AN EIGENVALUE INEQUALITY FOR POSITIVE SEMIDEFINITE $k \times k$ BLOCK MATRICES

FENG ZHANG AND JINLI XU*

(Communicated by J. Pečarić)

Abstract. In this paper, we give some generalized results on matrix eigenvalue majorization inequality for positive semidefinite block matrices under a condition, which is a natural extended result given by Lin [4].

1. Introduction

First, we recall the definition of majorization. Given a real vector $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$, we rearrange its components as $x[1] \geq x[2] \geq \ldots \geq x[n]$. For $x = (x_1, x_2, \ldots, x_n)$, $y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n$, if

$$\sum_{i=1}^k x[i] \leq \sum_{i=1}^k y[i], \quad k = 1, 2, \ldots, n,$$

then we say that x is weakly majorized by y and denote $x \prec_w y$. If $x \prec_w y$ and $\sum_{i=1}^n x_i = \sum_{i=1}^n y_i$ hold, then we say that x is majorized by y and denote $x \prec y$.

As usual, the set of $m \times n$ complex matrices is denoted by $M_{m,n}$. For $A \in M_{n,n}$, we use $s_i(A)$ to present the singular values of A with $s_1(A) \geq \ldots \geq s_n(A)$. Let $s(A) = (s_1(A), \ldots, s_n(A))$. If $A \in M_{n,n}$ is Hermitian, then all eigenvalues of A are real and ordered as $\lambda_1(A) \geq \ldots \geq \lambda_n(A)$ and set $\lambda (A) = (\lambda_1(A), \ldots, \lambda_n(A))$. Note that $s_i(A) = \lambda_i(|A|)$, where $|A|$ is the modulus of A, i.e. $|A| = (A^*A)^{1/2}$ and A^* is the conjugate transpose of A. $A \geq 0$ means that A is positive semidefinite. In this paper, we use $A \oplus B$ to present the block matrix $\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$.

The study of eigenvalues is of central importance in matrix analysis. In 1923, Schur [1] showed that the diagonal entries of a Hermitian matrix are majorized by its eigenvalues, i.e.

$$\text{diag} (H) \prec \lambda (H).$$

* Corresponding author.

Keywords and phrases: Positive semidefinite matrices, eigenvalue inequality, majorization.
Let $H = \begin{bmatrix} A & C \\ C^* & B \end{bmatrix}$ be a partitioned Hermitian matrix, where $A, B \in M_{n,n}$. Ky Fan extended Schur’s result to block Hermitian matrices, i.e.

$$\lambda (A \oplus B) \prec \lambda (H).$$

Lin and Wolkowicz [4] gave a reverse majorization result of above:

$$\lambda (H) \prec \lambda ((A + B) \oplus 0)$$

holds under the conditions that C is Hermitian and H is a positive semidefinite matrix. In 2012, Turkmen, Paksoy and Zhang [7] proved (1), where C is skew-Hermitian and H is a positive semidefinite matrix. Zhang [8] showed that

$$\lambda (H) \prec \frac{1}{2} \lambda ([A + B + \sqrt{-1}(zC^* - z^*C)] \oplus 0) + \frac{1}{2} \lambda ([A + B + \sqrt{-1}(z^*C - zC^*)] \oplus 0),$$

where $|z| = 1$. One may see [9] and its references for more results on majorization inequalities.

Motivated by the above, we generalize (1) to following:

Theorem 1. Let $A_{ij} \in M_{n,n}$, $i, j = 1, 2, \ldots, s$ ($s \geq 2$). Let $(i \neq j)$ be skew-Hermitian matrices. Let $H = [A_{ij}] \in M_{sn,sn}$ be positive semidefinite matrix. Then

$$\lambda (H) \prec \lambda ((\sum_{i=1}^{s} A_{ii}) \oplus 0).$$

2. Proofs of the main results and corollaries

Before we prove the main results, we first recall some well known results on majorization:

Lemma 2. [10] Let $A, B \in M_{n,n}$ be Hermitian matrices. Then we have

$$\lambda (A + B) \prec \lambda (A) + \lambda (B).$$

Lemma 3. (Lemma 1.3 of [4]) Let $A \in M_{m,n}$ and $m \geq n$. Then

$$\lambda (AA^*) = \lambda ((A^*A) \oplus 0).$$

Lemma 4. (Theorem 2.3.3 of [3]) Suppose $f(t)$ is a monotonically increasing and convex function, $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$. Then $x \prec_w y$ implies

$$(f(x_1), \ldots, f(x_n)) \prec_w (f(y_1), \ldots, f(y_n)).$$

Let $\text{Span}\{P_1, P_2, \ldots, P_s\} = \{k_1, \ldots, k_s \in R| k_1P_1 + k_2P_2 + \ldots + k_sP_s\}$. We assume that $P_i^*P_j = -P_j^*P_i (i \neq j)$. Now we use mathematical induction to deduce the following lemma.
LEMMA 5. Let $P_1, P_2, \ldots, P_s \in M_{m,n}$ ($s \geq 2$) satisfying $P_i^* P_j = -P_j^* P_i (i \neq j)$. Then there exist 2^{s-1} matrices $V_1, \ldots, V_{2^{s-1}} \in \text{Span}\{P_1, P_2, \ldots, P_s\}$ such that

$$\sum_{i=1}^{2^{s-1}} V_i V_i^* = 2^{s-1} (\sum_{i=1}^{s} P_i P_i^*)$$

and for all $j = 1, \ldots, 2^{s-1}$

$$V_j^* V_j = \sum_{i=1}^{s} P_i^* P_i.$$

Proof. When $s = 2$, let $V_1 = P_1 + P_2$, $V_2 = P_1 - P_2$, we obtain

$$V_1 V_1^* + V_2 V_2^* = 2(P_1 P_1^* + P_2^* P_2)$$

and

$$V_j^* V_j = \sum_{i=1}^{2} P_i^* P_i$$

for $j = 1, 2$. Then the inequality holds.

Suppose that the Lemma holds for $s = t$, that is, there exist 2^{t-1} matrices $U_1, \ldots, U_{2^{t-1}} \in \text{Span}\{P_1, P_2, \ldots, P_t\}$ satisfying

$$\sum_{i=1}^{2^{t-1}} U_i U_i^* = 2^{t-1} (\sum_{i=1}^{t} P_i P_i^*) \quad (2)$$

and

$$U_j^* U_j = \sum_{i=1}^{t} P_i^* P_i \quad (3)$$

for $j = 1, \ldots, 2^{t-1}$.

Then for $s = t + 1$, set $B_i = U_i + P_{t+1}$, $C_i = U_i - P_{t+1}$, $1 \leq i \leq 2^{t-1}$,

$$\sum_{i=1}^{2^{t-1}} B_i B_i^* + \sum_{i=1}^{2^{t-1}} C_i C_i^* = 2^{2^{t-1}} (\sum_{i=1}^{t} U_i U_i^*) + 2^{t} P_{t+1}^* P_{t+1}^*$$

$$= 2^{t} (\sum_{i=1}^{t} P_i P_i^*) + 2^{t} P_{t+1}^* P_{t+1}^*$$

$$= 2^{t} (\sum_{i=1}^{t+1} P_i P_i^*).$$

The equality (4) follows from $P_i^* P_j = -P_j^* P_i$ and equality (2).

Let $V_i = B_i$, $V_{2^{t-1}+i} = C_i$, ($1 \leq i \leq 2^{t-1}$). Then $V_1, \ldots, V_{2^t} \in \text{Span}\{P_1, P_2, \ldots, P_t, P_{t+1}\}$ and

$$\sum_{i=1}^{2^t} V_i V_i^* = 2^{t} (\sum_{i=1}^{t+1} P_i P_i^*).$$
By \(P_i^*P_j = -P_j^*P_i \), we have
\[
V_j^*V_j = (U_j + P_{t+1})^*(U_j + P_{t+1}) = U_j^*U_j + P_{t+1}^*P_{t+1}
\]
\[
= \sum_{i=1}^t P_i^*P_i + P_{t+1}^*P_{t+1} = \sum_{i=1}^{t+1} P_i^*P_i
\]
for \(1 \leq j \leq 2^{t-1} \) and
\[
V_j^*V_j = (U_j - P_{t+1})^*(U_j - P_{t+1}) = U_j^*U_j + P_{t+1}^*P_{t+1}
\]
\[
= \sum_{i=1}^t P_i^*P_i + P_{t+1}^*P_{t+1} = \sum_{i=1}^{t+1} P_i^*P_i
\]
for \(2^{t-1} + 1 \leq j \leq 2^t \).

That is, the equality
\[
V_j^*V_j = \sum_{i=1}^{t+1} P_i^*P_i
\]
holds for \(1 \leq j \leq 2^t \). Thus we have finished the proof. \(\square \)

Proof of Theorem 1. Since \(H \) is positive semidefinite, it follows that there exists a matrix \(P \in M_{sn,sn} \) such that \(H = P^*P \). Let \(P = [P_1, P_2, \ldots, P_s] \), where \(P_1, P_2, \ldots, P_s \in M_{sn,n} \). An easy computation shows that
\[
A_{ij} = P_i^*P_j, \quad i, j = 1, 2, \ldots, s.
\]
It follows from \(A_{ij} \ (i \neq j) \) is skew-Hermitian that
\[
P_i^*P_j + P_j^*P_i = 0, \quad i \neq j.
\]
By Lemma 5, there exist \(2^{s-1} \) matrices \(V_1, \ldots, V_{2^{s-1}} \in M_{sn,n} \) such that
\[
\sum_{i=1}^{2^{s-1}} V_i V_i^* = 2^{s-1}(\sum_{i=1}^s P_i P_i^*)
\]
and for \(j = 1, \ldots, 2^{s-1} \)
\[
V_j^*V_j = \sum_{i=1}^s P_i^*P_i.
\]
AN EIGENVALUE INEQUALITY FOR POSITIVE SEMIDEFINITE $k \times k$ BLOCK MATRICES

Therefore, by the property of H and the Lemma 2

$$\lambda(H) = \lambda(P^*P) = \lambda(PP^*) = \lambda\left(\sum_{j=1}^{s} P_j P_j^*\right)$$

$$= \frac{1}{2^{s-1}} \lambda\left(\sum_{j=1}^{2^{s-1}} V_j V_j^*\right) \prec \frac{1}{2^{s-1}} \sum_{j=1}^{2^{s-1}} \lambda(V_j V_j^*) = \frac{1}{2^{s-1}} \sum_{j=1}^{2^{s-1}} \lambda((V_j V_j)^\oplus 0)$$

$$= \frac{1}{2^{s-1}} \sum_{j=1}^{2^{s-1}} \lambda\left(\sum_{i=1}^{s} P_i^* P_i^\oplus 0\right) = \lambda\left(\sum_{i=1}^{s} P_i^* P_i^\oplus 0\right)$$

$$= \lambda\left(\left(\sum_{i=1}^{s} A_{ii}\right)^\oplus 0\right).$$

The proof is completed. □

When $s = 2$, we notice $\lambda\left(\begin{bmatrix} A_{11} & \sqrt{-1} A_{12} \\ \sqrt{-1} A_{12} & A_{22} \end{bmatrix}\right) = \lambda\left(\begin{bmatrix} A_{11} & A_{12} \\ -A_{12} & A_{22} \end{bmatrix}\right) \prec \lambda((A_{11} + A_{22})^\oplus 0)$. Theorem 1 shows that Lin’s result (Theorem 2.1 of [4]) is a special case of our result.

COROLLARY 6. Let $A_1, A_2, \ldots, A_k \in M_{n,n}$ with $A_i^* A_j = -A_j^* A_i$, ($1 \leq i < j \leq k$). Then

$$\lambda\left(\sum_{i=1}^{k} A_i A_i^*\right) \prec \lambda\left(\sum_{i=1}^{k} A_i^* A_i\right).$$

Proof. Let $P = [A_1, A_2, \ldots, A_k]$. Then $H = P^*P$ is a positive semidefinite matrix and satisfy the condition of Theorem 1. Hence

$$\lambda(H) \prec \lambda\left(\left(\sum_{i=1}^{k} A_i^* A_i\right)^\oplus 0\right).$$

It follows from this and Lemma 3 that

$$\lambda\left(\left(\sum_{i=1}^{k} A_i A_i^*\right)^\oplus 0\right) = \lambda(P P^* \oplus 0) = \lambda(P^*P) = \lambda(H) \prec \lambda\left(\left(\sum_{i=1}^{k} A_i^* A_i\right)^\oplus 0\right).$$

Next we show that the condition $A_i^* A_j$ is skew-Hermitian in Corollary 6 is necessary.

REMARK 7. Let $A_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $A_2 = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$. Then

$$\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} = A_1^* A_2 \neq A_2^* A_1 = \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}.$$
and
\[A_1 A_1^* + A_2 A_2^* = \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \quad A_1^* A_1 + A_2^* A_2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}. \]

A trivial verification shows that \(\lambda(A_1 A_1^* + A_2 A_2^*) \nless \lambda(A_1^* A_1 + A_2^* A_2) \).

Acknowledgement. The author would like to thank the referees for their valuable comments which have improve this paper significantly. Jinli Xu is supported by the Fundamental Research Funds for the Central Universities (No. 2572019BC07), the National Natural Science Foundation of China (No. 11701075) and the Foundation of Talent Introduction and the Double First-Rate for the Northeast Forestry University (No. 1020160016).

REFERENCES

