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ALGORITHMS FOR SPLIT COMMON NULL POINT PROBLEM
WITHOUT PRE-EXISTING ESTIMATION OF OPERATOR NORM

M. DILSHAD, M. AKRAM AND IZHAR AHMAD

(Communicated by J. Kyu Kim)

Abstract. The purpose of this paper is to present iterative methods to solve a split common null
point problem in real Hilbert spaces such that the implementation of proposed iterative schemes
do not require any pre-existing estimation of the norm of bounded linear operator. We give the
weak and strong convergence of the proposed algorithms under some mild and standard assump-
tions in Hilbert spaces. A numerical example is also constructed to illustrate the algorithm for
strong convergence.

1. Introduction

The theory of variational inequalities have played an important role in the develop-
ment of mathematical models arising in economics, optimizations, physics, networking
structural analysis, and medical images. The split feasible problem also has an impor-
tant role in optimization theory and nonlinear analysis. In 1994, Censor and Elfving
[3], first presented it for modeling in medical image reconstruction. Now a days, the
split fractional problem has been implemented widely in intensity-modulation therapy
treatment planning. In [4], Censor et al. combined the variational inequality problem
and split feasibility problem and presented a new type of variational inequality problem
called split variational inequality problem (in short, S,V IP) as follows:

Find x* € C such that (f(x*),x—x"y >0, forallxeC (1.1)
such that y* = Ax* € Q solves {(g(y*),y—y*) >0, forally € Q, (1.2)

where C and Q are closed, convex subsets of Hilbert spaces H; and H,, respectively;
A : Hy — Hj is a bounded linear operator; f : H — H; and g : H, — H, are two
operators.

Censor et al. [5] investigated S,VIP as a prototypical split inverse problem (in
short, S,/P), which is the combination of two inverse problems denoted by /P; and
1P, defined as follows:

Find x* € X that solves 1Py, (1.3)

suchthat y* = Ax* €Y solves 1P, (1.4)
Mathematics subject classification (2010): 49140, 49153, 47J20, 58 A05.

Keywords and phrases: Split common null point problem, algorithm, operator norm, resolvent opera-
tor, convergence.

© deav., Zagreb 1151

Paper IMI-14-75


http://dx.doi.org/10.7153/jmi-2020-14-75

1152 M. DILSHAD, M. AKRAM AND I. AHMAD

where X,V are two vector spaces and A : X — Y is a bounded linear operator. S,VIP
is quite general and enables split minimization between two spaces so that the image of
a solution point of one minimization problem under a given bounded linear operator is
a solution point of another minimization problem. Another special case of the S,VIP
is the split feasibility problem (in short, S,FP), which is a combination of an inverse
problem as /P; and a feasibility problem as IP; .

Let H; and H; be two real Hilbert spaces, C C H; and Q C H, be two nonempty,
closed and convex sets, and A : H] — H, be a bounded linear operator. The split
feasibility problem (S,FP) is to find:

x* € C such that y* =Ax* € Q, (1.5)

which was discussed and used in practice as a model in intensity-modulated radiation
therapy (IMRT) treatment planning; see, [0, 7]. S,F'P has many real life applications
such as multi-domain adaptive filtering (MDAF) [24] and navigation on the Pareto fron-
tier in multiobjective optimization; see, [9]. Moudafi [14] generalized split variational
inequality problem to split monotone variational inclusion problem (in short, S,MVIP)
as follows:

Find x* € Hy suchthar 0 € f(x*)+ By (x¥), (1.6)
such that y* = Ax* € H, solves 0 € g(y*) + Ba(y*), (1.7)

where By : H; — 2 and B, : H, — 22 are set-valued mappings on Hilbert spaces
H; and H;, respectively, A : Hi — H, is a bounded linear operator; f : H; — H; and
g : H, — H, are two given single-valued operators.

Moudafi [14] formulated the following iterative algorithm to find the solution of
S,MVIP (1.6)—(1.7). Let A > 0, select an arbitrary starting point xo € H; . Compute

X1 = Ulxn + YA (T — 1) Axy), (1.8)

where y € (0,1/L) with L being spectral radius of operator A*A, A* is the adjoint
operator of A, U = Jf‘ (I-Af)and T = sz(l— Ag).

If B = N¢ and B, = Ny to be the normal cones of two closed and convex sets
C and Q, respectively, then S,MVIP reduces to S,VIP. If f=g=0, then S,MVIP
reduces to split common null point problem (in short, S,CNPP) for set-valued maximal
monotone mappings, introduced and studied by Byrne et al. [1]:

Find x* € Hy suchthat 0 € By(x"), (1.9)
such that y* = Ax* € Hy solves 0 € Bo(y"). (1.10)

Based on CQ-algorithm, Byrne et al. [1] presented the following iterative algorithm to
find the solution of S,CNPP (1.9)-(1.10). Let A > 0, select starting point xg € Hj .
Compute

X1 = I3 o+ YA (L= J32) A, (1.11)
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where A* is the adjoint operator of A, L = ||A*A||, and y € (0,2/L). After that Kazmi
and Rizvi [10], considered S,CNPP and a fixed point problem. They find the com-
mon solution of S,CNPP and a fixed point of nonexpansive mapping using following
algorithm:

Y = I3 o+ YAS (L= T3 A

X1 = O f (Xn) + QuSyn,

where f is contraction mapping and S is a nonexpansive mapping. Later, Sitthithak-
erngkiet et al. [18] studied the common solution of S,CNPP and a fixed point of an
infinite family of nonexpansive mappings using following algorithm:

Y = I3 Pon + YA* (I = 132 Axa),
Xnt1 = 0Eu+ Buxn + [(1 — Bo)I — 0, D]Wyyn, Vn > 1,

where u € Hy is a given point, Wn is a W -mapping which is generated by an infinite
family of nonexpansive mappings. Later, many authors studied number of split vari-
ational inequalities and variational inclusion problems using different innovative tech-
niques; see, for example, [11, 12, 17, 19, 22, 23, 25] but most of the problems solved
are based on the formulation of algorithm (1.8) or (1.11); see, for example, [8, 10, 16]
and references therein.

We noticed that the implementation of algorithms in all the methods mentioned
above required the pre-existing calculation or estimation of the norm of bounded linear
operator A.

Lopez et al. [13] solved the split feasibility problem without knowledge of matrix
norm. They introduced and studied the following iterative algorithm:

Xiy1 = Pell — GA™ (I — Pp)Alxy,

where Pc and Py are orthogonal projections on the closed convex sets C and Q, re-
spectively and the step size 7; is computed as:

= Prf (xe)
IV £ (x)ll?

and
70 = 310~ PQAXI?, V() = A°(— Po)ax, k>0,

with 0 < px < 4 and infp, (4 — pr) > 0. Wang [20] obtained the split common fixed
point problem which is a generalization of split feasibility problem. He also constructed
an iterative algorithm and discussed the strong convergence to study the solution of split
common fixed point problem without the prior calculation of the norm of operator A.
Motivated by the work of Censor et al. [5], Moudafi [14], Byrne et al. [1], Kazmi
and Rizvi [10], Sitthithakerngkiet et al. [18], Lopez et al. [13] and Wang[20], we
propose two iterative algorithms for solving split common null point problem (1.9)—
(1.10) so that the choice of step size does not need any pre-existing estimation of the
operator norm ||Al|. Finally, weak and strong convergence of proposed algorithms are
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presented under some mild and standard assumptions. Furthermore, iterative algorithm
is illustrated by a non-trivial example.

Let H be a real Hilbert space. The strong convergence and weak convergence of
a sequence {x,} to x are denoted by x,, — x and x, — x, respectively. Let T : H — H
be an operator. The set of all fixed point of T is denoted as Fix(T) = {x: Tx = x}.
The operator T is said to be nonexpansive if for all x,y € H, || T(x) =T ()| < [|x—]|;
firmly nonexpansive if for all x,y € H, ||T(x) — T (y)||* < (x—y,Tx—Ty). T is called
directed, if

17 () = 2lf* < llx = 2l> = 17 = T)x|]?, ¥ z € Fix(T), x€ H,

or
(x—z,Tx—x) < ||x—T(x)||>, Vz € Fix(T), x€ H.

Let B: H — 2! be a set-valued operator. The graph of B is defined by {(x,y):y €
B(x)} and inverse of B is denoted by B~! = {(y,x) : y € B(x)}. A set-valued mapping
B is said to be monotone if (u —v,x —y) > 0, for all u € B(x),v € B(y). A monotone
operator B is called a maximal monotone if there exits no other monotone operator such
that its graph properly contains the graph of B. The resolvent of a maximal monotone
operator B is defined by J2 = (I+2AB)~!, where 4 is a positive real number. A resol-
vent operator of maximal monotone operator is single-valued and firmly nonexpansive.
The class of directed operator includes the resolvents of maximal monotone operators.

DEFINITION 1.1. [15] (Demiclosedness Principle): Let C be a nonempty closed
convex subset of a Hilbert space H and T : H — H be an operator with Fix(T) # ¢ .
If the sequence {x,} in C converges weakly to an element x € C and the sequence
{x, — Tx, };>_, converges strongly to zero, then x is a fixed point of the operator T'.

REMARK 1.1. Itis well known that if 7' is a nonexpansive operator, then I — T is
demiclosed at zero. This property is also shared by firmly nonexpansive operators and
averaged nonexpansive operators.

DEFINITION 1.2. A sequence {x,} in H; is said to be Féjer monotone with re-
spect to a nonempty closed convex subset C of Hy, if

%1 =Pl < [lxa—pll, VR=0, VpeC.

LEMMA 1.1. [2] Let C be a nonempty closed convex subset of Hy. If the se-
quence {x,} is Féjer monotone with respect to C, then the following hold:

(i) x, = x* € C if and only if the weak limit set, @w(x,) C C,
(ii) the sequence {Pcx,} converges strongly,

(iii) if x, = x* € C, then x* = limy,_,o. Pcx;,.
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LEMMA 1.2. [21] Assume that {a,} is a sequence of non-negative real numbers
such that
apy1 < (1 _tn)an +1tyby, 20,

where {t,} is a sequence in (0,1) and {b,} is a sequence in R such that
(i) Xy—otn = o
(ii) Timy—ty <0 0F T2 |ltub]] < oo:

Then lim,,_..a, = 0.

2. Main results

In this section, we present the existence of solution for S,CNPP (1.9)—(1.10). We
assume that the problem S,CNPP (1.9)—(1.10) is consistent and solution set is denoted
by [T={x" € H :0€ B;(x*) and 0 € By(Ax*)}.

First, we prove following lemmas, which will be used in the proof of our main
results.

LEMMA 2.1. x* solves S,CNPP (1.9)—(1.10) if and only if

| = J7x" AT (I = J72)Ax"|| = 0.

Proof. Let x* solves (1.9)~(1.10). Then J;'x* = x* and JfZAx* = Ax*. Therefore

B

* B *
[[x* =3 X"+ AT (I = J;7)Ax|| =

Conversely, let ||x* — Jflx* +A(I— sz JAx*|| = 0 and for p € T]. Then we have
0 = [ = J3'x" + A (1 = AN |||x* — p
> (x* —Jflx* +A(I— ) X" —p)
= (x —Jflx* x—p)+ (A (1— JBZ)Ax*7 x"—=p)
= (" =), X = p) A+ (I - J32)AX, Ax" — Ap). 2.1)

Since the resolvent of maximal monotone operator is nonexpansive and hence directed,
that is,
By 2 B 2
02 [lx" =X |17+ (T = J37)Ax ||~ = 0

Therefore x* = JB' *and Ax" = szAx* . This completes the proof. [
LEMMA 2.2. Let {x,} be a bounded sequence. If
30— I3 X + A" (I — J22)Axy|| = 0, 2.2)

then
lim [ —J7 | = lim [|(Z = J3?)Ax, | =0
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Proof. For p €[] and using the fact that Jf‘ and sz are directed, we have

[ _Jflxn”z"' HA*(I_J)IEZ)Aanz
< (0 — T3 Xn, X0 — P) + (A" (I = J32) A%, X, — p)
= (xn —Jflxn —|—A*(I—sz)Axn, Xn—p)
< oo =T AT — T A~ pl

Using boundedness of {x,} and (2.2), we conclude the desired result. [J

ALGORITHM 2.1. Choose arbitrary xo € Hy.

Step 1. Given x,, compute the next iteration by
Uy = Xy — Jflxn +A"(1— sz)Axn,
Xnt+1 = Xn — Yalln,
P = T3 a2+ [|A* (1 = 32 A |2
w —JBh, + A (1= TP A, |2
Step 2. If the following equality

where Y, =

Xt 1 =I5 X1 + AT (= T2 At | =0
holds, then stop; otherwise go to Step 1.

LEMMA 2.3. If x,, satisfies

B B
i (P = T2 4 10— T3 A )
n=oxy — I3+ A (L= T3 Axy 2

)

then
lim [y —J7 x| = lim [|(Z = J3?)Ax || = 0.

Proof. Note that
(n = I3 a2 + (1 = J32) Axy %)
0 — I3 0+ A (L= T3) Aoty |2
(tn = I3 sl 2 4[| (2 = J32) A |2)?
ot — T3 |2 4 A2 (1 = J32)Ax, |2)2
(ln — I3 2012 + (1 = J32) Ay )2
2max(1, A [12) =I5 |24 [1( = T32)Ax |2

B B
[en — T3 6|2 + 1] (7 — I3 ) A |2 2.3)
2max(1,[|A]]?) ' '
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Taking limit on both sides, we have
lim ||x, —J5"x, || = lim ||(I—J;?)Ax,| =0. O
n—oo n—oo
THEOREM 2.1. Let H|, H> be Hilbert spaces, By : H — 281 and By : Hy —
2M2 pe set-valued maximal monotone operators and A : H — H, be a bounded linear

operator. Then the sequence {x,} generated by Algorithm 2.1 converges weakly to a
solution x* of S,CNPP (1.9)—(1.10), where x* = lim,,_,o. P1Xy.

Proof. Let p €[] and u,, = x, — Jflx,, +A*(I— sz)Axn. Then

(Un, Xn—p) = <xn _J;ljlxn +A*(I_J}?2)Axn7 Xn— D)
= (0 =I5 X, X — p)+ (I = J3?)Axy, Ax, — Ap)
> [0 — I3 2 4 ([ (= T2 A || (2.4)

Now, we have

41 = plI* = [P — Tuta?
= [Jxu _P||2 — 27Uy, Xn —p) + 72”“11”2
(en = T3 2|2+ || (1 = T32) Ay |2)?
X0 — I3 0+ A% (L= J32) Ay |2
< loon— plP— (Hxn—Jf;aner II(I—JAZZ)AxnII"’)2
260 — I3, % —I—A*(I—J)LZ)A)C,,H2
< [Jxn = pll- (2.5)

= [l —plI* ~

From (2.4), we deduce that {x,} is a Féjer-monotone. It follows that {x,} is bounded.
Thus by (2.5), we have

B B
(en = I3 x| + (T = J32) A |2)?
[ — I3 x +A* (I — T2 Ax, |2

<l = pIP = s = pII*.

Since, ||x, — p|| is bounded, we have by induction

B B
|Xn _J)len”z"' H(I_J)LZ)Axnuz)z

5 .

S o — I A (L T3 Ay |2

Using the property of convergent series, we have

B B
iy (P = T2 4 10— J32)A )
n=xy — I3 AL — J52) Ay 2

Thus, by Lemma 2.3, it follows that

lim [x, — J7 %, || = lim || (1 — J72)Ax,| = 0.
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Since Jf I and Jf 2 are firmly nonexpansive and demiclosed at zero, from Lemma 1.1,
we deduce that the sequence {x,} converges weakly to a solution x* of S,CNPP (1.9)-
(1.10). O

Now, we propose the another iterative algorithm for solving problem (1.9)—(1.10)
and analyze its strong convergence.
ALGORITHM 2.2. Choose arbitrary xo € Hy and some fixed u € Hj.

Step 1. Given x,, compute the next iteration by

Uy = X — Jflxn +A*(I— sz)Axn,

Xpp1 = Ot + (1 — 04,) (X0 — Yaltn),

B B
Xn =I5 X2+ [|A* (1= T3 %) Ax ||
where Y, = bin =Ty xall” 4 AU = ;") A and {0y} be a sequence in (0,1).
[ = T3 x5 + A% (1 = J72) Ay |12

Step 2. If the following equality
et = I3 a1+ A = I Az [F =0

holds, then stop; otherwise go to Step 1.

THEOREM 2.2. Let H|, H> be Hilbert spaces, By : H — 281 and By : Hy —
22 pe set-valued maximal monotone operators and A : Hy — Hy be a bounded linear
operator. If {a,} is a sequence in (0,1) such that lim,_... 0, = 0 and Y, 0y = oo,
then the sequence {x,} generated by Algorithm 2.2 converges strongly to a solution
p = P(u) of S,CNPP (1.9)—(1.10) for some fixed u € H,.

Proof. Let p € Pyu. Then from (2.4) and the definition of ¥,, we have

s = p = Yattal* = |16 = PII> = 2%t X0 — p) + 73| 0a |
(b0 =5 s+ [1( = I3 )Axa|[2)?
n =I5 x + A= (1 = J2) Ay |2
(b0 =I5 4 11 = J32)Axa|2)?
X0 — I3 20+ A* (L= J32) Ay |2
Fon = 3 P+ | (1 = J32) A |22
o — T2 3 + A= (1 — T2 Axy |2
< [xa—plI*. (2.6)

= ||xn_PH2_2

2

=[x —p



ALGORITHMS FOR SPLIT COMMON NULL POINT PROBLEM 1159

It follows from (2.6) and Algorithm 2.2 that

Hanrl_pH = ||anu+(l_an)(xn_Ynun)_pH
< O llu— pl| + (1 = o) [[xn — p — Yattn||
< onllu—p|l + (1 = 04) [[xn — p|

< max{||u—p|l, x.— pll}- (2.7)
Hence {x,} is bounded. Again by Algorithm 2.2 and (2.6), we have

a1 = pIIP = [l ot (1= 06) (¥ = Yattn) — p|>
< (1= 04)|xn = Yattn — pl| + 206 (u — p, X011 — )
< (1= 00) %0 — pI* + 200 (1 — p, xps1 — p) +
a _an)(\\xn—ff;xn\\2+II(I—Jzz)Aanz)z
260 — I3 X 4 A (1 = T3 %) Axy |2
< (1= 00)|Pxn = pl* + 0 [2(1 = p, Xa11 = p)
(1= o) (len = I3 x|+ 1| (1 = 172 Ax | 2)?

_ ).

Oy H)cn—Jflxn—|—A*(I—J;?Z)Ax,,||2

That is,
Ayl < (1 - (Xn)an ~+ 0,by,

where a, = ||x, — p||> and b, = 2(u— p, X, 11 — p)

B B
(1= ) ([ =3 xall> + | (T = T3 Axa|*)?
O lxy — I3 i+ AL — T3 ) Ay |2

Since {x,} is bounded and b, < 2(u— p, x,41 — p) < 2||u— pl|||xnr1 — Pl it
follows that limsup,,_,., b, < +oo.
Now, we show that lim sup b,, > —1.
n—oo

Suppose that lim sup b, # —1, i.e., lim sup b, < —1. Then there exists ny such

n—o0 n—oo

that b, < —1 forall n > ny. So, we have

anr1 < (1 —o)an+ opb
< (1= om)an— oy
< ap— Op(a, +1)
< ay,— 0. (2.8)

For n > ng, we have
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taking lim sup in the above inequality, we get

n—oo

n
lim sup a,+1 < ay, — lim Z 0 = —oo,
Nn—o0

n—eo i=ngy

which contradicts the fact that a, = ||x, — p|| is sequence of nonnegative real numbers.
Consequently, we have —1 < limsup,,_,.,b, < e. Hence, we can have a subsequence
{by, } satisfying

lim sup b, = klim by,

n—o0

= lim 2{u—p, x, 11— p)

B B
[(1 — o) (v — I3 21>+ 12 = J37) A |12)?

— lim o B 5, 5 >
n Hxnk_‘,)L xnk+A (I_J}L )AxnkH

k—soo

} . 2.9)

Since (u— p, Xy, 41— p) is bounded, we may assume limy_... (1t — p, Xp,+1 — p) exists.
Consequently, one has

B B
lim [(1 — Oty ) ([, =I5 Xl >+ | (I = T3 Ax, |1)?
O, X — I3 X+ A* (L= J32) Ak, ||

3
k—o0

also exists. Therefore

lim

koo

B B
[<||xnk—fllxnku2+||<1—Jf>AxnkH2>2] _
i, — I3 g+ AL = T3 ) Ay, |2

From Lemma 2.3, we have

Jim ||, — T | = lim (I —J3)Ax, || = 0.

It follows that the weak cluster point of {x,, } belongs to IT.

Note that
Tim [, — s | = lim %, | (o, — T3 %) + AT (1= T3 Axy | (2.10)
B B
BN (e /L A
= (e, = 3 ) + A (1= T52) Ay |
Also,
X1 = Ottt + (1 — 0tyy) (X, — YUy,
= (Xnklxt +xnk - Ynkunk - ankxnk + OfnkYnk Upy,
”xnkJrl _x"k” = ank”” _xnkH + (1= ank)ynk””nk _x"k” (2.12)

< Oy || — X, || + ||ty — X, || — 0. (2.13)
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Therefore
lim |[x, 1 — X, || = 0.
k—o0

This implies that weak cluster point of {xnk+1} also belongs []. We assume that
{Xn,4+1} converges weakly to x*. Therefore

n—o0

lim supb, < klim 2(u—p,Xn, — D)
=2(u—p,x" —p) <0.

Since p = Prju and using Lemma 1.2, we conclude that ||x,, — p|| — 0. This completes
the proof. [

Now, we illustrate the Algorithm 2.2 and the convergence analysis of the se-
quences in Theorem 2.2.

EXAMPLE 2.1. Let H; = H, = R. Bj be defined by Bj(x) =x—1, and B, be
defined by B(x) =2(x+1). Let A: Hy — H, be defined by A(x) = —x be a bounded
linear operator. For A = 1 the resolvents of operators By and B, are respectively given
by

+

b

S =

VEOE

W] = N =
W N =

The iterative sequences {u, } and {x,} are computed by the following iterative method:

Uy = X — I3 () + A" (I = I3 (x) Ax,

Xpt+1 = Ot + (1 - an)(xn - ')/nun)-

Xn+1 XOZ—S XOZS XOZIO X()=15

X1 -0.8215  2.2143 3.7322  5.2501
X2 0.4119 1.3932 1.8847  2.3762
X3 0.8011 1.1326 1.2984  1.4642
X4 0.9309 1.0460 1.1035 1.1611
X5 0.9756 1.0162 1.0367 1.0570
X6 0.9912 1.0058 1.0132  1.0205
X7 0.9968 1.0021 1.0048  1.0075
Xg 0.9988 1.0008 1.0018  1.0028
X9 0.9996 1.0003 1.0007  1.0010
X10 0.9998 1.0001 1.0002  1.0004
X11 0.9999 1.0000 1.0000  1.0001
X12 0.9999 1.0000 1.0000  1.0000

Table 1: Values of x, for xo = —5, xo =15, xo = 10 and xo = 15.
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For u=1 and oy, = ﬁ, we compute the values of sequence {x,} upto four decimal
places with some different initial guess in Table 1.

We observe the following points in the above example:

(i) The sequence {x;,} in the Table 1 converge to x =1 for different values of initial

guess and it can be easily seen that x = 1 is a solution of our problem.

(ii) We do not impose the condition Y |04+ — 0| < e which guarantee the con-

vergence of the sequences in some existing iterative methods.

(iii) It is also to be noted that, we do not require the norm of operator A to compute

the solution of the problem.

3. Conclusions

In this paper, we have focused on a split common null point problem for the set-

valued maximal monotone operators. Two iterative algorithms for solving split com-
mon null point problem are presented. We have investigated the weak and strong con-
vergence of proposed algorithms such that the implementation of the algorithms do not
require the pre-existing estimation of norm of the operator.
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