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SOME NEW GENERALIZATIONS OF WEIGHTED DYNAMIC
HARDY-KNOPP TYPE INEQUALITIES WITH KERNELS

ESSAM AWWAD

(Communicated by G. Sinnamon)

Abstract. In this paper, we establish some new generalizations of weighted dynamic Hardy-
Knopp type inequalities with kernels on time scales and also, some new characterizations of the
weights for these inequalities in different spaces. The main results will be proved by using the
Holder inequality, the Jensen inequality and the Minkowski inequality. These inequalities (when
T = R) contain the characterization of Kaijser, Nikolova, Persson and Wedestig. Also, (when
T = N) our results are essentially new.

1. Introduction

In 1920, Hardy [&] proved the discrete inequality

= (1o P b\
Z(;;‘K’)) < (ﬁ) nglap(nL p>1, (1)

n=1

where a(n) > 0 for n > 1, a(n) € IP(N) (ie. X, a’(n) < e) and the constant
(p/(p—1))? is the best p0551ble. In [9, Theorem A] Hardy proved the integral version
of (1), by using the calculus of variations, which states that for f > 0 and integrable
over any finite interval (0,A), where A € (0,o0) and f € LP(0,0) and p > 1, then

/Ow <%/Olf(r)dr>pdit < (%)p/owfp(;t)dl. @

The constant (p/(p—1))” in (2) is the best possible. Many of generalizations have
appeared in the literature, we refer the reader to the papers [7, 11, 12, 13, 19, 24, 25],
and the books [17, 18, 20]. In [10] Hardy and Littlewood showed that the inequality
(2) holds with reversed sign when 0 < p < 1, provided that the integral fO)L f(0)dr is
replaced by [;” f(r)dr. In particular, it was proved thatif f(A) >0, [;° fP(A)dA <o,

N () s () [ 0<p<n,

Mathematics subject classification (2020): 26D10, 26D15, 34NOS.
Keywords and phrases: Hardy type inequality, Hardy-Knopp type inequalities, time scales, weighted
functions, inequalities.

© deav., Zagreb 1561

Paper IMI-15-107


http://dx.doi.org/10.7153/jmi-2021-15-107

1562 E. AWWAD

unless f = 0. Also, the constant (p/ (1 — p))? is the best possible. In 1928, Knopp [16]
proved the continuous inequality

[ (7] glnf(t)dt> ac<e [ reac. )

where f is a nonnegative and integrable function. The constant e in (3) is the best
constant. The inequality (3) is called a Knopp-type inequality. The inequality (3) can be
considered as a limit, for p tending to infinity of the classical Hardy integral inequality
(2), so for the function f!/7, we have

[ (¢ roa) acs (S25) [

,}E{L (%/ffé(z)dt)p = exp (%/flnf(z)dt) ,

while (p/(p—1))? — e as p — oo. If we replace f(¢) by f(¢)/t in (3), then we have
that

/Owexp@/ogln@dz)dcz/:exp (é/oglnf(t)dt—%/Og(lnt)dt)dg
:/Owexp (é/jlnf(t)dt—lné—kl)d{

:e/ow%exp<%/oglnf(t)dt> dg,

where fog (Inf)dt = {In{ — §. Therefore we have from (3) by replacing f(z) with

f(t)/t that
[ew (g [ msar) < [0 W

In 2002, Kaijser et al. [14] generalized (4) with a convex function and proved the
general Hardy-Knopp inequality

[o(z] gf(t)dt) %< [oven, )

where ® is a convex function on R* and f: RT™ — R™ is a locally integrable positive
function. In 2003, Cizmesija et al. [6] proved a generalization of the Hardy-Knopp
inequality (5) with two different weighted functions. In particular, it was proved that if
0<b< oo, u:(0,b) — R is a nonnegative function such that the function ¢ — u(&)/&?
is locally integrable on (0,b) and @ is convex on (a,c), where —eo < a < ¢ < oo, the

inequality . ,
[uce(; /(ff(z)dt)%< [ oeirens.

Indeed
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holds for all integrable functions f: (0,b) — R, such that f({) € (a,c) forall § € (0,b)
and the function v is defined by

:z/f%d{, for 1€ (0,b).

In 2005, Kaijser et al. [15] applied Jensen’s inequality for convex functions and Fubini’s
theorem and established an interesting generalization of Hardy’s type inequalitiy (2). In
particular, they proved that if 0 <b < eo, u:(0,b) — R and k: (0,b) x (0,b) — R are
non-negative functions, such that 0 < K(t) := [jk(t,0)d6 <, t € (0,b) and

(

@i [un5ED L < e o)

b e b de
/0 u(O)PAS(0) G < /O V()T ©)

where @ is a convex function on an interval I C R, f:(0,b) — R is a function with
values in I, and

then

1 e ¢
AFQ) = gy ) HE0)(0)a0, K(§) = ["K(E,0)a0, L < (0.)

Also, in [15] it is proved thatif 1 < p < g <o, s € (1,p) and 0 < b < oo. Furthermore
assume that @ is a convex and strictly monotone function on (a,c), —eo < a < ¢ < oo
and assumed that the general Hardy operator A; defined as following

¢ ¢
M) = 2755 [ HE0)f 06, K(D) = [ K 0)ae.

where k : R* xRT — R" is a nonnegative kernel and assume that u(¢) and v({) are
nonnegative weighted functions. Then the inequality

(f [@(Akf@))]qu(@)%f <c|[leuemnt] o

holds for all the nonnegative functions f({), a < f(§) <c¢, { €[0,b] and C > 0, if

A(s)= sup V()T (/: (kzg(’f)))q () u(;%)% =

where
—1

7}
V(G):/O ()] 7T 17T .

In this paper we consider dynamic inequalities on time scales; see [1, 2]. In [23]
Saker et al. proved that the dynamic inequality

</abu(®< a"“ ()At>qAC>l/qgc(/ahU(C)fP(C)ACy/p, 1<p<g<es,

®)
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holds for all nonnegative rd-continuous functions f on [a,b]; with a, b € T if and
only if the following condition holds

1/p*

b Va s ro(0) . p
B= sup (/ u(t)At) (/ vl? (I)At) <o, pr=—"—. (9)
a<l<b \/& a p—1

Moreover, the estimate for the constant C > 0 in (8) is given by
1/q *\ 1/p*
B<c<<1+%> <1+p—) B.
p q

The functions u and v which are nonnegative rd-continuous functions are called the
weighted functions and the condition (9) gives the characterization of these two func-
tions which leads to the validation of the inequality (8). Also in [23] they proved that
if l<p<g<oo, f€Cy([a,b]T,R) is a nonnegative function and u, v are positive
rd-continuous functions on (a,b)r, then the inequality

I/p

(/abu(C) (/be(t)At)qAC> . <C (/abU(C)fp(C)AC> 7 (10)

holds, if and only if

a({) Va , wp . 1/p* »
By = sup (/ u(t)At) (/ vlr (t)At) <oo, pt=——.
a<{<b \’a ¢ p—1

Moreover, the estimate for the constant C > 0 in (10) is given by

1/q x\ 1/p*
BI<C<<1+%> <1+p—) B..
p q

In [21] Ozkan et al. proved that if 0 < a < b < oo, u € Cyy([a,b),R) is a nonnegative
function such that the delta integral f,b %AC exists as a finite number, and

the function v is defined by

P u(¢)
W(t) = (¢ aX[(C_aﬂG@)_QAQ 1 € [a,b).

Furthermore if @ : (¢,d) — R is continuous and convex, where ¢, d € R, then the
inequality

b 1 o(¢) AL b AL
I/LC(D<7/ ftAt) S/ch)fc —, (11)
L u@e( s ron) £ < [ voeuo) £,
holds for all delta integrable functions f € C,y ([a,b),R) such that f({) € (c,d).

Also, they proved that if u € C,y ([b,*),R) is a nonnegative function and the func-
tion v is defined by

wn:léﬁgﬁgtew@y

t
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Furthermore if @ : (¢,d) — R is a continuous and convex function, where ¢, d € R,
then the inequality

/ahu(g)op (ﬁ/ﬂ“%(:)m) CA_Ca </ahv(c>d>(f(é)) cA_Ca’

holds for all delta integrable functions f € C,y ([p,°),R) such that f({) € (c,d) forall
{ € [b,e). In 2009, Ozkan and Yildirim [22] proved the time scale version of (6) and
proved that if (£, 0) € Cyy([a,b) X [a,b),R) and u € C,y(|a,b),R) are nonnegative
functions and the function v is defined by

_ /K Ct (;)CA_Ca, 1 € [a,b).

Furthermore if @ : (¢,d) — R is a continuous and convex function, where ¢, d € R,
then the inequality

[uense@.o s < oo o

holds for all delta integrable functions f € C, ([a,b),R) such that f({) € (c,d), where

t
R /ks 0)£(0)A0, K(,s) ::/k(s,O)AO.

Also, the book [2] by Agarwal, O’Regan and Saker contains some dynamic inequalities
of Hardy-Knopp type on time scales.

Our aim in this paper is to establish some new characterizations of the weights for
dynamic inequalities of Hardy-Knopp type with kernels and generalize the inequality
(6) on time scales with formula

[0 s 0.0 S ag < (B) ([ otrtona2—s0) iz,

The paper is organized as follows. In Section 2, we present some preliminaries
concerning the theory of time scales and some basic theorems needed in Section 3
where we prove the main results. Our main results (when T = R) our results give the
characterizations of inequality (6) proved by Kaijser, Nikolova, Persson and Wedestig.
Also, (when T = N) our results are essentially new. As a special case of our results on
time scales, we can get the inequality (12) proved by Ozkan and Yildirim [22].

Af(t,s)

2. Preliminaries and basic lemmas

For completeness, we recall the following concepts related to the notion of time
scales. For more details of time scale analysis we refer the reader to the two books by
Bohner and Peterson [4], [5] which summarize and organize much of the time scale
calculus. A time scale T is an arbitrary nonempty closed subset of the real numbers R.
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The derivative of the product fg and the quotient f/g (where gg® # 0) of two
differentiable functions f and g are given by

g —ng_

= (13)
88

A
(fe)* =rfAg+ 08" = fe" + f%¢°, (g) =

In this paper, we will refer to the (delta) integral which is defined as follows: If G*(¢) =
g(?), then [’ g(s)As:=G(t)—G(a). It can be shown (see [4]) that if g € C,4(T,R), then
the Cauchy integral G(z) := f,; g(s)As exists, 1o € T, and satisfies G*(¢) = g(z), t € T.

An improper integral is defined by [” g(t)Ar = limy_.. [, f g(¢)Ar, and the integration
by parts formula on time scales is given by

b b
/ (e WA = [u(t ()] —/ WAV ()AL (14)
The time scales chain rule (see [4, Theorem 1.87]) is given by
(g08)(1) =2 (8(d)) 8" (1), where d € [t,0 (1)), (15)

where it is assumed that g : R — R is continuously differentiable and 6 : T — R is
delta differentiable. A simple consequence of Keller’s chain rule [4, Theorem 1.90] is
given by

1
/ (1) + (1 =] dh (). (16

The Holder inequality, see [4, Theorem 6.13], on time scales is given by

e < | [ fmmr [ 1sraa] ow

where a, b€ T, f, g€ Cy(LLR), y> 1 and 71,4—% = 1. The special case y=v =2
in (17) yields the time scales Cauchy-Schwarz inequality.

THEOREM 1. (Jensen’s inequality) Assume that T is a time scale with a, b € T
and ¢, d € R. If h € Cy([a,b]T,R), g: [a,blr — (¢,d) is rd-continuous and ® :
(¢c,d) — R is continuous and convex, then

1 b 1 b
@(m‘/a h(l)g(f)At) < m‘/a h([)q)(g(t))At (18)

The direction of the inequality (18) will be reversed if @ is a concave function.

Let (Q,.#,ua) and (A,.Z,Aa) be finite dimensional time scale measure spaces.
We define the product measure space (Q X A, .#Z X L, la X Aa), where 4 x £ is the
product c— algebra generated by {E x F: E € .4 ,F € £} and (Up X Apr) (E X F) =

UA(E)AA(F).
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THEOREM 2. (Minkowski’s inequality [3]) Let u, v and f be nonnegative func-
tions on Q, A and Q x A, respectively. If o« > 1, then

(/QM(C) (/Af(QO)v(O)Ag)O‘AC)‘;g/ (/ £, 0)u C) A6,

19)

3. Main results
Throughout the paper, we will assume that the functions (without mentioning)
are nonnegative rd-continuous functions on [a, )|t and the integrals considered are as-

sumed to exist (finite i.e. convergent). We define the time scale interval [a,b]T by
[a,b]T := [a,b]N'T. Also, we define the general Hardy operator A as following

¢
Acf(E.s) ::ﬁ/ﬂ K(s,0)£(0)A0, K(¢ /ksG

where §, s> a and f € Cy([a,b]T,R) and k(s,0) € C,y([a, D] X [a,b]T,R) are delta
integrable and nonnegative functions.

Now, we are ready to state and prove our main results. We begin the time scale
version of the inequality (6).

THEOREM 3. Assume that T is a time scale with a, b € T, t > 1 and u, v are
nonnegative weighted functions such that

0-w0-0(] (Fegg) so ) - @

Furthermore assume that ¢,y are nonnegative functions on (¢,d), —eo < ¢ < d < oo
and  is a convex function such that

Ay(8) < 9(8) <By(), c<{<d, @n

where A, B are constants, then

[¢ urte01.0) s oag <(% ) (/ 0(7(6)) =12 Ae)t @)

holds for the nonnegative function f.
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Proof. Using (21) and Applying Jensen’s inequality (where y is convex ), we
obtain

[[¢ e a5
_/ ( /; Qk(é,@)f(@)AO) G("C()CiaAg
<n [ wf( — [rcoene)

(€ " u
<[ wotms ( [ e omirono) sz e
Applying Minkowski’s inequality on the term

v o) Q)
[ voes (/ k(Cﬁ)w(f(O))AO) 8D,

with ¢ > 1, we see that

1

b o0 S IAY
</ wemg (L Heoviene) G(C)—aM)

<wa<f<9>>(/eb(Kf£f&?,)¢> )

) 5
then
/ K'(c(0),0) (/ )k(Q@)W(f(G))AG)t G(”C()CzaAg

< / v(/(0)) </eb (Kfc%é??@))t G(MC(;:—GACYAOT

(24)
Substituting (24) into (23), we have from (20) that
[ ¢ s @02
oo [ oot ([ () )
— B [ / "y >Ae}l7
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and then by using (21), we observe that

[0 oot < (B) [ swon g

which is the desired inequality (22). The proofis complete. [J

REMARK 1. As a special case of Theorem 3, when (f = 1, A = B) and by re-

placing u(¢) and v(§) with (6(8) —a)u(¢)/(§ —a) and (6(8) —a)v()/(E —a),
respectively, we obtain (12) proved by Ozkan and Yildirim [22]

REMARK 2. When T=R, a=0, 6({)={, t=1 and A = B, we get the in-
equality (6) proved by Kaijser et al. [15].

REMARK 3. When T =N, a =1, o(n) =n+ 1, the inequality (22) reduces to
the discrete inequality

o (ot S kmy ) |
5 kG 2

m=1 n
< (g)f Lg(b(f(n))L:)] for t > 1and N € N.

In the following theorem, we characterize the weighted functions for dynamic
inequalities with kernels in different spaces.

THEOREM 4. Assume that T is a time scale with a, b€ T, 0 < p, s <1 such that
0<p<s<eoand 1 < g < eo. Also, we assume that ¢ is a nonnegative and convex
Sunction on (c,d), —eo < ¢ < d < e, and u, v are nonnegative weighted functions.
Then the inequality

([ s (0@.00 O 55— )

(0(8)—a)
1 p

<c|[orron—" s | (25)

“ (0(6)—a)r

holds for the nonnegative function f and C > 0, if
9= sup VO N A S EA N
AL= e V) VA (K(cr(cm) G -a") ==

where

vo)= [ MOl 0@ - oA
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Proof. By applying Jensen’s inequality, we get that

b AC
| @t (000 ONF 0 oy

-/ ["’ (K(o(lcm [ (G)A")]% (o(llc:(f ’ 9%
b

1 o () Pou()
</ <K<o<c>,c>/a "“’9)"’“(9”“) o@)—a*

: (
P 1 (9] » u(®)
[ e L e o) ot as eo

Define a function g such that

<k

07 (£(0)— T = 4(s(6)), @7
and then we have that

o(¢)
Aty

o(f) . :
= [ KE.0007(5(0) [V (0)] V() [(0)] (0 ()~ a0 (28)

By applying the Holder inequality (17) with y=1/p > 1 and v =1/(1 — p), (where
0 < p < 1) on the term

0))A0

o(¢)
| k0007 (0N VI (O)] VI (O) (0] (0(6) —a) e,

we obtain that
() ) )
[ k@007 @O Vo0 V) 1O (0/(6) )0
O'(C) 1 1—s p
< ( [k 0e0) [v"(enﬂe)
o(l) 1 i | I=p
([T we@rEper o o) @)

Substituting (29) into (28), we see that
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and then we have from (26) that
b g A
[ 1o @r (0. 0Fu@) 2

</ u(Cﬁ)

(30)
Since

then

(3D
Thus the function V is increasing. Applying the chain rule formula (15) on the term
s—1
V!5 (6), we observe that

{V”ﬁ(e)r = {v%(e)r - (S_p) Vi

1 A
1—p (E)VE(0), (32)
where § € [6,0(0)]. Thus by substituting (31) into (32), we see that
sp A s—p\ . sl = 1
v = (12 )vEObeIT e@-a. o

Since { < 6(0) and V is increasing, we have that

V(E) <Ve(8).

Using the facts that 0 <5, p <1 and p <s < e, where (s—1)/(1—p) <0 and
s—p >0, we see that

5

v Q) = ve(e)

P

(34)
Substituting (34) into (33), we get (note (s — p) /(1 —p) >0 ) that

el (122) oo

[v(0)] 77 (5 (8) —a)r7
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Thus

11— s=p
= ( - p) Vo, (35)
Substituting (35) into (30), we have

[16 s (00, £0F utt)

q(1-p)

(L) [(/a““’k#(c,em(g(e))[v"<e>]1p"Ae)q

ver—r u(§)
X( K(a(Z), C) (G(C)—a)AC' (36)

From (36) and the definition of g in (27), we obtain

Ag
(0(8) —a)

[ s (). 01 @)

1_ a(1-p)
Iz
S=p

y ([V"(m‘ ) @) a7

K(c().6) ) (o(§)—a)

Applying the Minkowski inequality on the term

bl ol 1 1 vi(e) o/l !
L[ ke oer(ro)——= ve(e)) 7 a0

A
X(K(a@),c) GEEDR

with ¢ > 1, we observe that

~—
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< l/bﬁ(f(@))%
u (0(60) -}

q 5 q
PN Lad (9 i (S
0)] (A;k(Q9)<K@ﬂ§%Q> (G@)_MAC) A@]. 38)

Substituting (38) into (37), we get

b q
[ ot (0. ONF 0 oy

< (&= ) l [ ohur 7>
—a)r
; Lo
(e o (VPO
on (/e k’(g"’)(mo(o,o) <a<¢>—a>AC> Ae]
q

()"
and then
([ o e@.ontue) (G(ﬁf_ )
Vi () !
s ( ) l/ o7( (5(6) _a)éAe ’
which is the desired inequality (25) with C = ( ) . The proof is com-
plete. 0

THEOREM 5. Assume that T is a time scale with a, b €T, 0 < p, s <1 such that
O0<p<s<ooandl < q<oo. Also, we assume that ¢, are nonnegative functions
on (c,d), —eo < ¢ <d <eoand Y is a convex function such that

Ay < ¢ <By, (39)

where A, B are constants and u, v are nonnegative weighted functions. Then the in-
equality
b q AL ) a
Arf(o(Q), Pu(C)———
([ s o@.00F @ 55—
»(6) !
_vr8) g
(0(6)—a)r

(40)

LA
"o (st0)

)
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holds for the nonnegative function f and C > 0, if

D(s)= sup [VO(0)]'7 (Abki(g79)<[Vc(C)} -

oclabr K(o(8),

Uy
_
N———

=
—
2
DS
TS
Q
SN~—
>
™
A
8

Proof. From (39) and by applying the Jensen inequality, we see that

A¢
o(§)—a)

u(g)

q
P

[ 1o s 0.1 u(d)

(

q b
< B} / v (A (6(£),0))]

G0 —a)
A {‘" (K(o(lc>,c> [ (O’Aeﬂ ,, (cr(uc(f L

g b 1 a(¢) 3 ()
<st | <K<a<c>,c>/a KEOwlf w”“) @) —a"*

L )
- / K%(a(g),g)J O -a @

<k

B

where
a(0)
@)= [ KOO0, @)
Define a function g such that
v (r0)— _ y(g(e). (44)
(0(8)—a)r

Substituting (44) into (43), we obtain
a({) 1
J(C)=/a k(C,0)y"((0))[v(0)] " (0(8)—a)Ab.
Note that
o) o 1—sy,0 s—1 -1
J(C)=/u k(Z,0)w"(g(0))[Vo(8)] “[V(0)] " [v(8)]  (0(0)—a)Ab. (45)

By applying the Holder inequality (17) with y=1/p > 1 and v =1/(1 — p), (where
0 < p <1)on the term

(9 . :
|k 0w (s(0) v o) (o) w0 (o (0)~a)a6,
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we see that

o —1 —1 1 1=
x(/ (C)[VG(O)]i_p[v(O)]W(G(O)—a)WAG) " (46)

Substituting (46) into (45), we observe that

p

o) s
1@< ([ B omsenve) so)

—1 1

[ —1 -
y (/a (9 [VG(Q)]TP[v(O)]]_”(G(O)_a)]_PAe) P. @7

Substituting (47) into (42), we have that

b . AC
[ o s (0.0 0
g b 1 u(¢) o(l) 1 i L q
=7 / KH(0(0),0) (0(8) —a) (/ k7 (C,0)w(5(60))[Ve(6)] AO)
a(l=p)
o(0) . y 1 -
X (A [VO’(G)}H [V(e)]ﬁ (6(9)_a)g Ae) AL 48)
Since \ ) |
v(®) —/a V()7 (o (1) —a)Tr At
then

—1 1
VA(0) = [(0)]T7 (0 (8) —a)T7 > 0. (49)
Therefore the function V is increasing. By applying the chain rule formula (15) on the
s—1
term V' 1= (0), we obtain

o A s—p A _ 1
vrEhe) = e = (122 )vBovie. oo
where § € [6,0(0)]. Thus by substituting (49) into (50), we see that
s—p A — s—1 —1 1
v = (12 ) v OberT e@-a. 6D

Since { < 6(0) and V is increasing, we have that

V() <ve(e).
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Using the facts that 0 <5, p <1 and p < s < e, where (s—1)/(1—p) <0 and
s—p >0, we see that
s—1

v (£) = vo (o). (52)
Substituting (52) into (51), we get (note (s — p) /(1 —p) >0 ) that

1 1 1

VO] > (18 v @i mer e (o) -,

l—p
and then
[ @] a0 (322) [ veen o)™ o0 -0 a0
Thus

~ (322 wewn. 63)

a(1—p P b a(¢) - - q
<st (22) 7 [ [T e onwtaton veion'F ao)
o q(é;p) u(c 1
A o et (54)
From (54) and the definition of g in (44), we obtain
bu(l) 22
[ 1o e 0(€).601F 1) gz
q(1-p) 1 q
e (1—p\ 7 b o) 1 v7 (0) o 1-s )
<Br kr(C,0)yr(f(0 V() P A6
(5=2) /(/ GOV o) Vo)
W) ey
"0 - | K0 | 3




WEIGHTED HARDY-KNOPP TYPE INEQUALITIES 1577

By applying Minkowski’s inequality on the term

1 q
' wi(f((?))%Ae] 57)

Substituting (57) into (55), we get

[ 1o (s e, ) o
a(1-p) 1 1
q l_p p b 1 V;(e)
< B? (s_p> D(s) / Wp(f(e))(a(e)—a)ll’AO]
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From (39), we have that

<R
<
=
N
N

[ 164 (00,00

and then

whic

< <§> C:Z) ol Vo (ve%)(f)a)l“ :
( /ab [0 (Acf (0(8) C))}%u(g) (G(?)c_a)>§ |

. . . . . B 1— 1-p
h is the desired inequality (40) with the constant C = ( 7;) (ﬁ) DP(s). The

proof is complete. []
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