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ALGORITHMS FOR SPLIT COMMON NULL POINT PROBLEM

WITHOUT PRE–EXISTING ESTIMATION OF OPERATOR NORM

M. DILSHAD, M. AKRAM AND IZHAR AHMAD

(Communicated by J. Kyu Kim)

Abstract. The purpose of this paper is to present iterative methods to solve a split common null
point problem in real Hilbert spaces such that the implementation of proposed iterative schemes
do not require any pre-existing estimation of the norm of bounded linear operator. We give the
weak and strong convergence of the proposed algorithms under some mild and standard assump-
tions in Hilbert spaces. A numerical example is also constructed to illustrate the algorithm for
strong convergence.

1. Introduction

The theory of variational inequalities have played an important role in the develop-
ment of mathematical models arising in economics, optimizations, physics, networking
structural analysis, and medical images. The split feasible problem also has an impor-
tant role in optimization theory and nonlinear analysis. In 1994, Censor and Elfving
[3], first presented it for modeling in medical image reconstruction. Now a days, the
split fractional problem has been implemented widely in intensity-modulation therapy
treatment planning. In [4], Censor et al. combined the variational inequality problem
and split feasibility problem and presented a new type of variational inequality problem
called split variational inequality problem (in short, SpV IP) as follows:

Find x∗ ∈C such that 〈 f (x∗),x− x∗〉 � 0, f or all x ∈C (1.1)

such that y∗ = Ax∗ ∈ Q solves 〈g(y∗),y− y∗〉 � 0, f or all y ∈ Q, (1.2)

where C and Q are closed, convex subsets of Hilbert spaces H1 and H2 , respectively;
A : H1 → H2 is a bounded linear operator; f : H1 → H1 and g : H2 → H2 are two
operators.

Censor et al. [5] investigated SpVIP as a prototypical split inverse problem (in
short, SpIP), which is the combination of two inverse problems denoted by IP1 and
IP2 defined as follows:

Find x∗ ∈ X that solves IP1, (1.3)

such that y∗ = Ax∗ ∈ Y solves IP2, (1.4)
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where X ,Y are two vector spaces and A : X → Y is a bounded linear operator. SpVIP
is quite general and enables split minimization between two spaces so that the image of
a solution point of one minimization problem under a given bounded linear operator is
a solution point of another minimization problem. Another special case of the SpVIP
is the split feasibility problem (in short, SpFP), which is a combination of an inverse
problem as IP1 and a feasibility problem as IP2 .

Let H1 and H2 be two real Hilbert spaces, C ⊆H1 and Q⊆H2 be two nonempty,
closed and convex sets, and A : H1 → H2 be a bounded linear operator. The split
feasibility problem (SpFP) is to find:

x∗ ∈C such that y∗ = Ax∗ ∈ Q, (1.5)

which was discussed and used in practice as a model in intensity-modulated radiation
therapy (IMRT) treatment planning; see, [6, 7]. SpFP has many real life applications
such as multi-domain adaptive filtering (MDAF) [24] and navigation on the Pareto fron-
tier in multiobjective optimization; see, [9]. Moudafi [14] generalized split variational
inequality problem to split monotone variational inclusion problem (in short, SpMVIP)
as follows:

Find x∗ ∈ H1 such that 0 ∈ f (x∗)+B1(x∗), (1.6)

such that y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗)+B2(y∗), (1.7)

where B1 : H1 → 2H1 and B2 : H2 → 2H2 are set-valued mappings on Hilbert spaces
H1 and H2 , respectively, A : H1 → H2 is a bounded linear operator; f : H1 → H1 and
g : H2 → H2 are two given single-valued operators.

Moudafi [14] formulated the following iterative algorithm to find the solution of
SpMVIP (1.6)–(1.7). Let λ > 0, select an arbitrary starting point x0 ∈ H1 . Compute

xn+1 = U [xn + γA∗(T − I)Axn], (1.8)

where γ ∈ (0,1/L) with L being spectral radius of operator A∗A , A∗ is the adjoint
operator of A , U = JB1

λ (I−λ f ) and T = JB2
λ (I−λg).

If B1 = NC and B2 = NQ to be the normal cones of two closed and convex sets
C and Q , respectively, then SpMVIP reduces to SpVIP . If f = g = 0, then SpMVIP
reduces to split common null point problem (in short, SpCNPP) for set-valued maximal
monotone mappings, introduced and studied by Byrne et al. [1]:

Find x∗ ∈ H1 such that 0 ∈ B1(x∗), (1.9)

such that y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.10)

Based on CQ-algorithm, Byrne et al. [1] presented the following iterative algorithm to
find the solution of SpCNPP (1.9)–(1.10). Let λ > 0, select starting point x0 ∈ H1 .
Compute

xn+1 = JB1
λ [xn + γA∗(I− JB2

λ )Axn], (1.11)
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where A∗ is the adjoint operator of A , L = ‖A∗A‖ , and γ ∈ (0,2/L) . After that Kazmi
and Rizvi [10], considered SpCNPP and a fixed point problem. They find the com-
mon solution of SpCNPP and a fixed point of nonexpansive mapping using following
algorithm:

yn = JB1
λ [xn + γA∗(I− JB2

λ )Axn],
xn+1 = αn f (xn)+ αnSyn,

where f is contraction mapping and S is a nonexpansive mapping. Later, Sitthithak-
erngkiet et al. [18] studied the common solution of SpCNPP and a fixed point of an
infinite family of nonexpansive mappings using following algorithm:

yn = JB1
λ [xn + γA∗(I− JB2

λ )Axn],
xn+1 = αnξu+ βnxn +[(1−βn)I−αnD]Wnyn, ∀n � 1,

where u ∈ H1 is a given point, Wn is a W -mapping which is generated by an infinite
family of nonexpansive mappings. Later, many authors studied number of split vari-
ational inequalities and variational inclusion problems using different innovative tech-
niques; see, for example, [11, 12, 17, 19, 22, 23, 25] but most of the problems solved
are based on the formulation of algorithm (1.8) or (1.11); see, for example, [8, 10, 16]
and references therein.

We noticed that the implementation of algorithms in all the methods mentioned
above required the pre-existing calculation or estimation of the norm of bounded linear
operator A .

Lopez et al. [13] solved the split feasibility problem without knowledge of matrix
norm. They introduced and studied the following iterative algorithm:

xk+1 = PC[I− τkA
∗(I−PQ)A]xk,

where PC and PQ are orthogonal projections on the closed convex sets C and Q , re-
spectively and the step size τk is computed as:

τk =
ρk f (xk)

‖∇ f (xk)‖2

and

f (x) =
1
2
‖(I−PQ)Ax‖2, ∇ f (x) = A∗(I−PQ)Ax, k � 0,

with 0 < ρk < 4 and infρk(4−ρk) > 0. Wang [20] obtained the split common fixed
point problem which is a generalization of split feasibility problem. He also constructed
an iterative algorithm and discussed the strong convergence to study the solution of split
common fixed point problem without the prior calculation of the norm of operator A .

Motivated by the work of Censor et al. [5], Moudafi [14], Byrne et al. [1], Kazmi
and Rizvi [10], Sitthithakerngkiet et al. [18], Lopez et al. [13] and Wang[20], we
propose two iterative algorithms for solving split common null point problem (1.9)–
(1.10) so that the choice of step size does not need any pre-existing estimation of the
operator norm ‖A‖ . Finally, weak and strong convergence of proposed algorithms are
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presented under some mild and standard assumptions. Furthermore, iterative algorithm
is illustrated by a non-trivial example.

Let H be a real Hilbert space. The strong convergence and weak convergence of
a sequence {xn} to x are denoted by xn → x and xn ⇀ x , respectively. Let T : H → H
be an operator. The set of all fixed point of T is denoted as Fix(T ) = {x : Tx = x} .
The operator T is said to be nonexpansive if for all x,y ∈H , ‖T (x)−T (y)‖ � ‖x−y‖ ;
firmly nonexpansive if for all x,y ∈ H , ‖T (x)−T (y)‖2 � 〈x− y,Tx−Ty〉 . T is called
directed, if

‖T (x)− z‖2 � ‖x− z‖2−‖(I−T)x‖2, ∀ z ∈ Fix(T ), x ∈ H,

or
〈x− z,Tx− x〉 � ‖x−T(x)‖2, ∀ z ∈ Fix(T ), x ∈ H.

Let B : H → 2H be a set-valued operator. The graph of B is defined by {(x,y) : y∈
B(x)} and inverse of B is denoted by B−1 = {(y,x) : y ∈ B(x)} . A set-valued mapping
B is said to be monotone if 〈u− v,x− y〉 � 0, for all u ∈ B(x),v ∈ B(y) . A monotone
operator B is called a maximal monotone if there exits no other monotone operator such
that its graph properly contains the graph of B . The resolvent of a maximal monotone
operator B is defined by JB

λ = (I +λB)−1 , where λ is a positive real number. A resol-
vent operator of maximal monotone operator is single-valued and firmly nonexpansive.
The class of directed operator includes the resolvents of maximal monotone operators.

DEFINITION 1.1. [15] (Demiclosedness Principle): Let C be a nonempty closed
convex subset of a Hilbert space H and T : H → H be an operator with Fix(T ) 
= φ .
If the sequence {xn} in C converges weakly to an element x ∈ C and the sequence
{xn−Txn}∞

n=1 converges strongly to zero, then x is a fixed point of the operator T .

REMARK 1.1. It is well known that if T is a nonexpansive operator, then I−T is
demiclosed at zero. This property is also shared by firmly nonexpansive operators and
averaged nonexpansive operators.

DEFINITION 1.2. A sequence {xn} in H1 is said to be Féjer monotone with re-
spect to a nonempty closed convex subset C of H1 , if

‖xn+1− p‖ � ‖xn− p‖, ∀ n � 0, ∀ p ∈C.

LEMMA 1.1. [2] Let C be a nonempty closed convex subset of H1 . If the se-
quence {xn} is Féjer monotone with respect to C, then the following hold:

(i) xn ⇀ x∗ ∈C if and only if the weak limit set, ωW (xn) ⊆C,

(ii) the sequence {PCxn} converges strongly,

(iii) if xn ⇀ x∗ ∈C, then x∗ = limn→∞ PCxn .
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LEMMA 1.2. [21] Assume that {an} is a sequence of non-negative real numbers
such that

an+1 � (1− tn)an + tnbn, n � 0,

where {tn} is a sequence in (0,1) and {bn} is a sequence in R such that

(i) ∑∞
n=0 tn = ∞;

(ii) limn→∞ tn � 0 or ∑∞
n=0‖tnbn‖ < ∞;

Then limn→∞ an = 0.

2. Main results

In this section, we present the existence of solution for SpCNPP (1.9)–(1.10). We
assume that the problem SpCNPP (1.9)–(1.10) is consistent and solution set is denoted
by ∏ = {x∗ ∈ H1 : 0 ∈ B1(x∗) and 0 ∈ B2(Ax∗)} .

First, we prove following lemmas, which will be used in the proof of our main
results.

LEMMA 2.1. x∗ solves SpCNPP (1.9)–(1.10) if and only if

‖x∗ − JB1
λ x∗ +A∗(I− JB2

λ )Ax∗‖ = 0.

Proof. Let x∗ solves (1.9)–(1.10). Then JB1
λ x∗ = x∗ and JB2

λ Ax∗ = Ax∗ . Therefore

‖x∗ − JB1
λ x∗ +A∗(I− JB2

λ )Ax∗‖ = 0.

Conversely, let ‖x∗ − JB1
λ x∗ +A∗(I− JB2

λ )Ax∗‖ = 0 and for p ∈ ∏ . Then we have

0 = ‖x∗ − JB1
λ x∗ +A∗(I− JB2

λ )Ax∗‖‖x∗ − p‖
� 〈x∗ − JB1

λ x∗ +A∗(I− JB2
λ )Ax∗,x∗ − p〉

= 〈x∗ − JB1
λ x∗, x∗ − p〉+ 〈A∗(I− JB2

λ )Ax∗, x∗ − p〉
= 〈x∗ − JB1

λ x∗, x∗ − p〉+ 〈(I− JB2
λ )Ax∗, Ax∗ −Ap〉. (2.1)

Since the resolvent of maximal monotone operator is nonexpansive and hence directed,
that is,

0 � ‖x∗ − JB1
λ x∗‖2 +‖(I− JB2

λ )Axn‖2 � 0.

Therefore x∗ = JB1
λ x∗ and Ax∗ = JB2

λ Ax∗ . This completes the proof. �

LEMMA 2.2. Let {xn} be a bounded sequence. If

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖ = 0, (2.2)

then
lim
n→∞

‖xn− JB1
λ xn‖ = lim

n→∞
‖(I− JB2

λ )Axn‖ = 0.
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Proof. For p ∈ ∏ and using the fact that JB1
λ and JB2

λ are directed, we have

‖xn− JB1
λ xn‖2 +‖A∗(I− JB2

λ )Axn‖2

� 〈xn− JB1
λ xn, xn− p〉+ 〈A∗(I− JB2

λ )Axn, xn− p〉
= 〈xn− JB1

λ xn +A∗(I− JB2
λ )Axn, xn− p〉

� ‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖‖xn− p‖.
Using boundedness of {xn} and (2.2), we conclude the desired result. �

ALGORITHM 2.1. Choose arbitrary x0 ∈ H1 .

Step 1. Given xn , compute the next iteration by

un = xn− JB1
λ xn +A∗(I− JB2

λ )Axn,

xn+1 = xn− γnun,

where γn =
‖xn− JB1

λ xn‖2 +‖A∗(I− JB2
λ )Axn‖2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2
.

Step 2. If the following equality

‖xn+1− JB1
λ xn+1 +A∗(I− JB2

λ )Axn+1‖2 = 0

holds, then stop; otherwise go to Step 1.

LEMMA 2.3. If xn satisfies

lim
n→∞

(‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2
= 0,

then
lim
n→∞

‖xn− JB1
λ xn‖ = lim

n→∞
‖(I− JB2

λ )Axn‖ = 0.

Proof. Note that

(‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

�
(‖xn− JB1

λ xn‖2 +‖(I− JB2
λ )Axn‖2)2

2(‖xn− JB1
λ xn‖2 +‖A‖2‖(I− JB2

λ )Axn‖2)2

�
(‖xn− JB1

λ xn‖2 +‖(I− JB2
λ )Axn‖2)2

2max(1,‖A‖2)‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2

=
‖xn− JB1

λ xn‖2 +‖(I− JB2
λ )Axn‖2

2max(1,‖A‖2)
. (2.3)
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Taking limit on both sides, we have

lim
n→∞

‖xn− JB1
λ xn‖ = lim

n→∞
‖(I− JB2

λ )Axn‖ = 0. �

THEOREM 2.1. Let H1 , H2 be Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 →
2H2 be set-valued maximal monotone operators and A : H1 → H2 be a bounded linear
operator. Then the sequence {xn} generated by Algorithm 2.1 converges weakly to a
solution x∗ of SpCNPP (1.9)–(1.10) , where x∗ = limn→∞ P∏xn .

Proof. Let p ∈ ∏ and un = xn− JB1
λ xn +A∗(I− JB2

λ )Axn . Then

〈un, xn− p〉 = 〈xn − JB1
λ xn +A∗(I− JB2

λ )Axn, xn− p〉
= 〈xn − JB1

λ xn, xn− p〉+ 〈(I− JB2
λ )Axn, Axn−Ap〉

� ‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2. (2.4)

Now, we have

‖xn+1− p‖2 = ‖xn− τun‖2

= ‖xn− p‖2−2τ〈un, xn− p〉+ τ2‖un‖2

= ‖xn− p‖2−2
(‖xn− JB1

λ xn‖2 +‖(I− JB2
λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

� ‖xn− p‖2− (‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

� ‖xn− p‖. (2.5)

From (2.4), we deduce that {xn} is a Féjer-monotone. It follows that {xn} is bounded.
Thus by (2.5), we have

(‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2
� ‖xn− p‖2−‖xn+1− p‖2.

Since, ‖xn− p‖ is bounded, we have by induction

∞

∑
n=1

(‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2
< ∞.

Using the property of convergent series, we have

lim
n→∞

(‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2
= 0.

Thus, by Lemma 2.3, it follows that

lim
n→∞

‖xn− JB1
λ xn‖ = lim

n→∞
‖(I− JB2

λ )Axn‖ = 0.
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Since JB1
λ and JB2

λ are firmly nonexpansive and demiclosed at zero, from Lemma 1.1,
we deduce that the sequence {xn} convergesweakly to a solution x∗ of SpCNPP (1.9)–
(1.10). �

Now, we propose the another iterative algorithm for solving problem (1.9)–(1.10)
and analyze its strong convergence.

ALGORITHM 2.2. Choose arbitrary x0 ∈ H1 and some fixed u ∈ H1 .

Step 1. Given xn , compute the next iteration by

un = xn− JB1
λ xn +A∗(I− JB2

λ )Axn,

xn+1 = αnu+(1−αn)(xn − γnun),

where γn =
‖xn− JB1

λ xn‖2 +‖A∗(I− JB2
λ )Axn‖2

‖x∗ − JB1
λ xn +A∗(I− JB2

λ )Axn‖2
and {αn} be a sequence in (0,1) .

Step 2. If the following equality

‖xn+1− JB1
λ xn+1 +A∗(I− JB2

λ )Axn+1‖2 = 0

holds, then stop; otherwise go to Step 1.

THEOREM 2.2. Let H1 , H2 be Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 →
2H2 be set-valued maximal monotone operators and A : H1 → H2 be a bounded linear
operator. If {αn} is a sequence in (0,1) such that limn→∞ αn = 0 and ∑∞

n=0 αn = ∞ ,
then the sequence {xn} generated by Algorithm 2.2 converges strongly to a solution
p = P∏(u) of SpCNPP (1.9)–(1.10) for some fixed u ∈ H1 .

Proof. Let p ∈ P∏u . Then from (2.4) and the definition of γn , we have

‖xn− p− γnun‖2 = ‖xn− p‖2−2γn〈un,xn − p〉+ τ2
n‖un‖2

= ‖xn− p‖2−2
(‖xn− JB1

λ xn‖2 +‖(I− JB2
λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

+
(‖xn− JB1

λ xn‖2 +‖(I− JB2
λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

= ‖xn− p‖2− (‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

� ‖xn− p‖2. (2.6)
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It follows from (2.6) and Algorithm 2.2 that

‖xn+1− p‖ = ‖αnu+(1−αn)(xn− γnun)− p‖
� αn‖u− p‖+(1−αn)‖xn− p− γnun‖
� αn‖u− p‖+(1−αn)‖xn− p‖

...

� max{‖u− p‖,‖xn− p‖}. (2.7)

Hence {xn} is bounded. Again by Algorithm 2.2 and (2.6), we have

‖xn+1− p‖2 = ‖αnu+(1−αn)(xn − γnun)− p‖2

� (1−αn)‖xn− γnun− p‖+2αn〈u− p, xn+1− p〉
� (1−αn)‖xn− p‖2 +2αn〈u− p, xn+1− p〉+

−(1−αn)
(‖xn− JB1

λ xn‖2 +‖(I− JB2
λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

� (1−αn)‖xn− p‖2 + αn
[
2〈u− p, xn+1− p〉

− (1−αn)
αn

(‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2

]
.

That is,
an+1 � (1−αn)an + αnbn,

where an = ‖xn− p‖2 and bn = 2〈u− p, xn+1− p〉

− (1−αn)
αn

(‖xn− JB1
λ xn‖2 +‖(I− JB2

λ )Axn‖2)2

‖xn− JB1
λ xn +A∗(I− JB2

λ )Axn‖2
.

Since {xn} is bounded and bn � 2〈u− p, xn+1 − p〉 � 2‖u− p‖‖xn+1 − p‖ , it
follows that limsupn→∞ bn < +∞ .

Now, we show that lim sup
n→∞

bn � −1.

Suppose that lim sup
n→∞

bn � −1, i.e., lim sup
n→∞

bn < −1. Then there exists n0 such

that bn � −1 for all n � n0 . So, we have

an+1 � (1−αn)an + αnbn

� (1−αn)an−αn

� an−αn(an +1)
� an−αn. (2.8)

For n � n0 , we have

an+1 � an0 −
n

∑
i=n0

αi,
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taking lim sup
n→∞

in the above inequality, we get

lim sup
n→∞

an+1 � an0 − lim
n→∞

n

∑
i=n0

αi = −∞,

which contradicts the fact that an = ‖xn− p‖ is sequence of nonnegative real numbers.
Consequently, we have −1 � limsupn→∞ bn < ∞ . Hence, we can have a subsequence
{bnk} satisfying

lim sup
n→∞

bn = lim
k→∞

bnk

= lim
k→∞

2〈u− p, xnk+1 − p〉

− lim
k→∞

[ (1−αnk)
αn

(‖xnk − JB1
λ xnk‖2 +‖(I− JB2

λ )Axnk‖2)2

‖xnk − JB1
λ xnk +A∗(I− JB2

λ )Axnk‖2

]
. (2.9)

Since 〈u− p, xnk+1− p〉 is bounded, we may assume limk→∞〈u− p, xnk+1− p〉 exists.
Consequently, one has

lim
k→∞

[ (1−αnk)
αnk

(‖xnk − JB1
λ xn‖2 +‖(I− JB2

λ )Axnk‖2)2

‖xnk − JB1
λ xnk +A∗(I− JB2

λ )Axnk‖2

]
,

also exists. Therefore

lim
k→∞

[ (‖xnk − JB1
λ xnk‖2 +‖(I− JB2

λ )Axnk‖2)2

‖xnk − JB1
λ xnk +A∗(I− JB2

λ )Axnk‖2

]
= 0.

From Lemma 2.3, we have

lim
k→∞

‖xnk − JB1
λ xnk‖ = lim

k→∞
‖(I− JB2

λ )Axnk‖ = 0.

It follows that the weak cluster point of {xnk} belongs to ∏ .
Note that

lim
k→∞

‖xnk −unk‖ = lim
k→∞

γnk‖(xnk − JB1
λ xnk)+A∗(I− JB2

λ )Axnk‖ (2.10)

= lim
k→∞

‖(xnk − JB1
λ xnk‖2 +‖(I− JB2

λ Axnk‖2

‖(xnk − JB1
λ xnk)+A∗(I− JB2

λ )Axnk‖
(2.11)

Also,

xnk+1 = αnu+(1−αnk)(xnk − γnkunk)
= αnku+ xnk − γnkunk −αnkxnk + αnkγnkunk ,

‖xnk+1− xnk‖ = αnk‖u− xnk‖+(1−αnk)γnk‖unk − xnk‖ (2.12)

� αnk‖u− xnk‖+‖unk − xnk‖→ 0. (2.13)
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Therefore
lim
k→∞

‖xnk+1− xnk‖ = 0.

This implies that weak cluster point of {xnk+1} also belongs ∏ . We assume that
{xnk+1} converges weakly to x∗ . Therefore

lim
n→∞

supbn � lim
k→∞

2〈u− p,xnk+1 − p〉
= 2〈u− p,x∗− p〉 � 0.

Since p = P∏u and using Lemma 1.2, we conclude that ‖xn− p‖→ 0. This completes
the proof. �

Now, we illustrate the Algorithm 2.2 and the convergence analysis of the se-
quences in Theorem 2.2.

EXAMPLE 2.1. Let H1 = H2 = R . B1 be defined by B1(x) = x− 1, and B2 be
defined by B2(x) = 2(x+1) . Let A : H1 → H2 be defined by A(x) = −x be a bounded
linear operator. For λ = 1 the resolvents of operators B1 and B2 are respectively given
by

JB1
λ (x) =

x
2

+
1
2
,

JB2
λ (x) =

x
3
− 2

3
.

The iterative sequences {un} and {xn} are computed by the following iterative method:

un = xn− JB1
λ (xn)+A∗(I− JB2

λ (x)Axn,

xn+1 = αnu+(1−αn)(xn − γnun).

xn+1 x0 = −5 x0 = 5 x0 = 10 x0 = 15

x1 -0.8215 2.2143 3.7322 5.2501
x2 0.4119 1.3932 1.8847 2.3762
x3 0.8011 1.1326 1.2984 1.4642
x4 0.9309 1.0460 1.1035 1.1611
x5 0.9756 1.0162 1.0367 1.0570
x6 0.9912 1.0058 1.0132 1.0205
x7 0.9968 1.0021 1.0048 1.0075
x8 0.9988 1.0008 1.0018 1.0028
x9 0.9996 1.0003 1.0007 1.0010
x10 0.9998 1.0001 1.0002 1.0004
x11 0.9999 1.0000 1.0000 1.0001
x12 0.9999 1.0000 1.0000 1.0000

Table 1: Values of xn for x0 = −5 , x0 = 5 , x0 = 10 and x0 = 15 .
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For u = 1 and αn = 1
n+4 , we compute the values of sequence {xn} upto four decimal

places with some different initial guess in Table 1.
We observe the following points in the above example:

(i) The sequence {xn} in the Table 1 converge to x = 1 for different values of initial
guess and it can be easily seen that x = 1 is a solution of our problem.

(ii) We do not impose the condition ∑∞
n= |αn+1−αn| < ∞ which guarantee the con-

vergence of the sequences in some existing iterative methods.

(iii) It is also to be noted that, we do not require the norm of operator A to compute
the solution of the problem.

3. Conclusions

In this paper, we have focused on a split common null point problem for the set-
valued maximal monotone operators. Two iterative algorithms for solving split com-
mon null point problem are presented. We have investigated the weak and strong con-
vergence of proposed algorithms such that the implementation of the algorithms do not
require the pre-existing estimation of norm of the operator.
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