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SHARP POWER MEAN BOUNDS FOR THE

TANGENT AND HYPERBOLIC SINE MEANS

TIE-HONG ZHAO, WEI-MAO QIAN AND YU-MING CHU ∗

(Communicated by A. Witkowski)

Abstract. In the article, we prove that the double inequalities

MMMα1 (a,b) < MMMtan(a,b) < MMMβ1
(a,b),

MMMα2 (a,b) < MMMsinh(a,b) < MMMβ2
(a,b)

hold for all a,b > 0 with a �= b if and only if α1 � 1/3 , β1 � log2/ log(2tan1) ≈ 0.61007 ,
α2 � 2/3 and β2 � log2/ log(2sinh1) ≈ 0.81109 , where MMMp , MMMtan and MMMsinh are the pth

power mean, tangent mean and hyperbolic sine mean, respectively.

1. Introduction

Let p ∈ R and a,b > 0 with a �= b . Then the harmonic mean HHH(a,b) , geometric
mean GGG(a,b) , arithmetic mean AAA(a,b) , first Seiffert mean PPP(a,b) , second Seriffert
mean TTT (a,b) , logarithmic mean LLL(a,b) , Neuman-Sándor mean NNNSSS(a,b) [7, 8] and
pth power mean MMMp(a,b) are respectively defined by

HHH(a,b) =
2ab
a+b

, GGG(a,b) =
√

ab, AAA(a,b) =
a+b

2
,

PPP(a,b) =
a−b

2arcsin
(

a−b
a+b

) , TTT (a,b) =
a−b

2arctan
(

a−b
a+b

) ,

LLL(a,b) =
a−b

2artanh
(

a−b
a+b

) , NNNSSS(a,b) =
a−b

2arcsinh
(

a−b
a+b

) ,

MMMp(a,b) =

⎧⎨
⎩

(
ap+bp

2

)1/p
, p �= 0,√

ab, p = 0,
(1.1)

where artanhx = 1
2 log[(1+x)/(1−x)] and arcsinhx = log(x+

√
x2 +1) are the inverse

hyperbolic tangent and sine function, respectively.

Mathematics subject classification (2020): 26D15.
Keywords and phrases: Power mean, hyperbolic sine mean, tangent mean, Seiffert function.
∗ Corresponding author.

c© � � , Zagreb
Paper JMI-15-100

1459

http://dx.doi.org/10.7153/jmi-2021-15-100


1460 T.-H. ZHAO, W.-M. QIAN AND Y.-M. CHU

Inspired by the form of two Seiffert means, Witkowski [19] introduced the so-
called Seiffert-like means, which are the means of the form

MMM f (a,b) =

⎧⎨
⎩

|a−b|
2 f ( |a−b|

a+b )
, a �= b,

a, a = b,

where the function f : (0,1) �→ R (called Seiffert function) satisfies

x
1+ x

� f (x) � x
1− x

.

It is worth mentioning that artanhx and arcsinhx are Seiffert functions and so LLL(a,b)
and NNNSSS(a,b) are also Seriffert-like means.

In this paper, we mainly study two Seriffert-like means corresponding to tangent
and hyperbolic sine functions, which have been introduced in [19],

MMMtan(a,b) =

{
a−b

2 tan( a−b
a+b )

, a �= b,

a, a = b,
(tangent mean) (1.2)

MMMsinh(a,b) =

{
a−b

2sinh( a−b
a+b )

, a �= b,

a, a = b
(hyperbolic sine mean) (1.3)

Recently, the bivariate means and their applications to special functions have at-
tracted the attention of several researchers [3, 6, 11, 14, 24, 25]. In particular, many
remarkable inequalities involving the power mean can be found in the literature [13,
16, 17, 18, 20, 21, 27]. For instance, sharp power mean bounds for several Seiffert-like
means were established by Lin [4], Hästö [2], Li et al. [5], Yang [22], more precisely,
the double inequalities

MMMp1(a,b) < LLL(a,b) < MMMq1(a,b), MMMp2(a,b) < NNNSSS(a,b) < MMMq2(a,b),
MMMp3(a,b) < PPP(a,b) < MMMq3(a,b), MMMp4(a,b) < TTT (a,b) < MMMq4(a,b)

hold for all a,b > 0 with a �= b if and only if p1 � 0, q1 � 1/3, p2 � log2/[2log(1+√
2)], q2 � 4/3, p3 � log2/ logπ , q3 � 2/3, p4 � log2/[log(π/2)] and q4 � 5/3.

As shown in [19, Lem. 3.2], the inequalities

HHH(a,b) < GGG(a,b) < LLL(a,b) < MMMtan(a,b) < MMMsinh(a,b) < AAA(a,b) (1.4)

hold for all a,b > 0 with a �= b . By virtue of (1.4), in their two very close papers
[9, 10] Nowicka and Witkowski presented the linear, harmonic, quadratic, the weighted
−2nd power mean and homotopy-type bounds for MMMtan(a,b) and MMMsinh(a,b) in terms
of AAA(a,b),GGG(a,b) (or AAA(a,b),HHH(a,b)).

It is well-known that several classical means are the special cases of power means.
So the chain of inequalities (1.4) can be rewritten as

MMM−1(a,b) < MMM0(a,b) < LLL(a,b) < MMMtan(a,b) < MMMsinh(a,b) < MMM1(a,b)
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hold for all a,b > 0 with a �= b . It makes sense to ask what the optimal numbers α1,α2

and β1,β2 are satisfying

MMMα1(a,b) < MMMtan(a,b) < MMMβ1
(a,b) and MMMα2(a,b) < MMMsinh(a,b) < MMMβ2

(a,b)

for all a,b > 0 with a �= b . The main purpose of this paper is to answer this question.

2. Lemmas

In order to prove our main results, we need some notations and several technical
lemmas which we present in this section.

The following two lemmas offer a simple criterion to determine the sign of a class
of special polynomial or series .

LEMMA 2.1. ([26, Lem. 2.2]). Let n,m ∈ N∪{0} with n > m and Pn(t) be the
polynomial of degree n defined by

Pn(t) =
m

∑
i=0

ait
i−

n

∑
i=m+1

ait
i,

where am,an > 0 and ai � 0 for 0 � i � n−1 with i �= m. Then there exist t0 ∈ (0,∞)
such that Pn(t0) = 0 and Pn(t) > 0 for t ∈ (0,t0) and Pn(t) < 0 for t ∈ (t0,∞).

LEMMA 2.2. ([23, Lem. 2]). Let {ak}∞
k=0 be a nonnegative real sequence with

am > 0 and ∑∞
k=m+1 ak > 0 and let

S(t) =
m

∑
k=0

akt
k −

∞

∑
k=m+1

akt
k

be a convergent power series on the interval (0,R) (R > 0) . Then the following state-
ments are true:

(i) If S(R−) � 0 , then S(t) > 0 for all t ∈ (0,R);

(ii) If S(R−) < 0 , then there is a unique t0 ∈ (0,R) such that S(t) > 0 for t ∈ (0,t0)
and S(t) < 0 for t ∈ (t0,R) .

LEMMA 2.3. ([1, 4.3.68, 4.5.67]). Let |x| < π . Then we have Taylor expansion

x
sinx

= 1+
∞

∑
n=1

22n−2
(2n)!

|B2n|x2n, (2.1)

x
tanhx

= 1+
∞

∑
n=1

22n

(2n)!
B2nx

2n, (2.2)

where B2n is the even-index Bernoulli numbers for n = 1,2,3, · · · .
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For the readers’ convenience, recall from [1, p.804, 23.1.1] that the Bernoulli num-
bers Bn may be defined by the power series expansion

z
ez −1

=
∞

∑
n=0

Bn
zn

n!
= 1− z

2
+

∞

∑
k=1

B2k
z2k

(2k)!
, |z| < 2π .

The first few Bernoulli numbers B2k are

B2 =
1
6
, B4 = − 1

30
, B6 =

1
42

, ,B8 = − 1
30

, B10 =
5
66

, B12 = − 691
2730

and have the property (−1)k+1B2k > 0 for k � 1. More properties of B2k are stated in
the following lemma.

LEMMA 2.4. ([12]). For k ∈ N , Bernoulli numbers B2k satisfy

22k−1−1
22k+1−1

(2k+1)(2k+2)
π2 <

∣∣∣∣B2k+2

B2k

∣∣∣∣ <
22k −1

22k+2−1
(2k+1)(2k+2)

π2 .

LEMMA 2.5. Let 0 < p < 1 and

fp(u) =
(1+u)p−1 +(1−u)p−1

(1+u)p +(1−u)p .

Then the following statements are true:

(i) f1/3(u) > 1+ 2u2

3 + 46u4

81 for u ∈ (0,1);

(ii) f3/5(u) < 1+ 2u2

5 + 4u4

5 for u ∈ (0,0.87];

(iii) f2/3(u) > 1+ u2

3 for u ∈ (0,1);

(iv) f4/5(u) < 1+ 3u2

10 for u ∈ (0,0.75] .

Proof. We give the proof of (i),(ii) in details and similar methods for the remain-
ing cases (iii),(iv) .

Let us denote

f̂1/3(u) = (1+u)−2/3 +(1−u)−2/3−
(

1+
2
3
u2 +

46
81

u4
)[

(1+u)1/3 +(1−u)1/3
]
.

f̂3/5(u) = (1+u)−2/5 +(1−u)−2/5−
(

1+
2u2

5
+

4u4

5

)[
(1+u)3/5 +(1−u)3/5

]
.

Then it suffices to prove f̂1/3(u) > 0 for u ∈ (0,1) and f̂3/5(u) < 0 for u ∈ (0,0.87] .
(i) We first prove f̂1/3(u) > 0 for u ∈ (0,1) .
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By elementary calculations, we obtain

81(1−u)2/3(1+u)2/3

u
f̂1/3(u) = (1+u)2/3(81−54u+54u2−46u3 +46u4)

− (1−u)2/3(81+54u+54u2+46u3 +46u4),

the sign of which is equivalent to[
(1+u)2/3(81−54u+54u2−46u3 +46u4)

]3

−
[
(1−u)2/3(81+54u+54u2+46u3 +46u4)

]3
= 4u5P1(u), (2.3)

where
P1(u) = 408969+152280u2+92920u4−74060u6−48668u8.

As a special polynomial defined as in Lemma 2.1, it can be easily seen from
P1(1) = 531441 that P1(u) > 0 for u ∈ (0,1) . This complete the proof of (i) .

(ii) Second, elementary computations lead to

5(1−u)2/5(1+u)2/5

u
f̂3/5(u) = (1+u)2/5(5−2u+2u2−4u3 +4u4)

− (1−u)2/5(5+2u+2u2+4u3 +4u4). (2.4)

In order to determine the sign of (2.4), we only need to consider equivalently as[
(1+u)2/5(5−2u+2u2−4u3 +4u4)

]5

−
[
(1−u)2/5(5+2u+2u2+4u3 +4u4)

]5
= −4u3P2(u),

where

P2(u) = 4125−1834u2+3576u4−5680u6−6032u8−1760u10

−2688u12 +4352u14 +1280u16 +1536u18.

We will divide into two cases to prove P2(u) > 0 for u ∈ (0,0.87] .
(i) For u ∈ (0,0.8] , then it can be easily obtained that P2(u) > P̂2(u) =: 4125−

1834u2−5680u6−6032u8−1760u10−2688u12 � P̂2(0.8) > 76.
(ii) For u ∈ (0.8,0.87] , differentiation yields

dP2(u)
du

= −4u
[
917+3576u2(2u2−1)+1368u4+16u6P∗

2 (u)
]
, (2.5)

where P∗
2 (u) = 754+ 275u2 + 504u4− 952u6− 320u8− 432u10 . This in conjunction

with Lemma 2.1 and P∗
2 (0.87)≈ 625.729 yields P∗

2 (u) > 0 for u ∈ (0,0.87] . Combin-
ing this with (2.5) leads to the conclusion that P2(u) is strictly decreasing on (0.8,0.87]
and so P2(u) � P2(0.87) ≈ 282.609 for u ∈ (0,8,0.87] .
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(iii) Similarly, by simplifying, it can be easily seen that

f2/3(u)−
(

1+
u2

3

)
=

u
[
(1+u)1/3(3−u+u2)− (1−u)1/3(3+u+u2)

]
3(1−u2)1/3[(1−u)2/3 +(1+u)2/3]

(2.6)

and[
(1+u)1/3(3−u+u2)

]3−
[
(1−u)1/3(3+u+u2)

]3
= 2u3(17+9u2 +u4) > 0.

(2.7)
Thus the inequality (iii) of Lemma 2.5 holds from (2.6) and (2.7).

(iv) Elementary computations lead to

f4/5(u)−
(

1+
3u2

10

)
=

u
[
(1+u)1/5(10−3u+3u2)− (1−u)1/5(10+3u+3u2)

]
10(1−u2)1/5[(1−u)4/5 +(1+u)4/5]

(2.8)
and[

(1+u)1/5(10−3u+3u2)
]5 −

[
(1−u)1/5(10+3u+3u2)

]5
= −2uP3(u2), (2.9)

where

P3(x) = 50000−33000x−77607x2−33885x3−5265x4−243x5.

Lemma 2.1 and P3(0.752)≈ 310.579 enable us to know that P3(x)> 0 for x∈ (0,0.752] .
Combining this with (2.8) and (2.9) yields the desired inequality of (iv) . �

LEMMA 2.6. Let 0 < p < 1 and

gp(u) =
(1−u)p−2− (1+u)p−2

(1−u)p +(1+u)p , hp(u) =
(1−u)2p−2− (1+u)2p−2

[(1−u)p +(1+u)p]2
.

Then gp(u) and hp(u) are strictly increasing on (0,1) .

Proof. First the monotonicity of gp(u) follows directly from

g′p(u)
2

=
(1−u2)3[(1−u)2p−3 +(1+u)2p−3]+2(1−u2)p[1− p+(3− p)u2]

(1−u2)3 [(1−u)p +(1+u)p]2
> 0.

Second, we can rewrite

hp(u) = fp(u) · ĥp(u), (2.10)

where fp(u) is defined as in Lemma 2.5 and

ĥp(u) =
(1−u)p−1− (1+u)p−1

(1−u)p +(1+u)p .
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Differentiation of fp(u) and ĥp(u) with 0 < p < 1 gives rise to

f ′p(u) =
(1−u)2p(1+u)2

[
1− ((1−u)/(1+u))2(1−p)]+4(1− p)u(1−u2)p

(1−u2)2
[
(1−u)p +(1+u)p

]2 > 0,

ĥ′p(u) =
(1−u)2p(1+u)2 +2(1−u2)p(1−2p+u2)+ (1−u)2(1+u)2p

(1−u2)2
[
(1−u)p +(1+u)p

]2

>
(1−u)2p(1+u)2

(1−u2)2
[
(1−u)p +(1+u)p

]2

[
1−

(
1−u
1+u

)1−p
]2

> 0

for u ∈ (0,1) . According to this with (2.10), it can be easily seen from fp(u) > 0 and
ĥp(u) > 0 that hp(u) is strictly increasing on (0,1) . �

3. Main results

THEOREM 3.1. The double inequality

MMMα1(a,b) < MMMtan(a,b) < MMMβ1
(a,b)

holds for all a,b > 0 with a �= b if and only if α1 � 1/3 and β1 � log2/ log(2tan1) ≈
0.61007.

Proof. Since MMMtan(a,b) and MMMp(a,b) are symmetric and homogenous of degree
1, we may assume that a > b > 0. Let u = (a− b)/(a+ b) ∈ (0,1) and p ∈ R with
p �= 0. Then from (1.1) and (1.2) we clearly see that

log[MMMtan(a,b)]− log[MMMp(a,b)] = log
( u

tanu

)
− 1

p
log

[
(1+u)p +(1−u)p

2

]
=: ϕp(u). (3.1)

Simple computations lead to

ϕp(0+) = 0, ϕp(1−) =
log2

p
− log(2tan1), (3.2)

uϕ ′
p(u) = fp(u)− 2u

sin(2u)
=: ϕ̂p(u), (3.3)

where fp(u) is defined as in Lemma 2.5.

We divide the proof into four cases.
Case 1.1. p = 1/3. Let

ρ1(u) = 1+
2u2

3
+

46u4

81
− 2u

sin(2u)
.
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Then it follows from (2.1) that

ρ1(u) = 1+
2u2

3
+

46u4

81
−

[
1+

∞

∑
n=1

22n(22n−2)
(2n)!

|B2n|u2n

]

=
104u4

405
−

∞

∑
n=3

22n(22n−2)
(2n)!

|B2n|u2n,

which in conjunction with Lemma 2.2 and ρ1(1−) ≈ 0.03506 yields ρ1(u) > 0 for
u ∈ (0,1) . According to this with Lemma 2.5(i) , it follows that

ϕ̂1/3(u) > ρ1(u) > 0 (3.4)

for u ∈ (0,1) .
Therefore, the inequality

MMMtan(a,b) > MMM1/3(a,b)

holds for all a,b > 0 with a �= b follows from (3.1)–(3.4).

Case 1.2. p = σ =: log2/ log(2tan1). Then from (3.2) we clearly see that

ϕσ (0+) = 0, ϕσ (1−) = 0. (3.5)

Note that

fp(u) =
1

Lp−1(1−u,1+u)
,

where Lq(a,b) is the qth Lehmer mean [15]. It is well-known that Lq(a,b) is strictly
increasing for q > 0 with fixed a,b > 0 with a �= b . This in conjunction with (3.3) and
Lemma 2.5(ii) together with σ > 3/5 gives

ϕ̂σ (u) < ϕ̂3/5(u) < 1+
2u2

5
+

4u4

5
− 2u

sin(2u)
=: ρ2(u2) (3.6)

for u ∈ (0,0.87] , where

ρ2(x) = 1+
2x
5

+
4x2

5
− 2

√
x

sin(2
√

x)
.

By Lemma 2.3, ρ2(x) has the power series expansion

ρ2(x) =
22x
45

(
x− 6

11

)
−

∞

∑
n=3

22n(22n−2)
(2n)!

|B2n|xn.

By this, it can be easily seen that ρ2(x) < 0 for x ∈ (0,6/11] and ρ ′′′
2 (x) < 0, and so

ρ ′
2(x) is strictly concave on (0,1) . Differentiation yields

ρ ′
2(x) =

2
5
(1+4x)+

[
2

tan(2
√

x)
− 1√

x

]
1

sin(2
√

x)
.
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By numerical calculations, we have ρ ′
2(6/11) ≈ 0.10153 and ρ ′

2(0.872) ≈ 0.09833.
According to this with the concavity of ρ ′

2(x) , it can be easily obtained that ρ ′
2(x) >

min{ρ ′
2(6/11),ρ ′

2(0.872)} > 0, and so ρ2(x) is strictly increasing on (6/11,0.872] .
Thus ρ2(x) � ρ2(0.872) ≈−0.00413 < 0 for x ∈ (6/11,0.872] .

Combining this with (3.6), it follows that

ϕ̂σ (u) < 0 (3.7)

for u ∈ (0,0.87] .
On the other hand, differentiation of ϕ̂p(u) gives

ϕ̂ ′
p(u) = f ′p(u)−

[
2u

sin(2u)

]′

= (1− p)gp(u)+ php(u)− 2[sin(2u)−2ucos(2u)]
sin2(2u)

, (3.8)

where gp(u) and hp(u) are defined as in Lemma 2.6.
Further, Lemma 2.3 enables us to know that

2[sin(2u)−2ucos(2u)]
sin2(2u)

=
[

2u
sin(2u)

]′
=

∞

∑
n=1

n22n+2(22n−1−1)
(2n)!

|B2n|u2n−1

is strictly increasing on (0,1) . This in conjunction with (3.8) and Lemma 2.6 yields

ϕ̂ ′
σ (u) > (1−σ)gσ(0.87)+ σhσ(0.87)− 2(sin2−2cos2)

sin2 2
≈ 0.337643 > 0

for u ∈ (0.87,1) . Combining this with ϕ̂σ (0.87) ≈ −0.05444 and ϕ̂σ (1−) = ∞ , it
follows from (3.3) and (3.7) that there exists u1 ∈ (0.87,1) such that ϕp(u) is strictly
decreasing on (0,u1) and strictly increasing on (u1,1) .

Therefore, the inequality

MMMtan(a,b) < MMMσ (a,b)

holds for all a,b > 0 with a �= b follows from (3.1) and (3.5) together with the piece-
wise monotonicity of ϕp(u) .

Case 1.3. p > 1/3. Let u = (a−b)/(a+b)→ 0+ . Then making use of (3.1) and
Taylor’s formula we obtain

log [MMMtan(a,b)]− log [MMMp(a,b)]

= log
( u

tanu

)
− 1

p
log

[
(1+u)p +(1−u)p

2

]
=

1
2

(
1
3
− p

)
u2 +o(u2). (3.9)

Equation (3.9) implies that there exists small enough ε1 > 0 such that

MMMtan(a,b) < MMMp(a,b)
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for all a,b > 0 with (a−b)/(a+b)∈ (0,ε1) .

Case 1.4. p < log2/ log(2tan1) . Then it follows from (3.2) that

ϕp(1−) > 0. (3.10)

Equation (3.1) and inequality (3.10) lead to the conclusion that there exists small enough
ε2 > 0 such that

MMMtan(a,b) > MMMp(a,b)

for all a,b > 0 with (a−b)/(a+b)∈ (1− ε2,1) .
Therefore, Theorem 3.1 follows easily from Cases 1.1-1.4 and the monotonicity

of the function p �→ MMMp(a,b) . �

THEOREM 3.2. The double inequality

MMMα2(a,b) < MMMsinh(a,b) < MMMβ2
(a,b)

holds for all a,b > 0 with a �= b if and only if α2 � 2/3 and β2 � log2/ log(2sinh1)≈
0.81109.

Proof. Since MMMsinh(a,b) and MMMp(a,b) are symmetric and homogenous of degree
1, we may assume that a > b > 0. Let u = (a− b)/(a+ b) ∈ (0,1) and p ∈ R with
p �= 0. Then (1.1) and (1.3) lead to

log[MMMsinh(a,b)]− log[MMMp(a,b)] = log
( u

sinhu

)
− 1

p
log

[
(1+u)p +(1−u)p

2

]
.

(3.11)
Let

φp(u) =: log
( u

sinhu

)
− 1

p
log

[
(1+u)p +(1−u)p

2

]
.

Then simple computations lead to

φp(0+) = 0, φp(1−) =
log2

p
− log(2sinh1), (3.12)

uφ ′
p(u) = fp(u)− u

tanhu
=: φ̂p(u), (3.13)

where fp(u) is defined as in Lemma 2.5.
We divide the proof into four cases.
Case 2.1. p = 2/3. By differentiation, it can be easily proved that

ucoshu− sinhu > 0 (3.14)

for 0 < u < 1, which follows from (ucoshu− sinhu)′ = usinhu > 0.
Let

η1(u) =
(

1+
u2

3

)
sinhu−ucoshu.
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Then it follows from (3.14) that

η ′
1(u) =

1
3
u(ucoshu− sinhu) > 0,

which in conjunction with η1(0) = 0 gives η1(u) > 0 for 0 < u < 1.
According to this with Lemma 2.5(iii) , it follows that

φ̂2/3(u) >
η1(u)
sinhu

> 0 (3.15)

for u ∈ (0,1) .
Therefore, the inequality

MMMsinh(a,b) > MMM2/3(a,b)

holds for all a,b > 0 with a �= b follows from (3.11)–(3.13) and (3.15).

Case 2.2. p = τ =: log2/ log(2sinh1). Then from (3.12) we clearly see that

φτ(0+) = 0, φτ(1−) = 0. (3.16)

As shown in Case 1.2 of Theorem 3.1, fp(u) is strictly decreasing for p∈R . This
in conjunction with Lemma 2.5(iv) and τ > 4/5 yields

φ̂τ (u) < φ̂4/5(u) < 1+
3u2

10
− u

tanhu
=: η2(u) (3.17)

for u ∈ (0,0.75] .
Making use of (2.2) and Lemma 2.4, we obtain

η2(u) = −
[

u2

45

(
3
2
−u2

)
+

∞

∑
n=3

22n

(2n)!
B2nu

2n

]

< −
∞

∑
k=1

[
24k+2

(4k+2)!
|B4k+2|− 24k+4

(4k+4)!
|B4k+4|u2

]
u4k+2

< −
∞

∑
k=1

24k+4|B4k+2|
(4k+4)!

[
(4k+3)(4k+4)

4
−

∣∣∣∣B4k+4

B4k+2

∣∣∣∣
]
u4k+2

< −
∞

∑
k=1

24k+2|B4k+2|[(π2−1)24k+4− (π2−4)]
π2(24k+4−1)(4k+2)!

u4k+2 < 0. (3.18)

According to (3.17) and (3.18), it follows that

φ̂τ(u) < 0 (3.19)

for u ∈ (0,0.75] .
On the other hand, twice differentiation with (3.14) yields( u

tanhu

)′′
=

2(ucoshu− sinhu)
sinh3 u

> 0,
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which yields (u/ tanhu)′ is strictly increasing on (0,1) .
By the monotonicity of (u/ tanhu)′ , it can be obtained from Lemma 2.6 that

φ̂ ′
τ(u) = f ′τ(u)−

( u
tanhu

)′
= (1− τ)gτ(u)+ τhτ(u)− sinh(2u)−2u

2sinh2 u

> (1− τ)gτ(0.75)+ τhτ(0.75)− sinh2−2

2sinh2 1
≈ 0.07448 > 0

for u ∈ (0.75,1). Combining this, φ̂τ (0.75) ≈ −0.02299 and φ̂τ (1−) = ∞ imply that
there exists u2 ∈ (0.75,1) such that φ̂τ (u) < 0 for u ∈ (0.75,u2) and φ̂τ(u) > 0 for
u∈ (u2,1) . Further, (3.13) and (3.19) make us to know that φτ (u) is strictly decreasing
on (0,u2) and strictly increasing on (u2,1) .

Therefore, the inequality

MMMsinh(a,b) < MMMτ(a,b)

holds for all a,b > 0 with a �= b follows from (3.11) and (3.16) together with the
piecewise monotonicity of φp(u) .

Case 2.3. p > 2/3. Let u = (a− b)/(a + b) → 0+ . Then utilizing the Taylor
formula, (3.1) makes us to obtain

log [MMMsinh(a,b)]− log [MMMp(a,b)]

= log
( u

sinhu

)
− 1

p
log

[
(1+u)p +(1−u)p

2

]
=

1
2

(
2
3
− p

)
u2 +o(u2). (3.20)

Equation (3.20) implies that there exists small enough ε3 > 0 such that

MMMsinh(a,b) < MMMp(a,b)

for all a,b > 0 with (a−b)/(a+b)∈ (0,ε3) .

Case 2.4. p < log2/ log(2sinh1) . Then it follows from (3.12) that

φp(1−) > 0. (3.21)

Equation (3.1) and inequality (3.21) lead to the conclusion that there exists small enough
ε4 > 0 such that

MMMsinh(a,b) > MMMp(a,b)

for all a,b > 0 with (a−b)/(a+b)∈ (1− ε4,1) .
Therefore, Theorem 3.2 follows easily from Cases 2.1-2.4 and the monotonicity

of the function p �→ MMMp(a,b) . �
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