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Abstract. In this paper, we propose and study iterative algorithms for solving the split problem:
find a common element x† ∈C satisfying

Θ(x†,y)+ 〈Fx†,y− x†〉+ψ(x†,y)−ψ(x†,x†) � 0, ∀y ∈C

and
Au ∈ Fix(S),

where S be an L -Lipschitzian quasi-pseudo-contractive operator. Weak and strong convergence
theorems are given under some mild assumptions.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H . Let Θ :C×C→R and ψ : H×H →R
be nonlinear bifunctions.

Recall that equilibrium problems aim to find an element x† ∈C such that

Θ(x†,x) � 0, ∀x ∈C, (1.1)

which have been initially introduced by Blum and Oettli [7]. Equilibrium problems
have proved very interest and useful, for they provide a novel and unified method to deal
with various problems arising in pure and applied sciences, such as image reconstruc-
tion, network, economics, finance, ecology, optimization, elasticity and transportation.
A large number of important problems can be regarded as special cases, for instance,
fixed point problem, variational inequalities, game theory and Nash equilibrium. The
iterative methods has been studied for the equilibrium problem (1.1) by many authors,
see for instance ([9], [14]–[17]).

More generally, we consider the following mixed equilibriumproblem: find x† ∈C
such that

Θ(x†,x)+ 〈Fx†,y− x†〉+ ψ(x†,x)−ψ(x†,x†) � 0, ∀x ∈C. (1.2)
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whose solutions set is denoted by EP(F) . If F ≡ 0, then the mixed equilibrium prob-
lem (1.2) becomes the following mixed equilibrium problem: find x† ∈C such that

Θ(x†,x)+ ψ(x†,x)−ψ(x†,x†) � 0, ∀x ∈C (1.3)

whose solutions set is denoted by EP(1) . These problems have been studied by many
authors, see for instance [1, 5, 11, 12, 13, 18].

Recall that, the split common fixed point problem is to find an element u ∈ H1

such that

u ∈ Fix(T ) and Au ∈ Fix(S). (1.4)

The split feasibility problem is to find an element satisfying

u ∈C and Au ∈ Q. (1.5)

The split common fixed point problem can be regarded as a generation of the
split feasibility problem which characterizes various inverse problems arising in many
real-world application problems, such as medical image reconstruction and intensity-
modulated radiation therapy. The original split feasibility problem was introduced
firstly by Censor and Elfving [24] in finite-dimensional Hilbert spaces, and has got
many attention ever since and many iterative algorithms have been presented to solve
these problems, see for example ([21], [23]–[26], [28], [30], [33]) and references therein.

Problem (1.4) was firstly introduced by Censor and Segal [27]. Note that solving
(1.4) can be translated to solve the fixed point equation

u = S(u− τA∗(I−T )Au), τ > 0.

Whereafter, Censor and Segal proposed an algorithm for directed operators. Since then,
there has been growing interest in the split common fixed point problem ([20], [22],
[29], [31], [32], [34], [38]).

Very recently, Yao et al. [10] present a new iterative algorithm for finding a com-
mon element of the set of solutions of a mixed equilibrium problem and the set of fixed
points of a nonexpansive mapping and the set of a variational inclusion in a real Hilbert
space. Yao et al. [37] proposed a new self-adaptive iterative algorithms for the split
common fixed point problem of demicontractive operators. Onjai-Uea et al. ([6]) pro-
posed the iterative algorithm to solve the problems for finding a common elements of
the set of solution of the split equilibrium problem and the fixed point of hybrid-type
multivalued mappings in Hilbert spaces.

Motivated and inspired by the above results and related literature, in the present
paper, we consider the following problem: find a common element x† ∈C satisfying

Θ(x†,y)+ 〈Fx†,y− x†〉+ ψ(x†,y)−ψ(x†,x†) � 0, ∀y ∈ C . (1.6)

and
Au ∈ Fix(S).

In order to solve the problem, we construct an iterative algorithm. Under some
mild assumptions, weak and strong convergence theorems are given.
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2. Preliminaries

In this section, we collect some tools including some definitions, some useful in-
equalities and lemmas which will be used to derive our main results in the next section.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H . Let T : C −→C be an operator. We
use Fix(T ) to denote the set of fixed points of T , that is, Fix(T ) = {x†|x† = Tx†,x† ∈
C}.

First, we give some definitions related to the involed operators.

DEFINITION 2.1. An operator T is called demicontractive if there exists a con-
stant k ∈ [0,1) such that

‖Tx− x†‖2 � ‖x− x†‖2 + k‖Tx− x†‖2,

or equivalently,

〈x−Tx,x− x†〉 � 1− k
2

‖x−Tx‖2 (2.1)

for all x ∈C and x† ∈ Fix(T ) .

DEFINITION 2.2. An operator T :C −→C is said to be quasi-pseudo-contractive
if ‖Tx− x†‖2 � ‖x− x†‖2 +‖Tx− x‖2 for all x ∈C and x† ∈ Fix(T ) .

REMARK 2.3. The class of quasi-pseudo-contractive operators [2] contains im-
portant operators such as the pseudocontractive operators, the demicontractive opera-
tors, the directed operators, the quasi-nonexpansive operators and the strictly pseudo-
contractive operators with fixed points. Such a class of operators is fundamental be-
cause it includes many types of nonlinear operators arising in applied mathematics and
optimization.

DEFINITION 2.4. An operator T : C −→ C is said to be L-Lipschitzian if there
exists L > 0 such that ‖Tx−Ty‖� L‖x− y‖ for all x,y ∈C .

Usually, the convergence of fixed point algorithms requires some additional smooth-
ness properties of the mapping T such as demi-closedness.

DEFINITION 2.5. An operator T is said to be demiclosed if, for any sequence
{xn} which weakly converges to x† , and if Txn −→ w , then Tx† = w .

DEFINITION 2.6. A sequence {xn} is called Fejér-monotone with respect to a
given nonempty set Ω if for every x† ∈ Ω ,

‖xn+1− x†‖ � ‖xn− x†‖

for ∀n � 0.
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Recall that the metric projection PC : H →C is characterized by

〈x−PCx,z−PCx〉 � 0 (2.2)

for all x ∈ H,z ∈C , and possess the following properties

〈x − y,PCx−PCy〉 � ‖PCx−PCy‖2

or ‖PCx−PCy‖2 � ‖x− y‖2−‖(I−PC)x− (I−PC)y‖2
(2.3)

for all x,y ∈ H .
Next, we adopt the following notations:
• xn ⇀ x† means that {xn} converges weakly to x† ;
• xn → x† means that {xn} converges strongly to x† ;
• ωw(xn) stands for the set of cluster points in the weak topology, that is,

ωw(xn) = {x† : ∃xn j ⇀ x†}.

DEFINITION 2.7. A bifunction ψ : H ×H → R is said to be skew-symmetric if

ψ(x,x)−ψ(x,y)−ψ(y,x)+ ψ(y,y) � 0, ∀x,y ∈ H.

The skew symmetric bifunctions can be regarded as an analog of monotonicity of
gradient and non negativity of second derivative for the convex function. Please refer
to see ([19]).

Throughout this paper, we assume that Θ : C×C → R satisfy the following con-
ditions:

(H1) Θ(x,x) = 0 for all x ∈C ;
(H2) Θ is monotone, i.e., Θ(x,y)+ Θ(y,x) � 0 for all x,y ∈C ;
(H3) For ∀y ∈C fixed, the function x → Θ(x,y) is upper-hemicontinuous, i.e.,

limsup
t→0

Θ(tz+(1− t)x,y) � Θ(x,y), ∀x,y,z ∈C, t ∈ [0,1];

(H4) For each x ∈C fixed, the function y→ Θ(x,y) is convex and lower semicon-
tinuous.

LEMMA 2.8. ([3], [4]) Let Θ : C×C → R and ψ : H ×H → R be nonlinear
bifunctions. For any r > 0 and x ∈ H , define a mapping Tr : H →C as follows:

Tr(x) = {z ∈C : Θ(z,y)+ ψ(z,y)−ψ(z,z)+
1
r
〈y− z,z− x〉� 0, ∀y ∈ C }. (2.4)

Suppose that the following conditions are satisfied:
(i) Θ satisfies condition (H1)–(H4);
(ii) ψ is skew-symmetric, convex in second argument and continuous;
(iii) For ∀x ∈ H , there exists a compact subset Dx ⊂ H and y0 ∈ C

⋂
Dx such

that, for each z ∈C\Dx,

Θ(z,y0)+ ψ(z,y0)−ψ(z,z)+
1
r
〈y0 − z,z− x〉< 0.
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Then we have the following results:
(1) For any x ∈ H , Tr(x) �= /0 and Tr(x) is single-valued;
(2) Tr is firmly nonexpansive, i.e., for any x,y ∈ H ,

‖Trx−Try‖2 � 〈Trx−Try,x− y〉;
(3) Fix(Tr) = EP(1);
(4) EP(1) is closed and convex.

LEMMA 2.9. If the sequence {xn} is Fejér monotone with respect to Ω , then we
have the following conclusions:

(i) xn ⇀ x† ∈ Ω iff ωw(xn) ⊂ Ω;
(ii) the sequence {PΩxn} converges strongly;
(iii) if xn ⇀ x† ∈ Ω , then x† = limn→∞ PΩxn .

For all x,y ∈ H , the following conclusions hold:

‖tx+(1− t)y‖2 = t‖x‖2 +(1− t)‖y‖2− t(1− t)‖x− y‖2, t ∈ [0,1],

‖x+ y‖2 = ‖x‖2 +2〈x,y〉+‖y‖2

and

‖x+ y‖2 � ‖x‖2 +2〈y,x+ y〉.

LEMMA 2.10. ([36]) If T : C → C be an L-Lipschitzian operator with L � 1 .
Then

Fix(((1− δ )I+ δT )T ) = Fix(T ((1− δ )I + δT )) = Fix(T ),

where δ ∈ (0, 1
L ) .

LEMMA 2.11. ([36]) If T :C →C be an L-Lipschitzian quasi-pseudocontractive
operator. Then we have

‖T ((1− ζ )I + ζT )x− x†‖2 � ‖x− x†‖2 +(1− ζ )‖T((1− ζ )+ ζT)x− x‖2

for all x ∈C and x† ∈ Fix(T ) when 0 < ζ < 1√
1+L2+1

.

LEMMA 2.12. ([8]) Let T : C →C be a nonexpansive mapping. Then I−T is
demi-closed at 0 , i.e. if xn ⇀ x† ∈C and xn −Txn → 0 , then x† = Tx† .

LEMMA 2.13. ([35]) Assume that {αn} is a sequence of nonnegative real num-
bers such that

αn+1 � (1− γn)αn + δn, n ∈ N,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1) ∑∞

n=1 γn = ∞;
(2) limsupn→∞

δn
γn

� 0 or ∑∞
n=1 |δn| < ∞.

Then limn→∞ αn = 0.
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3. Main results

Throughout the present article, let H1 and H2 be two real Hilbert spaces. We
use 〈·, ·〉 to denote the inner product, and ‖ · ‖ stands for the corresponding norm.
Let S : H2 −→H2 be an L -Lipschitzian quasi-pseudo-contractive operator with L > 1.
Denoted the fixed point sets of S by Fix(S) . Let F : C → H1 be an be a α -inverse
strongly monotone. Let A : H1 −→ H2 be a bounded linear operator with its adjoint
A∗ . Let B : H1 −→ H1 is a strong positive linear bounded operator with coefficient μ .

Throughout, assume

Ω = {u|u ∈ EP(F) and Au ∈ Fix(S)} �= /0

which is the set of solutions of problem (1.6).

REMARK 3.1. In the light of Lemma 2.8, it can be seen easily that

EP(F) = Fix[Tr(I− rF)].

ALGORITHM 3.2. First, we select an initial element x1 ∈C . Assume xn has been
given. Compute

Θ(un,y)+ 〈Fxn,y−un〉+ ψ(un,y)−ψ(un,un)

+
1
r
〈y−un,un− xn)〉 � 0, ∀y ∈ C ,

vn = {I−S[(1−ηn)I + ηnS]}Axn, 0 < ηn <
1√

1+L2 +1
,

wn = xn−un +A∗vn,

(3.1)

where r > 0 is a constant in (0,2α) . If

‖wn‖ = 0, (3.2)

then stop; otherwise, compute {xn+1} by the following manner

xn+1 = PC(xn− τnwn), (3.3)

where

τn = λn
‖xn−un‖2 +‖vn‖2

‖wn‖2 , λn > 0. (3.4)

PROPOSITION 3.3. ‖wn‖ = 0 ⇔ xn ∈ Ω .

Proof. Assume ‖wn‖ = 0. For any x† ∈ Ω , we have

0 = 〈wn,xn − x†〉
= 〈xn−un +A∗vn,xn− x†〉
= 〈xn−Tr(xn− rFxn),xn − x†〉

+ 〈A∗[I−S((1−ηn)I + ηnS)]Axn,xn− x†〉

(3.5)
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Since Tr is firmly nonexpansive and F is α -inverse strongly monotone, we have

‖Tr (x− rFx)−Tr(y− rFy)‖2

� ‖x− rFx− (y− rFy)‖2

� ‖x− y‖2 + r(r−2α)‖Fx−Fy‖2

� ‖x− y‖2.

(3.6)

In particular, Tr(I− rF) is nonexpansive on C . Since x† = Tr(I− rF)x† , we have

〈xn −Tr(xn − rFxn),xn− x†〉 � 1
2
‖xn−Tr(xn− rFxn)‖2. (3.7)

By lemma 2.11, we obtain that S((1−ηn)I +ηnS) is demicontractive, from (2.1),
we deduce

〈A∗ [I−S((1−ηn)I + ηnS)]Axn,xn − x†〉
= 〈[I−S((1−ηn)I + ηnS)]Axn,Axn−Ax†〉
� ηn

2
‖Axn−S((1−ηn)I + ηnS)Axn‖2.

(3.8)

By(3.5), (3.7) and (3.8) we get

0 = 〈wn,xn − x†〉
� 1

2
‖xn−Tr(xn− rFxn)‖2

+
ηn

2
‖(I−S((1−ηn)I + ηnS))Axn‖2

(3.9)

which implies

‖xn−Tr(xn − rFxn)‖ = 0 (3.10)

and

‖(I−S((1−ηn)I + ηnS))Axn‖ = 0. (3.11)

Equivalently,
xn ∈ Fix(Tr(I− rF)) = EP(F)

and
Axn ∈ Fix(S((1−ηn)I + ηnS)) = Fix(S).

Therefore, xn ∈ Ω . �

If Algorithm 3.2 does not terminate in a finite number of iterations. We have the
following theorem.
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THEOREM 3.4. Suppose that I − S is demiclosed at zero. If Ω �= /0 and the fol-
lowing conditions are satisfied:

(C1) 0 < η � ηn < 1√
1+L2+1

;

(C2) 0 < liminfn→∞ λn � limsupn→∞ λn < min{1,η} .
Then the sequence {xn} generated by Algorithm 3.2 converges weakly to a solu-

tion z∗(= limn→∞ PΩ(xn)) .

Proof. Firstly, we prove that the sequence {xn} is Fejér-monotone with respect to
Ω . From (3.9), for z� ∈ Ω , we have

0 = 〈wn,xn− z�〉
� 1

2
‖xn−Tr(xn− rFxn)‖2 +

ηn

2
‖(I−S((1−ηn)I + ηnS))Axn‖2

� 1
2

min{1,η}(‖xn−Tr(xn − rFxn)‖2 +‖(I−S((1−ηn)I + ηnS))Axn‖2)

=
1
2

min{1,η}(‖xn−un‖2 +‖vn‖2).

(3.12)

According to (3.2), (3.3), (3.4) and (3.12), we derive

‖xn+1 − z�‖2

= ‖PC(xn − τnwn)− z�‖2

� ‖xn− z�− τnwn‖2

= ‖xn− z�‖2−2τn〈wn,xn − z�〉+ τ2
n‖wn‖2

� ‖xn− z�‖2−min{1,η}λn(‖xn−un‖2 +‖vn‖2)2

‖wn‖2

+
λ 2

n (‖xn−un‖2 +‖vn‖2)2

‖wn‖2

= ‖xn− z�‖2−λn[min{1,η}−λn]
(‖xn−un‖2 +‖vn‖2)2

‖wn‖2 .

(3.13)

Consequently, the sequences {xn} is Fejér-monotone and the sequence {xn} and {Axn}
are bounded.

Next, we show ωw(xn) ⊂ Ω . Further, from (3.13), we obtain

λn[min{1,η}−λn]
(‖xn−un‖2 +‖vn‖2)2

‖wn‖2 � ‖xn− z�‖2−‖xn+1− z�‖2 (3.14)

which implies that

lim
n→∞

(‖xn−un‖2 +‖vn‖2)2

‖wn‖2 = 0. (3.15)

This together with the boundedness of the sequence {un} implies that

lim
n→∞

‖xn−un‖ = 0 ⇔ lim
n→∞

‖xn−Tr(I− rF)xn‖ = 0 (3.16)
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and

lim
n→∞

‖vn‖ = 0 ⇔ lim
n→∞

‖Axn−S((1−ηn)I + ηnS)Axn‖ = 0. (3.17)

Then,

‖Axn− SAxn‖
� ‖Axn−S((1−ηn)I + ηnS)Axn‖

+‖S((1−ηn)I + ηnS)Axn−SAxn‖
� ‖Axn−S((1−ηn)I + ηnS)Axn‖

+ ηnL‖Axn−SAxn‖.

(3.18)

From (3.17) and (3.18), we obtain

‖Axn−SAxn‖ � 1
1−ηnL

‖Axn−S((1−ηn)I + ηnS))Axn‖

(by(C1)) � 1
η
‖Axn−S((1−ηn)I + ηnS))Axn‖→ 0.

(3.19)

Owing to (3.16), Lemma 2.12 and the demiclosedness (at zero) I− S , we deduce im-
mediately ωw(xn) ⊂ Ω . To this end, the conditions of Lemma 2.9 are all satisfied.
Consequently, xn ⇀ z∗ = limn→∞ PΩxn . The proof is completed. �

Algorithm 3.2 has only weak convergence. Now, we present a new algorithm with
strong convergence.

ALGORITHM 3.5. First, we select an initial element x1 ∈C . Assume xn has been
given. Compute

Θ(un,y)+ 〈Tun +Fxn,y−un〉+ ψ(un,y)−ψ(un,un)

+
1
r
〈y−un,un− xn)〉 � 0, ∀y ∈ C ,

vn = {I−S[(1−ηn)I + ηnS]}Axn, 0 < ηn <
1√

1+L2 +1
,

wn = xn−un +A∗vn,

(3.20)

where r > 0 is a constant in (0,2α) . If

‖wn‖ = 0, (3.21)

then stop; otherwise, compute {xn+1} by the following manner

xn+1 = αnγ f (xn)+ (1−αnB)PC(xn − τnwn), (3.22)

where αn ∈ (0,1) and

τn = λn
‖xn−un‖2 +‖vn‖2

‖wn‖2 , λn > 0. (3.23)
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The following proposition is well-known. It is very useful for our main theorem.
For sake of completeness, we give the proof.

PROPOSITION 3.6. Let G : C −→ H be an L-Lipschitzian α -strongly monotone
operator. Then the following variational inequality

x† ∈C, 〈Gx†,x− x†〉 � 0, ∀x ∈C. (3.24)

has a unique solution x† .

Proof. Recall that an operator is called to be α -strongly monotone operator if

〈Gx−Gy,x− y〉� α‖x− y‖2

for some constant α > 0 and all x,y ∈C . Letting 0 < ρ < 2α
L2 , we can deduce

‖PC(x−ρGx))−PC(y−ρGy)‖2

� ‖x−ρGx− (y−ρGy)‖2

= ‖x− y‖2 + ρ2‖Gx−Gy‖2−2ρ〈x− y,Gx−Gy〉
� ‖x− y‖2 + ρ2L2‖x− y‖2−2ρα‖x− y‖2

= (1−ρ(2α −ρL2))‖x− y‖2.

(3.25)

Hence, PC(I − ρG) is a contraction on C . Hence, there exists a unique fixed point
x† ∈C satisfying PC(x† −ρGx†) = x† which is equivalent to the following variational
inequality

〈Gx†,x− x†〉 � 0, ∀x ∈C. �

If Algorithm 3.5 does not terminate in a finite number of iterations, then we show
the following theorem.

THEOREM 3.7. Suppose that I − S is demiclosed at zero. If Ω �= /0 and the fol-
lowing conditions are satisfied:

(C1) 0 < η � ηn < 1√
1+L2+1

, ρ < 1
2 , γ < μ

2ρ ;

(C2) limn→∞ αn = 0 and ∑∞
n=1 αn = +∞;

(C3) 0 < liminfn→∞ λn � limsupn→∞ λn < θ , where θ = min{1,η} .
Then the sequence {xn} generated by Algorithm 3.5 converges strongly to the

unique solution z� of the following variational inequality V I (3.26)

z� ∈ Ω, 〈(B− γ f )z†,z� − z†〉 � 0, ∀z† ∈ Ω. (3.26)

Proof. First, note that

〈Bx − γ f (x)− (By− γ f (y)),x− y〉
= 〈Bx−By,x− y〉− γ〈 f (x)− f (y),x− y〉
� μ‖x− y‖2− γρ‖x− y‖2

= (μ − γρ)‖x− y‖2

(3.27)
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and

‖Bx − γ f (x)− (By− γ f (y))‖
= ‖Bx−By‖+ γ‖ f (x)− f (y)‖
� (‖B‖+ γρ)‖x− y‖.

(3.28)

Consequently, in view of (C1) , we deduce that B− γ f is (‖B‖+ γρ)-Lipschitzian
(μ − γρ)-strongly monotone. In virtue of Proposition 3.6, the variational inequality
VI (3.26) has an unique solution denoted by z� .

Next, let hn = xn − τnwn . By (3.13), we have

‖hn− z�‖2 � ‖xn− z�‖2−λn[min{1,η}−λn]
(‖xn−un‖2 +‖vn‖2)2

‖wn‖2
(3.29)

and therefore ‖hn− z�‖ � ‖xn− z�‖ . Thus, from (3.22), we obtain

‖xn+1− z�‖ = ‖αnγ f (xn)+ (1−αnB)PChn− z�‖
� αn‖γ f (xn)−Bz�‖+‖(1−αnB)(PChn− z�)‖
� αn‖γ f (xn)− γ f (z�)‖+ αn‖γ f (z�)−Bz�‖+(1−αnμ)‖xn− z�‖
� αnγρ‖xn− z�‖+ αn‖γ f (z�)−Bz�‖+(1−αnμ)‖xn− z�‖

� αn(μ − γρ)
‖γ f (z�)−Bz�‖

μ − γρ
+[1−αn(μ − γρ)]‖xn− z�‖

� max
{‖γ f (z�)−Bz�‖

μ − γρ
,‖xn− z�‖

}
.

(3.30)

By induction, we derive

‖xn+1− z�‖ � max
{‖γ f (z�)−Bz�‖

μ − γρ
,‖x1− z�‖

}
.

Hence, {xn} is bounded and so is {Axn} .
From (3.22), we have

‖xn+1 − z�‖2

= ‖αn(γ f (xn)−Bz�)+ (1−αnB)(PChn− z�)‖2

� (1−αnμ)‖hn− z�‖2 +2αn〈γ f (xn)−Bz�,xn+1− z�〉
� (1−αnμ)‖hn− z�‖2 +2αn〈γ f (xn)− γ f (z�),xn+1− z�〉

+2αn〈γ f (z�)−Bz�,xn+1− z�〉
� (1−αnμ)‖hn− z�‖2 +2αnγρ‖xn− z�‖ · ‖xn+1− z�‖ (3.31)

+2αn〈γ f (z�)−Bz�,xn+1− z�〉
� (1−αnμ)‖hn− z�‖2 + αnγρ(‖xn− z�‖2 +‖xn+1− z�‖2)

+2αn〈γ f (z�)−Bz�,xn+1− z�〉
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(by (3.29)) � (1−αnμ)
(
‖xn− z�‖2−λn[min{1,η}−λn]

(‖xn−un‖2 +‖vn‖2)2

‖wn‖2

)

+ αnγρ(‖xn− z�‖2 +‖xn+1− z�‖2)+2αn〈γ f (z�)−Bz�,xn+1− z�〉.
Hence, we obtain

‖xn+1 − z�‖2

� 1
1−αnγρ

{
[1−αn(μ − γρ)]‖xn− z�‖2 +2αn〈γ f (z�)−Bz�,xn+1− z�〉

− (1−αnμ)λn[min{1,η}−λn]
(‖xn−un‖2 +‖vn‖2)2

‖wn‖2

}

�
[
1− αn(μ −2γρ)

1−αnγρ

]
‖xn− z�‖2

+
αn(μ −2γρ)

1−αnγρ

[2〈γ f (z�)−Bz�,xn+1− z�〉
μ −2γρ

− (1−αnμ)λn(θ −λn)
αn(μ −2γρ)

(‖xn−un‖2 +‖vn‖2)2

‖wn‖2

]

(3.32)

Set φn = ‖xn− z�‖2 and

ζn =
2〈γ f (z�)−Bz�,xn+1− z�〉

μ −2γρ
− (1−αnμ)λn(θ −λn)

αn(μ −2γρ)
(‖xn−un‖2 +‖vn‖2)2

‖wn‖2

for all n � 1. Let

α̂n =
αn(μ −2γρ)

1−αnγρ
.

It can be readily seen that

αn(μ −2γρ) < α̂n <
αn(μ −2γρ)

1−ρ

for large enough n ∈ �+ . Hence, by (C2) , we get that limn→∞ α̂n = 0 and ∑∞
n=1 α̂n =

+∞ . Then, from (3.32), we have

0 � φn+1 � (1− α̂n)φn + α̂nζn, n � 1. (3.33)

Evidently,

ζn � 2〈γ f (z�)−Bz�,xn+1− z�〉
μ −2γρ

� 2
μ −2γρ

‖γ f (z�)−Bz�‖ · ‖xn+1− z�‖.

Hence, limsupn→∞ ζn < +∞ .
Next, we show that limsupn→∞ ζn � 0. By contradiction, assume that

limsupn→∞ ζn = −ς < 0, then, ∃N such that ζn < − ς
2 for ∀n > N . It follows from

(3.33) that

φn+1 � (1− α̂n)φn + α̂nζn = φn + α̂n(ζn −φn) < φn − α̂nς
2

(3.34)
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for all n � N . Thus,

φn+1 � φN − ς
2

n

∑
i=N

α̂i.

Taking limsupn→∞ in the last inequality, we obtain

0 � lim sup
n→∞

φn+1 � φN − ς
2

∞

∑
i=N

α̂i = −∞,

which is a contradiction. Therefore, 0 � limsupn→∞ ζn < +∞ . Consequently, we can
take a subsequence {ni} such that

lim sup
n→∞

ζn = lim
i→∞

ζni

= lim
i→∞

[
− (1−αniμ)λni(θ −λni)

αni(μ −2γρ)
(‖xni −uni‖2 +‖vni‖2)2

‖wni‖2

+
2〈γ f (z�)−Bz�,xni+1 − z�〉

μ −2γρ

]
.

(3.35)

By the boundedness of the real sequence
{2〈γ f (z�)−Bz�,xni+1− z�〉

μ −2γρ

}
,

without loss of generality, we may assume the limit

lim
i→∞

2〈γ f (z�)−Bz�,xni+1− z�〉
μ −2γρ

exists. Consequently, from (3.35), the following limit also exists

lim
i→∞

− (1−αniμ)λni(θ −λni)
αni(μ −2γρ)

(‖xni −uni‖2 +‖vni‖2)2

‖wni‖2 .

This together with conditions (C1) , (C2) and (C3) implies that

lim
i→∞

(‖xni −uni‖2 +‖vni‖2)2

‖wni‖2 = 0, (3.36)

which yields limi→∞ ‖xni − uni‖ = 0 and limi→∞ ‖vni‖ = 0. By a similar proof as in
Theorem 3.4, we conclude that any weak cluster point of {xni} belongs to Ω . Note
that

‖xni+1 − xni‖
= ‖αniγ f (xni)+ (1−αniB)PChni − xni‖

(by xni ∈C) � αni‖γ f (xni)−Bxni‖+(1−αniμ)‖PChni −PCxni‖
� αni‖γ f (xni)−Bxni‖+(1−αniμ)‖hni − xni‖
� αni‖γ f (xni)−Bxni‖+ τni‖wni‖

� αni‖γ f (xni)−Bxni‖+ λni

‖xni −uni‖2 +‖vni‖2

‖wni‖
→ 0 (by(3.36)),

(3.37)
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this indicates that ωw(xni+1) ⊂ Ω . Without losing generality, we assume that

xni+1 ⇀ z† ∈ Ω.

Now, by (3.35), we infer that

lim sup
n→∞

ζn = lim
i→∞

ζni

= lim
i→∞

[
− (1−αniμ)λni(θ −λni)

αni(μ −2γρ)
(‖xni −uni‖2 +‖vni‖2)2

‖wni‖2

+
2〈γ f (z�)−Bz�,xni+1 − z�〉

μ −2γρ

]

� lim
i→∞

2〈γ f (z�)−Bz�,xni+1− z�〉
μ −2γρ

=
2〈γ f (z�)−Bz�,z† − z�〉

μ −2γρ

� 0

(3.38)

owing to the assumption that z� is the unique solution of VI (3.26). Applying Lemma
2.13 and (3.38) to (3.33), we conclude that xn → z� .

This completes the proof. �
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