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COMPLETE MOMENT CONVERGENCE FOR WEIGHTED SUMS OF
m—-ASYMPTOTIC NEGATIVELY ASSOCIATED RANDOM VARIABLES

XIN DENG, FENBING ZHOU, YI WU AND XUEJUN WANG*

(Communicated by T. Buri¢)

Abstract. In the paper, we establish the complete moment convergence and complete conver-
gence for weighted sums of arrays of rowwise m -asymptotic negatively associated random vari-
ables. As an application, the strong law of large numbers for weighted sums of m-ANA random
variables is presented. The obtained results generalize the corresponding ones for NA random
variables and p* -mixing random variables.

1. Introduction

In classical probability space (Q2,.%#,P), the limit properties for independent ran-
dom variables have been quite mature. As data in finance, economics, telecommuni-
cations and other fields became more complex, statisticians proposed various depen-
dent variables. Recently, Wu et al. (2021) introduced a new dependent structure: -
asymptotic negatively association (m-ANA, for short).

Now, let us recall the concepts of other related dependent structures before we
present the definition of m-ANA. The first one is the concept of negatively associated
(NA, for short) random variables, which was introduced by Joag-Dev and Proschan
(1983) as follows.

DEFINITION 1.1. A finite family {X;,1 < i< n} of random variables is defined
as NA, if for every pair of disjoint subsets A and B of {1,2,---,n},

Cov(fi(Xi,icA), f2(X;,j€B)) <O,

whenever f; and f, are coordinate-wise increasing functions such that the covariance
above exists. An infinite family of random variables is NA, if every finite subfamily is
NA.

Another important concept of dependent random variables is p*-mixing, which
was introduced by Bradley (1992) as follows.
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DEFINITION 1.2. A sequence {X,,n > 1} of random variables is called p*-
mixing, if the mixing coefficient

p*(s) =sup{p(S,T): S, T C N,dist(S,T) > s} — 0, as s — oo,
where

p(S,T)= Sup{ |EV);§;)E§§(YY> X el(o(S)),Y e LQ(G(T))},

dist(S,7) = minjes jer |j—i|, 0(S) and o(T) are the o -fields generated by {X;,i € S}
and {X;,j € T}, respectively.

Since the concepts of NA and p*-mixing random variables were introduced, a
number of useful limit results have been established by many authors. For NA random
variables, we refer to Matula (1992) for three series theorem and Kolmogorov type
inequality, Shao and Su (1999) for the law of the iterated logarithm, Shao (2000) and
Yang (2001) for Rosenthal-type moment inequality, Wang et al. (2011) for the strong
limit theorems and so on. For p*-mixing random variables, we refer the readers to
Peligrad and Gut (1999), Utev and Peligrad (2003), Wu and Jiang (2008), Sung (2013),
Wu et al. (2017) and among others.

Zhang and Wang (1999) introduced the following concept of asymptotically neg-
atively associated (ANA, for short) random variables.

DEFINITION 1.3. A sequence {X,,n > 1} of random variables is said to be ANA
(or p~ -mixing) if

p(s) =sup{p~(S,T):S,T C N,dist(S,T) > s} — 0, as s — oo,
where

Cov(f1(Xi,i€5), L(X;,j€T))
VVar(fi(Xi,i €8)) - Var(f2(Xj,j€T))

P_(S,T)ZO\/{ :f17f26<€}7

% 1is the set of nondecreasing functions.

It is obvious that p~(s) < p*(s) and a sequence of ANA random variables is NA if
and only if p~(1) = 0. Thus, the class of ANA random variables includes NA random
variables and p*-mixing random variables as special cases. Therefore, it has attracted
more and more attention from many statisticians, and many meaningful results have
been established. For example, Zhang and Wang (1999) established some Rosenthal
type inequalities and discussed the convergencerates in the strong law of large numbers;
Zhang (2000a) showed a functional central limit theorem; Zhang (2000b) investigated
the central limit theorems under lower moment conditions or the Lindeberg condition;
Wang and Lu (2006) established some inequalities for the maximum of partial sums
and weak convergence; Wang and Zhang (2007) investigated the law of the iterated
logarithm; Liu and Liu (2009) showed moments of the maximum of normed partial
sums; Yuan and Wu (2010) obtained the limiting behavior of the maximum of partial
sums; Ko (2014) established the Hdjek-Rényi inequality and the strong law of large
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numbers; Tang et al. (2018) studied the asymptotic normality of the wavelet estimator
in the nonparametric regression model, and so forth. It is worth noting that NA and p*-
mixing are both ANA. However, the converse is not always true, and Zhang and Wang
(1999) gave an example of ANA random variables which is neither NA nor p*-mixing.

The following concept of m-ANA random variables, which was introduced by Wu
et al. (2021), is a natural extension of ANA random variables.

DEFINITION 1.4. Let m > 1 be a fixed integer. A sequence {X,,n > 1} of ran-
dom variables is said to be m-ANA if for any n > 2 and any iy,i,...,i, such that
lix —ij| > m forall 1 <k# j<n,wehavethat X; ,X;,,...,X;, are ANA.

Anarray {Xp;,1 <i<n,n>1} of random variables is said to be rowwise m-ANA
if forevery n > 1, {X,;,1 <i< n} are m-ANA random variables.

It is easy to see that if m = 1, then a sequence of m-ANA random variables is
ANA. Moreover, since NA implies ANA, then m-NA, the concept of which was first
proposed by Hu et al. (2009), implies m-ANA. Consequently, studying the limit prop-
erties of m-ANA random variables is of great interest. Wu et al. (2021) also estab-
lished a general result on complete moment convergence for weighted sums of m-ANA
random variables, and provided some applications in nonparametric models and con-
ditional Value-at-risk estimator. To the best of our knowledge, there are few results
for m-ANA random variables. In the paper, we will further investigate the complete
moment convergence for arrays of rowwise m-ANA random variables. Recently, Sung
(2011) established the following complete convergence for weighted sums of NA ran-
dom variables.

THEOREM A. Let {X,,n > 1} be a sequence of identically distributed NA random
variables, and let {ani,1 <i<n,n > 1} be an array of real constants satisfying

n

Y ani|* = O(n) (1.1)

i=1

for some 0 < o0 < 2. Let b, =n'/%(ogn)'/? for some y> 0. Furthermore, suppose
that EX; =0 for l <a <2.1If

E|Xi]|* < oo Sfor o >,
E|X{|*log(1+1X1]) <o fora=v,
EX|" <o fora <,

then
21

2 —P | max
“in 1<j<n

When o # y, Zhou et al. (2011) extended Theorem A for NA random variables
to the case of p*-mixing random variables satisfying

J
aniXi
~

1

> sbn> < oo forall € > 0.

>, a1 = O(n)

i=1
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by using a different method. Sung (2013) obtained that the case & = y of Theorem A
holds true for p*-mixing random variables. This is an open problem left by Zhou et al.
(2011).

In this paper, under the same conditions of Theorem A, we will further investigate
the stronger limit properties: complete moment convergence. The concept of complete
moment convergence was introduced by Chow (1988). Let {X,,n > 1} be a sequence
of random variables and a,, b,, g > 0. If

Y a,E{b,'|X,| — €}% < ooforalle >0,

n=1

then {X,,,n > 1} is said to be complete moment convergent. It is easy to show that it is
a more general concept than complete convergence, which was introduced by Hsu and
Robbins (1947).

Our purpose of this paper is to establish the complete moment convergence for
weighted sums of arrays of rowwise m-ANA random variables . The result obtained in
the paper extends Theorem A from complete convergence for NA random variables and
p*-mixing random variables to complete moment convergence for m-ANA random
variables. As a corollary, we present the strong law of large numbers for weighted
sums of m-ANA random variables.

Throughout the paper, C denotes a positive constant which may be different in
various places. Let logx = Inmax(x,e) and I(A) be the indicator function of the set A.
Denote xT =xI(x > 0),and x~ =xI(x<0). a, = O(b,) stands for a, < Cb,.

2. Main results

To prove the main results of the paper, we need the following important lemmas.
The first one is a basic property for m-ANA random varibales, which can be referred
to Remark 1.2 of Wu et al. (2021).

LEMMA 2.1. Let random variables X,X,...,X,, be m-ANA, and fi,f>,...,fn
be all nondecreasing (or nonincreasing) functions, then random variables f(X1), f»(X2),
oy Jfn(Xy) are m-ANA.

The next lemma is the Rosenthal-type maximum inequality for m-ANA random
varibales, which can be obatined in Lemma 3.2 of Wu et al. (2021).

LEMMA 2.2. Suppose that {X;,i > 1} is a sequence of m-ANA random variables
with EX; =0, E|Xi|P < e for some p > 2. Then there exists a positive constant C
depending only on m, p, and p~(-) such that forall n > 1,

n n p/2
<C E|X;|P EX?
(gg;gn ) ; 1Xil +<Zl )

Now, we state the main results of this paper.

zx
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THEOREM 2.1. Let {X,;,X,1 <i<n,n> 1} be an array of rowwise m-ANA
random variables with identical dzsmbunon, and let {ay;,1 <i<n,n>=1} beanarray
of constants satisfying (1.1) for some 0 < a0 < 2. Assume that b, = nl/“(logn)l/y for
some ¥y >0,and EX =0 for |l <a <2.If

E|X|* < oo foro >,
E|X|*log(1+|X]) <o foroa=y, (2.1
EX|V < oo foro <y,

thenfor 0 <g< o
il —— max Zam ni
“in b 1<j<n

From the proof of Theorem 2.1, we can obtain the following result of complete
convergence.

q
— 8) < oo forall € > 0. (2.2)
+

THEOREM 2.2. Let {X,i,X,1 <i<n,n>1} be an array of rowwise m-ANA
random variables with identical dzsmbunon and let {ay,1 <i<n,n>=1} beanarray
of constants satisfying (1.1) for some 0 < a < 2. Assume that b,, = nl/“(logn)l/y for
some ¥ >0, and EX =0 for 1 < o < 2. If(2.1) holds, then

2. (m Sk

nln

>£b><°°f0rall£>0.

REMARK 2.1. Under the conditions of Theorem 2.1, we can obtain that for any
e>0
) q
+
—e>1Y/ q)

> 2b s) dt

0o > E | — max a —
nz’ln (b 1<j<n 2 niXani
ol
— max
0 by 1<<n
max a
ln/ <1<j<n z ni m
n=
— o4
=¢ Z (112}2(" Zam il > 2b e)

n=1"
Hence, we get that complete moment convergence implies complete convergence.

2 al’ll ni

i=1

S| =

I
M

REMARK 2.2. In Theorems 2.1 and 2.2, the assumption of identical distribution
can be weakened to stochastic domination, i.e., there exists a positive constant C such
that

P(|Xu| > x) < CP(|X] > x)

forall x>0, 1<i<nandn>1
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COROLLARY 2.1. Let {X,,X,n > 1} be a sequence of identically distributed m-
ANA random variables and {ay,n > 1} be a sequence of constants satisfying (1.1) for
some 0 < o0 < 2. Assume that b, = nl/“(logn)l/y for some y >0, and EX =0 for

1 <o <2.If(2.1) holds, then

1
b_ aiX;i — 0a.s., asn — oo,

Il M=

3. Proofs of main results

In this section, we give the detailed proofs of our main results.
Proof of Theorem 2.1. For all € > 0, we have

| q
E (— max —8)
+

J

anani
by 1<j<n |

=

- 1 [ 1
=Y-[| P|l=— niXni| — € > 119 | dr

PEy <bn s S| > )

> 1 ! 1
=Y -/ prl— piXni| —& > 119 ) dr

,;n/O (bn lrg./g Ea ~ )

+il/wP L max |3 an| — & > 11/ )

2o P\ by (5| & i
1/q

nz'll’lP (1@]21?;1 Zam ni >8b> P ll’l/ (fgjai(n Zam ni| > byt )

=L+ (3.1)

To prove (2.2), it is sufficient to show that I} < o and I < oo.

Next, we give the proof of I} < eo. Without loss of generality, assume that Y7 | a,;|*
< n, and a,; > 0 (otherwise we shall use a - and a,; instead of a,;, and note that
an =a —a ). For fixed n > 1, denote for 1 i<n that

Yui= _bnl(anani < _bn) +ananiI(‘anani‘ < bn) + bnl(anani > bn)a

Zyi = (anani + bn)I(anani < _bn) + (anani - bn)I(anani > bn)

First, we will show that

1 J
— max | Y EY;

bu 1<jsn |5

(3.2)

— 0, as n — oo,
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For 0 < a < 1, we have by Markov’s inequality and E|X|* < oo that

j
M EY,

i=1

1
— max
by 1<j<n

1 n
< E;mym-\

< 2E|amx|1(\amx| bn) + Y P(|anX| > by)

= i=1

1 n
< 7. N a%E|X|*I(|anX| < Za E|X|*
=1 nl 1

< C(logn)~*/TE|X|* — 0, as n — oo.

For 1 < a <2, we can also obtain by EX =0 and E|X|% < e that

2 EZ,;

J
ZEYm =
=1

— max
b, 1<j<n

-
=
N

I
—_

N

N
3 - S S-
M=

ElanX |I(|anX| > by)

Il
-

an:E|X|*I(|anX| > by)

'M=

Il
—_

n
C(logn)~*"E|X|* — 0, as n — oo.

Thus, (3.2) holds true, which implies that for any € > 0 and all n large enough,

J
max | Y EY,;
1

1<j<n |5

< eby/2.

Noting that
o 1 (
Z —P [ max
S \1<j<n
<C) -P (Yni — EYy)
2P| mas, 21 = El)

= Ji+J. (3.3)

5

| n
>8bn> +Z;P <U |an1Xm|>b )

n=1"i=1

> eby /2) +CZ nzp (|aniX| > by)

For Ji, let p > max{2,y,2y/a}. It follows from Markov’s inequality, Lemma
2.1, Lemma 2.2, C, inequality and Jensen’s inequality that
J
Z(Yni - EYni)

| P
»E | max
= nby I<j<n |

p/2
oo l n = 1 n
SCY =5 ZEWi—EYil +C Y, — | Y E(Yni— EYn)®
n=1"0n = n=1"0n \ =1

Ji C
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oo l n [l 1 n 2 p/2
<Y S YEyP+C EY,;
5 S cc3 op (0)

=Jun+J2. (3.4)

Note that

M8
SR
M:

o | =
Jin < cz WEE\aniX|pl(|aniX\ <hy)+C P(|anX| > by)

I
—_

n 1

<C 2 povd EE\amX|P1(|amx\ b,)+C

I

1
| nby ;

8

2E|am-x\°‘1(|am-x\ > by)
= =1

=Jm+1112- (3.5

Actually, it is easy to show by (1.1) that

Ji2 = CE n~%(logn) O‘/YZE\amX\O‘I(\amX\O‘ > n(logn)*/?)

n=1 i=1
oo n n
<CY n2(logn) 7Y ElawX|*I | Y an|*X|* > n(logn)*/?
n=1 i=1 i=1
<Y n2(logn) /7Y ElauX|°1 (|X| > (1ogn)1/Y)
n=1 i=1
< CEn’l(logn)’a/yE\X\al<|X| > (10gn)1/7>
n=1
=CY n'(logn)" %7y E|X|*I(logk < |X| < log(k+ 1))
n=1 k=n
I k
=C Y E[X|I(logk < |X|” <log(k+1)) Y n~'(logn) /7
k=1 n=1
C'S E|X|*I(logk < |X|” < log(k + 1)) for a0 > 7,
k=1

<{C § (loglogk)E|X|*I (logk < |X|" < log(k+ 1)) for oo =y,
k=1

cy (logk)'=*/7E|X|%I (logk < |X|" < log(k+1)) for o <7,
k=1

CEIX|* < fora >y,
< JCEX|%log(1+[X|) <eo fora=y, (3.6)
CE|X|" <o for o0 < .

For j>1and n> 2, let
={1<i<n: nl/a(]—|—1) o |t <n'/ '71/‘1}.

Thus, {I,;,j > 1} are disjoint, and Ujs1nj = ={1<i<n:0<|an] <n1/°‘} It follows
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by (1.1) that

oo

nz= z‘am"a = Z Z ‘am"a Z njn ]+1

j=li€l,; j=1

Bl n(j+1)" Ztun,n JH )P+ )P/t
Jj=k

WV
M T

~.
Il
x~

ﬁlnjn(] + 1) p/a(k+ 1)p/oc—1,

\V
M

T
I}

which implies that for £ > 1,

S i P < Ck+ 1)1/
It is easily checked that

Jit C Y n~ P %(logn) P/ ElanX |PI(|awX | < n'/*(logn)'/7)
n=2 i=1

= O 1ogn) 7YY S [aul"EIXPH(JanX| < /% (logn)/)
n=2 J=li€ly;

1553

(3.7)

<czn—1 P/%(logn) p/YZﬁI P % PIOE X PI(IX| < (+ 1) %(logn)'/7)

=2 j=1

Z !(logn) p/YZﬁIn/J_”/“E\X\pI(|X| (logn)'/7)
n=2 j—l

oo

Z (logn) P/VZﬁI iiTPE|X|P
— j—l

Xl((logn)l/y< X| < (j+1)Y%(logn)'/7)
= Ji11 +J112.

If o« > v,by(3.7)and p > a, we have

8

11111 < CZ n_l(logn)_p/YE|X|pl(|X| < (IOgn)l/Y)
n=2

8

<Y n(logn) */TE|X|“I(|X| < (logn)"/7)
n=2

< CE|X|* Zn (logn) %Y < CE|X|* < oo.
n=2

(3.8)

(3.9)
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If o <7y,by(3.7)and p > y, we have
Ji < CZn (logn) " P/E|X |PI(|X| < (logn)"/7)

CEn (logn) p/72E|X|1’I(10g( —1) < |X]" < logm)
m=2

=3

<C 2 E[X|PI(log(m— 1) < [X|" <logm) Y n~(logn)P/Y

m=2 n=m

<C Y (logm)' " PIE|X |PI(log(m — 1) < |X|” < logm)

m=2

< CE|X|Y < oo (3.10)

Next, we consider Ji112. By (3.7) and (3.6), we can obtain
T <CY, n~!(logn) /7
n=2

o j
x 3t P Y EIX Pk * (logn) VT < |X| < (k+1)"/%(logn)'/7)
j=1 k=1

—CEn (logn)~P/Y

x EE\XV’I(kl/O‘(Iogn)l/V <IX| < (k+ 1) %(logn) /1) Y 41,577/
k=1 j=k

<CY n'(logn) P/

n=2

8

(k+ D'"=P/eE X |P1(k"* (logn) 'Y < |X| < (k+1)"%(logn)"/7)

~
Il
-

8

<Y nl(logn)~%Y
n=2

8

x 3 E[X|*1(k"*(logn)"/7 < [X| < (k+1)"/*(logn)"/7)
k=1

8

=C Y, n"!(logn) *TE|X|*1(|X| > (logn)"/?)
n=2

CE|X|* < oo for o0 > 7,
< S CEX|%log(1+]X]) <o fora=y, (3.11)
CEIX|V < oo fora <7y.

Combined with (3.5), (3.6), (3.8)—(3.11), Ji1 < o can be obtained immediately.
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In view of Markov’s inequality and p > 2v/o, we have

n p/2
Jip = CE . (2 [E|aX *I(|anX| < by) + b2P(|anX| >bn)]>

i=1

i=1

p/2
< no "o
< CE an <2b5 aE|aniX‘al(|aniX‘ < bn) + Ebi aEam-X|°‘>
n=1 no\i=1
< C Y nH(logn) “P/PI(E|X|*)P < . (3.12)
n=1

Therefore, according to (3.4) and (3.12), we have J; < e. In addition, similar to the
proof of Jjj2, we can get that J, < eo. This completes the proof of /; < e by (3.3).

Applying the similar method of I} < e, we prove I, < e. For fixed n > 1 and
any t > 1, denote for 1 < i< n that

Yrii = —bnll/ql(am'Xm' < —bnll/q) +a,,iX,,iI(|am-X,,i\ < bnll/q) +bnt1/’11(am-Xm- > bnll/q)7
Z;u' = (anani + bntl/q)l(anixni < —bnll/q) + (am-X,,,- — bntl/q)l(am‘Xm‘ > bntl/q).

First, we shall show that

j
!
max max EY,
21 byt 1< j<n Z{ "

— 0, as n — oo,

For 0 < o < 1, by Markov’s inequality and E|X|* < e, we can obatin that

EE

1
z>1 b,tl/a 1<,<n

1 n
I?>a1X nzl/qlgiE‘Y""|
1 & 1
- . . q
< mAX —17a ;E\amX|I(\amX| < but'9)
n
+I}1>alsz(|am-X| > byt'/4)

< o 1/(]
= ;>1 bal‘a/‘l Za E‘X‘ I(‘amx‘ bt )

1
z>1 baza/q

Za ‘E|X|*

C(logn)~ O‘/VE\X\O‘ — 0, as n — oo
For 1 < a0 <2, we can also obtain by EX =0 and E|X|* < e that

EE

EZ
=1

max max
t>1

by tl/q 1</<n r>1 but'/4 1< j<n |1

n

1 /
< _ .
< g &
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EE\amX|I(\amX| > but'/9)

<

2L1 bt l/q
o 1/q
sm t>1 batoz/q Za E|X|I(|anX| > but'9)

< C(logn “/YEXO‘—>07 as n — oo.
g

Thus, for any 7 > 1 and all n large enough,

< but'11)2,

> bntl/‘1>

(\am-xm-\ > bntl/q)> dt

max
1<j<n

ZE

which implies that

Izéz

=1

ZY

S |h‘

P max
1 1</<n

P
1 1

=

_l’_
M s
:|~

\\(:::

n

> 1 L , X
g s (fgﬂgﬂ ;(Ym-—EYm-) > byt /’1/2> dt
+Cz / ZP |@niX | > bt/ dt
n=1"
=L+ (3.13)

On the basis of ¢ < a and Jy12 < o, we have

s 1 n
Ih=CY —7 Y ElanX|I(|anX| > by)
n=1"0n ;=1

oo 1 n
<C 2 pye gE\aniX\o‘I(\aniX\ > by) < oo (3.14)

Taking p > max{2,y,2y/o}, it follows from Markov’s inequality, Lemma 2.1, Lemma
2.2, C, inequality and Jensen’s inequality that

p

) dt

j
= 1n/ bhr/a <<é z{
o . . o . " p/2
<c21/ ;2E|Y’.\sz+c21/ L (SEw)?)
e R T = S ol \&

= J31 +J3. (3.15)

To prove Jz < oo, it is sufficient to show that J3; < e and J3 < eo.
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Note that

n
S P(|aniXui| > but"/7)dt
=1

=

o | e
J31<CZ—/l

n=1"
|
= nb

+C
n 1

oo l n
p/ Y > E|aniXilPI(|aniXni| < bt/ )dt
n i=1

e / S PllaX| > but'/9)de
=171 0

=

| —

8

1

+c2nb,,/1 tp/q2E|amX| I(|anX| < by)dt

oo

+C Z nbp/l /4 ZE |anX [P1(by < |anX| < but"/?)dt

=Jan +J312+1313~

It is obvious that J3;] < e from Jy < eo. By p > g and Jy| < o, we have

oo 1 n
J312 < CE P 2E|am-XV’I(\am-X\ < by) < oo,
n= n =1

Taking t =x9,by p > & > g and Jj|» < e, we have

L 1 00 n
J3i3=C Z nbp/ xq_l_pZE\aniXWI(bn < laniX| < byx)dx
n=1 j

= 2 b / xI1- 1’2E|am |PI(by < |aniX| < bpx)dx
=110 =y

o ]
<CY — Y mi™!” P2E|an,X\P1(b < |aniX| < bp(m+1))
n= lnb” m=1 i=1
© | o o
=CY —> Y Z mi~ Y PE @, X [P1(byk < |anX| < by(k+1))
ey 1127 Sy Yo |
© | o N
:CZ P22E|amx|pl(b k< |amx‘ k+1)) quilfp
a1 bn (55 =
© | on e
SCY =5 3 Y ElanX |PI(buk < |ayiX| < by(k+ 1))k
n=1"n ;==
1

ElanX|(|anX| > by)

H]

Il

—_
S

VAN
a
Mg
M=

i=1
EE\amX|°‘I(\amx| > by) <

/A
a
M

=

I
3
=Q

T

1557



1558 X. DENG, F. ZHOU, Y. WU AND X. WANG

Hence, J3; < . Since p > 27/, we have
ol / 1 C 2 1/
— z - e Y | < q
32 Cngl n[ bgtp/q (;Eamxm| I(|an1an‘ XX bnt )

n p/2
+ 3 b2 P (|ayiXu| > bntl/q)> dt
i=1

=1 1 ([,
P i B o, -0)ag, X\ (la X | < b1/
< cgln/l o (izzlbn : E Xl I (|aniXoi| < but'4)

n p/2
+ 3 b2 O U 0, X * (| @i Xoi| > bntl/q)> dt
i=1

p/2
_ 2 oy (2— OC/qE X|¢ dt
= 1” 1 bptp/q (2 X )
< C2n71+p/2b;0‘17/2/1‘ tfap/2th.(E‘X‘a)p/2
n=1

C(E|X|%) 1’/22n (logn)~*P/?7) < oo

n=1

Combining with (3.13)—(3.15), we can obtain I, < . Therefore, the desired result
(2.2) is established by (3.1).
The proof is completed. []

Proof of Corollary 2.1. Let ayi = a; and X;;; = X; foreach 1 <i<n,n>11in
Theorem 2.2, we have that for any € > 0,

oo > max iXi| > €b
510 S e
J

Xl > Sbn>

> 8(2k+1)1/a(10g2k+1)1/y> ,

1= J
> 3 2P< max | Y aiX;

1<j<2k i D

which together with Borel-Cantelli lemma yields that as k — oo
1 J

—— - max
(25)1/(log 26) /7 1< o+ Z{

a;X;| —0a.s..

On the other hand, for any fixed 7, there always exists k such that 2k << 21 Thus
we can obtain that
n

1
ZaiXi

1
n'/*(logn)'/7 |5

— - na
(297 (log 25)1/7 1< jket

J
2 aiXi

i=1

<

—0a.s., ask — oo.
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The proof is completed. [J
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