕ(t) � 1
2t +1

− 1
2

[log(t +1)− logt] .

Since

dϕ
dt

= − 2
(2t +1)2 −

1
2

(
1

t +1
− 1

t

)
= − 2

(2t +1)2 +
1

2t(t +1)

=
1

2t(t +1)(2t +1)2 > 0, ∀t � 1,

the function ϕ : [1,∞) → R is strictly increasing. Hence

xn+1− xn = ϕ(n) < lim
n→∞

ϕ(n) = 0, ∀n � 1.

That is, the sequence {xn}∞
n=1 is strictly descending.

Since the sequence

{yn}∞
n=1 : yn �

n

∑
i=1

1
i
− logn
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is convergent, and
γ � lim

n→∞
yn = 0.5772156649015301 · · ·,

where the γ is the Euler’s constant, we see that there exists a constant c such that

yn � c, ∀n � 1.

Hence

xn =
n

∑
i=1

1
2i−1

− 1
2

logn >
n

∑
i=1

1
2i

− 1
2

logn =
1
2
yn � 1

2
c, ∀n � 1.

That is, the sequence {xn}∞
n=1 has a lower bound c/2.

Based on the above analysis, we see that the sequence {xn}∞
n=1 is convergent.

Since

lim
n→∞

xn = lim
n→∞

(
n

∑
i=1

1
2i−1

− 1
2

logn

)

= lim
n→∞

(
2n

∑
i=1

1
i
−

n

∑
i=1

1
2i

− 1
2

logn

)

= lim
n→∞

[
y2n + log2n− 1

2
(yn + logn)− 1

2
logn

]
= lim

n→∞

(
y2n− 1

2
yn + log2

)
= γ − 1

2
γ + log2

=
1
2

γ + log2,

we get

lim
n→∞

xn =
1
2

γ + log2 = η ,

and

η = lim
n→∞

xn < xn =
n

∑
i=1

1
2i−1

− 1
2

logn � x1 = 1, ∀n � 1.

That is, (53) and (54) hold. This ends the proof of Lemma 3.12. �
The following calculations are based on the Mathematica software since which are

very complex.

LEMMA 3.13. For any positive integer n, we have

∑
i+ j=n, i, j�1

wi, j > −1
2
− 20n

3
− 16n2

15
+

1
1+n

+
1

2(−1+2n)

+
(

28
5

+
32n
15

− 1
n+1

)(
η +

1
2

logn

)
, (57)
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and

∑
i+ j=n, i, j�1

wi, j � −1
2
− 20n

3
− 16n2

15
+

1
1+n

+
1

2(−1+2n)

+
(

28
5

+
32n
15

− 1
n+1

)(
1+

1
2

logn

)
, (58)

where the wi, j is defined by (42) and the η is defined by (55) .

Proof. From j = n− i, and

wi, j = − 1
4i2−1

[
1+

16
15

j(2 j +3)
]
− 4i+1

2i+1
× 4 j +1

2 j +1

= − 1
(2i+1)(2i−1)

[
1+

16
15

(n− i)(2n+3−2i)
]
− 4i+1

2i+1
× 4n+1−4i

2n+1−2i
,

we see that there exist functions A(n), B(n), C(n), D(n) such that

wi, j ≡ A(n)+
B(n)
2i−1

+
C(n)
2i+1

+
D(n)

2n+1−2i
, ∀i ∈ R. (59)

By means of the command Limit[ ] of the Mathematica software, we get

A(n) = lim
i→∞

wi, j = −68
15

, (60)

B(n) = lim
i→ 1

2

(2i−1)wi, j =
1
30

(1−16n−32n2), (61)

C(n) = lim
i→− 1

2

(2i+1)wi, j =
107
30

+
8n
3

+
16n2

15
− 1

2(n+1)
, (62)

D(n) = lim
i→n+ 1

2

(2n+1−2i)wi, j = 2− 1
2(n+1)

. (63)

Hence

C(n)+D(n) =
167
30

+
8n
3

+
16n2

15
− 1

n+1
, (64)

and

B(n)+C(n)+D(n) =
28
5

+
32n
15

− 1
n+1

. (65)

By (59)–(65) and the command Expand[ ] of the Mathematica software, we get

∑
i+ j=n, i, j�1

wi, j

=
n−1

∑
i=1

[
A(n)+

B(n)
2i−1

+
C(n)
2i+1

+
D(n)

2n+1−2i

]
= (n−1)A(n)+B(n)

n−1

∑
i=1

1
2i−1

+C(n)
n−1

∑
i=1

1
2i+1

+D(n)
n−1

∑
i=1

1
2n+1−2i
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= (n−1)A(n)+B(n)
n−1

∑
i=1

1
2i−1

+C(n)
n−1

∑
i=1

1
2i+1

+D(n)
n−1

∑
i=1

1
2i+1

= (n−1)A(n)+B(n)
n−1

∑
i=1

1
2i−1

+[C(n)+D(n)]
n−1

∑
i=1

1
2i+1

= (n−1)A(n)+B(n)

(
n

∑
i=1

1
2i−1

− 1
2n−1

)
+[C(n)+D(n)]

(
n

∑
i=1

1
2i−1

−1

)

= (n−1)A(n)− B(n)
2n−1

− [C(n)+D(n)]+ [B(n)+C(n)+D(n)]
n

∑
i=1

1
2i−1

= −68(n−1)
15

− 1−16n−32n2

30(2n−1)
−
(

167
30

+
8n
3

+
16n2

15
− 1

n+1

)
+
(

28
5

+
32n
15

− 1
n+1

) n

∑
i=1

1
2i−1

= −1
2
− 20n

3
− 16n2

15
+

1
1+n

+
1

2(−1+2n)
+
(

28
5

+
32n
15

− 1
n+1

) n

∑
i=1

1
2i−1

,

that is,

∑
i+ j=n, i, j�1

wi, j = −1
2
− 20n

3
− 16n2

15
+

1
1+n

+
1

2(−1+2n)

+
(

28
5

+
32n
15

− 1
n+1

) n

∑
i=1

1
2i−1

. (66)

We remark here that, if n = 1, then ∑i+ j=n, i, j�1 wi, j � 0, and (66) also holds.
Since

28
5

+
32n
15

− 1
n+1

> 0, ∀n � 1,

by (66) and Lemma 3.12, we see that inequalities (57) and (58) hold. This ends the
proof of Lemma 3.13. �

LEMMA 3.14. For any positive integer n, we have

32n(n+1)
15π

< ∑
i+ j=n, i, j�0

wi, juiu j � n(n+1), (67)

where the wi, j is defined by (42) and the sequence {un}∞
n=0 is defined by (34) .

Proof. From

wi, j = − 1
4i2−1

[
1+

16
15

j(2 j +3)
]
− 4i+1

2i+1
× 4 j +1

2 j +1
,

we see that
1 � i, j � n−1, n � 2 ⇒ wi, j < 0. (68)
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By Lemma 3.11 and (68), we have

un ∑
i+ j=n, i, j�1

wi, j � ∑
i+ j=n, i, j�1

wi, juiu j � 2
π

un−1 ∑
i+ j=n, i, j�1

wi, j, ∀n � 1. (69)

We remark here that, if n = 1, then inequalities (69) can be rewritten as 0 � 0 � 0,
which also hold.

Since

w0,n +wn,0 = 1+
16
15

n(2n+3)− 4n+1
2n+1

− 1
4n2−1

− 4n+1
2n+1

= −3+
16n
5

+
32n2

15
− 1

2(2n−1)
+

5
2(2n+1)

> 0, ∀n � 1,

we have,

w0,n +wn,0 = −3+
16n
5

+
32n2

15
− 1

2(2n−1)
+

5
2(2n+1)

> 0, ∀n � 1. (70)

By (69), we have

∑
i+ j=n, i, j�0

wi, juiu j = (w0,n +wn,0)u0un + ∑
i+ j=n, i, j�1

wi, juiu j

� (w0,n +wn,0)un +un ∑
i+ j=n, i, j�1

wi, j

= un ∑
i+ j=n, i, j�0

wi, j,

that is

∑
i+ j=n, i, j�0

wi, juiu j � un ∑
i+ j=n, i, j�0

wi, j, ∀n � 1. (71)

By (54), (70) and the command Expand[ ] of the Mathematica software, we have

∑
i+ j=n, i, j�0

wi, j = w0,n +wn,0 + ∑
i+ j=n, i, j�1

wi, j

� −3+
16n
5

+
32n2

15
− 1

2(2n−1)
+

5
2(2n+1)

−1
2
− 20n

3
− 16n2

15
+

1
1+n

+
1

2(−1+2n)

+
(

28
5

+
32n
15

− 1
n+1

)(
η +

1
2

logn

)
= −7

2
− 52n

15
+

16n2

15
+

1
1+n

+
5

2(1+2n)

+
(

28
5

+
32n
15

− 1
n+1

)(
η +

1
2

logn

)
,
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that is,

∑
i+ j=n, i, j�0

wi, j � ϕ1(n),∀n � 1. (72)

where

ϕ1(t) � −7
2
− 52t

15
+

16t2

15
+

1
1+ t

+
5

2(1+2t)
+
(

28
5

+
32t
15

− 1
t +1

)(
η +

1
2

logt

)
.

We define an auxiliary function ϕ2 as follows:

ϕ2 : [1,∞) → R, ϕ2(t) � ϕ1(t)
t(t +1)

.

By means of the command Plot[ ] of the Mathematica software, we know that the
graph of the function ϕ2(t), t ∈ [1,100], is depicted in Figure 1, and the graph of the
function ϕ2(t−1), t ∈ (0,1], is depicted in Figure 2.

Figure 1: The graph of the function ϕ2(t), t ∈ [1,100].

Figure 2: The graph of the function ϕ2(t−1), t ∈ (0,1].
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By means of the command Solve[ ] of the Mathematica software, we know that
the equation

dϕ2(t)
dt

= 0, t ∈ [1,∞)

has no any real roots, and the function ϕ2 : [1,∞) is strictly decreasing, so we get

ϕ1(n)
n(n+1)

= ϕ2(n) > lim
n→∞

ϕ2(n) =
16
15

, ∀n � 1,

that is,

ϕ1(n) >
16
15

n(n+1), ∀n � 1. (73)

According to (71), (72), (73) and Lemma 3.10, we get

∑
i+ j=n, i, j�0

wi, juiu j � un ∑
i+ j=n, i, j�0

wi, j � unϕ1(n) > un× 16
15

n(n+1)

>
2
π
× 16

15
n(n+1) =

32
15π

n(n+1), ∀n � 1.

This proves the first inequality in (67).
Next, we prove the second inequalities in (67) as follows.
By (69), we have

∑
i+ j=n, i, j�0

wi, juiu j = (w0,n +wn,0)un + ∑
i+ j=n, i, j�1

wi, juiu j

� (w0,n +wn,0)un +
2
π

un−1 ∑
i+ j=n, i, j�1

wi, j

= un

[
(w0,n +wn,0)+

2
π

(
1− 1

4n2

)−1

∑
i+ j=n, i, j�1

wi, j

]
,

that is

∑
i+ j=n, i, j�0

wi, juiu j � un

[
(w0,n +wn,0)+

2
π

(
1− 1

4n2

)−1

∑
i+ j=n, i, j�1

wi, j

]
. (74)

By (58) and (70), we have

(w0,n +wn,0)+
2
π

(
1− 1

4n2

)−1

∑
i+ j=n, i, j�1

wi, j

� −3+
16n
5

+
32n2

15
− 1

2(2n−1)
+

5
2(2n+1)

+
2
π

(
1− 1

4n2

)−1

×[
−1

2
− 20n

3
− 16n2

15
+

1
1+n

+
1

2(−1+2n)
+
(

28
5

+
32n
15

− 1
n+1

)(
1+

1
2

logn

)]
,
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that is,

(w0,n +wn,0)+
2
π

(
1− 1

4n2

)−1

∑
i+ j=n, i, j�1

wi, j � ϕ3(n),∀n � 1, (75)

where

ϕ3(t) �
[
−3+

16t
5

+
32t2

15
− 1

2(2t−1)
+

5
2(2t +1)

]
+

2
π

(
1− 1

4t2

)−1

×[
−1

2
− 20t

3
− 16t2

15
+

1
1+ t

+
1

2(−1+2t)
+
(

28
5

+
32t
15

− 1
t +1

)(
1+

1
2

logt

)]
.

We define a auxiliary sequence {zn}∞
n=1 and a auxiliary function ϕ4(t) as follows:

{zn}∞
n=1 : zn � unϕ3(n)

n(n+1)
,

and

ϕ4 : [1,∞) → R, ϕ4(t) �
(

1− 1
4t2

)
t

t +2
ϕ3(t +1)

ϕ3(t)
.

By means of the command Plot[ ] of the Mathematica software, we know that the graph
of the function ϕ4(t), t ∈ [1,100], is depicted in Figure 3, and the graph of the function
ϕ4(t−1), t ∈ (0,1], is depicted in Figure 4.

Figure 3: The graph of the function ϕ4(t), t ∈ [1,100].

Since
ϕ4(n) =

zn+1

zn
, ∀n ∈ N � {1,2, . . . ,m, . . .} , (76)

by means of the command Solve[ ] of the Mathematica software, we know that the
equation

ϕ4(t) = 1, t ∈ [1,∞)

has no any real roots, and
ϕ4(t) < 1, ∀t ∈ [1,∞). (77)
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Figure 4: The graph of the function ϕ4(t−1), t ∈ (0,1].

From (76) and (77), we see that

zn+1 < zn, ∀n ∈ N. (78)

Hence the sequence {zn}∞
n=1 is strictly decreasing. So we get

unϕ3(n)
n(n+1)

= zn � z1 = 1, ∀n ∈ N,

and
unϕ3(n)
n(n+1)

= zn > lim
n→∞

zn =
64(π −1)

15π2 , ∀n ∈ N.

Therefore,

0 <
64(π −1)

15π2 n(n+1) < unϕ3(n) � n(n+1), ∀n ∈ N. (79)

According to (74), (75) and (79), we get

∑
i+ j=n, i, j�0

wi, juiu j � un

[
(w0,n +wn,0)+

2
π

(
1− 1

4n2

)−1

∑
i+ j=n, i, j�1

wi, j

]
� unϕ3(n) � n(n+1), ∀n ∈ N.

That is, the second inequalities in (67) also holds. The proof of Lemma 3.14 is com-
pleted. �

According to the theory of power series in mathematical analysis, we can easily
get the following lemma.

LEMMA 3.15. For any real number e ∈ [0,1) , we have

∞

∑
n=1

n(n+1)e2n =
2e2

(1− e2)3 , (80)
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and
∞

∑
n=1

e2n =
e2

1− e2 . (81)

LEMMA 3.16. Under the hypotheses in Theorem 2.1, we have

8√
15π

× e

(1− e2)3/2
×R−2

Γ � Var‖F‖ �
√

2× e

(1− e2)3/2
×R−2

Γ . (82)

Proof. By Lemmas 3.9, 3.14 and 3.15, we get

Var‖F‖ = R−4
Γ

∞

∑
n=1

e2n ∑
i+ j=n, i, j�0

wi, juiu j

� R−4
Γ

∞

∑
n=1

e2n 32n(n+1)
15π

= R−4
Γ × 32

15π
× 2e2

(1− e2)3

=
64
15π

× e2R−4
Γ

(1− e2)3 ,

and

Var‖F‖ = R−4
Γ

∞

∑
n=1

e2n ∑
i+ j=n, i, j�0

wi, juiu j � R−4
Γ

∞

∑
n=1

e2nn(n+1) =
2e2R−4

Γ

(1− e2)3 ,

that is, (82) hold. This ends the proof of Lemma 3.16. �

LEMMA 3.17. Under the hypotheses in Theorem 2.1, we have(
1+

5
4
× e2

1− e2

)
×R−2

Γ � ‖F‖ �
(

1+
4
π
× e2

1− e2

)
×R−2

Γ . (83)

Proof. By Lemmas 3.3, 3.7, 3.10, 3.15 and (51), we get

‖F‖ = R−2
Γ

[
2
π

∫ π
2

0

1+ e2 cos2 θ
(1− e2 cos2 θ )3/2

dθ

]

= R−2
Γ

(
1+

∞

∑
n=1

4n+1
2n+1

une
2n

)

� R−2
Γ

(
1+

∞

∑
n=1

5
4
e2n

)

= R−2
Γ

(
1+

5
4
× e2

1− e2

)
,
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and

‖F‖ = R−2
Γ

(
1+

∞

∑
n=1

4n+1
2n+1

une
2n

)
� R−2

Γ

(
1+

∞

∑
n=1

4
π

e2n

)
= R−2

Γ

(
1+

4
π
× e2

1− e2

)
,

that is, (83) hold. The proof is completed. �

4. Proof of Theorem 2.1

Now we prove Theorem 2.1 as follows.

Proof. According Lemmas 3.16 and 3.17, we have

‖̃F‖ =
Var‖F‖
‖F‖ �

8√
15π

eR−2
Γ

(1−e2)3/2

R−2
Γ

(
1+ 4

π × e2

1−e2

)
=

8√
15π

× e[
1+
( 4

π −1
)
e2
]√

1− e2

� 8√
15π

× e[
1+
( 4

π −1
)]√

1− e2

=

√
4π
15

× e√
1− e2

,

and

‖̃F‖ =
Var‖F‖
‖F‖ �

√
2× eR−2

Γ

(1−e2)3/2

R−2
Γ

(
1+ 5

4 × e2

1−e2

) =
√

2× e(
1+ 1

4 e2
)√

1− e2
�
√

2× e√
1− e2

,

that is, inequalities (15) is proved.
By (20), (41) and (70), we have

lim
e→0

‖̃F‖
(

e√
1− e2

)−1

= lim
e→0

Var‖F‖
‖F‖

(
e√

1− e2

)−1

= lim
e→0

Var‖F‖
‖F‖ e−1

=
lime→0 e−1Var‖F‖

lime→0 ‖F‖
=

lime→0 e−1Var‖F‖
R−2

Γ

=
lime→0 e−1

√
R−4

Γ ∑∞
n=1 e2n ∑i+ j=n, i, j�0 wi, juiu j

R−2
Γ

= lim
e→0

√
∞

∑
n=1

e2n−2 ∑
i+ j=n, i, j�0

wi, juiu j

=
√

∑
i+ j=1, i, j�0

wi, juiu j =
√

(w1,0 +w0,1)u1
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=

√[
−3+

16n
5

+
32n2

15
− 1

2(2n−1)
+

5
2(2n+1)

]
n=1

× 3
4

=
√

2.

Therefore, the coefficient
√

2 of e/
√

1− e2 in (15) is the best constant. This completes
the proof of Theorem 2.1. �

5. Applications

Let S(2){P,Γ} be a centered surround system, where the Γ is an ellipse and the P
is one of the foci of the ellipse. Then we may also think that the A∈ Γ as a planet (such
as the Mercury, Venus, Earth, etc.) and P as the Sun, and the ellipse Γ as the motion
trajectory of the planet. Assume that the radiation energy of the Sun P to the planet A
is 1 , then, according to the optical laws, the radiant energy received by the planet A is
C/‖A−P‖2 = C‖F‖, and the reflect radiation energy of the planet received by the Sun
P is C/‖A−P‖4 = C‖F4‖, where the C > 0 is a constant of the radiation energy. This
is the another significance of the 4-gravity F4 in space science.

Suppose that the planet A is regarded as a particle, and the temperature on the
planet A at a certain moment is T = T (A), and the mean temperature on the planet is
T . Then, based on the above analysis, there exists constant C∗ > 0 such that

T : Γ → (0,∞), T = C∗ ‖F‖ . (84)

Without loss of generality, here we assume that C∗ = 1.
In the centered surround system S(2){P,Γ} , we may also think that T = ‖F‖ as

a random variable which follows a uniform distribution, that is , its probability density
function is p : Γ → (0,∞), p = 1/|Γ|. Then, by (14) and (84), we have

ET = ‖F‖, VarT =
√

Var‖F‖ and T̃ =
VarT
ET

= ‖̃F‖. (85)

According to Theorem 2.1 and (85), we have√
4π
15

× e√
1− e2

� T̃ �
√

2× e√
1− e2

. (86)

By (86), we know that there exists real function χ(e) such that

T̃ = χ(e)× e√
1− e2

, (87)

where

0.9152912328637689 · · ·=
√

4π
15

� χ(e) �
√

2 = 1.4142135623730951 · · ·. (88)

Since the error
√

2−
√

4π
15

= 0.49892232950932625 · · ·
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is not very large, by (88), we see that

χ(e) ≈
1
2

(√
4π
15

+
√

2

)
= 1.164752397618432 · · ·, ∀e ∈ (0,1). (89)

According to (87) and (89), we obtain the following approximate temperature co-
efficient of variation formula:

T̃ ≈ 1.164752397618432 · · ·× e√
1− e2

, (90)

where T̃ is called temperature coefficient of variation.
Similarly, according to Lemma 3.16, we have

8√
15π

× e

(1− e2)3/2
×R−2

Γ � VarT �
√

2× e

(1− e2)3/2
×R−2

Γ . (91)

Since

√
2− 8√

15π
= 1.4142135623730951 · · ·−1.1653849926315512 · · ·
= 0.248828569741544 · · ·

is very small, and

1
2

(√
2+

8√
15π

)
= 1.2897992775023233 · · ·,

we have the following approximate temperature mean variance formula:

VarT ≈ 1.2897992775023233 · · ·× e

(1− e2)3/2
×R−2

Γ , (92)

where RΓ �
√

a|Γ|/(2π) ∈ [b,a] is a quasi-radius of the ellipse Γ, and VarT is called
temperature mean variance.

Based on (90) and (92), we know that Theorem 2.1 and Lemma 3.16 can be used
to study the temperature change on a planet and the climate change on the Earth.
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