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PERTURBATION STRATEGY FOR SPLITTING OPERATOR METHOD

TO SOLVE THE SET–VALUED VARIATIONAL INEQUALITIES

SALAHUDDIN

(Communicated by J. K. Kim)

Abstract. In this paper, we suggest a new perturbation strategy for a splitting operator method for
solving the set-valued variational inequalities with strongly monotone and compact mappings,
under the mild condition, and prove the global convergence of the method. Also, we discuss the
self-adaptive strategy and find the approximate solution of the set-valued variational inequality
problems.

1. Introduction

Let Ω be a nonempty closed convex subset of n -dimensional Euclidean space R
n

and T : R
n −→ 2R

n
be a continuous mapping. 2R

n
denotes the family of all nonempty

subsets of R
n . We consider the set-valued variational inequality problem, which is to

find a vector u∗ ∈ Ω such that

(T (u∗))�(u−u∗) � 0, ∀u ∈ Ω. (1.1)

We note that, if T is a single-valued mapping from R
n to R

n , then (1.1) reduces to a
classical variational inequality problem studied by G. Stampacchia [1].

The set-valued variational inequalities have important applications in mathemati-
cal programming, economics, transportation and structural analysis; e.g., see [2, 3, 4,
5, 6, 7, 8]. When T has explicit expression, there are various numerical methods that
have been studied by many researchers; e.g., see [9, 10, 11, 12, 13], the required method
is based on monotonicity properties of T . In this case, when T is only monotone and
even non-monotone, one of the classical perturbation strategies is the Tikhonov regular-
ization approach which solves the perturbed set-valued variational inequality problem

(T (u∗)+ εu∗)�(u−u∗) � 0, ∀u ∈ Ω, (1.2)

where ε is a positive parameter, see [14]. The solution of the original problem is ob-
tained by letting ε −→ 0.
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However, in many applications, the mapping T can be split into two set-valued map-
pings and one part of T is known. That is,

T (u) ≡ F(u)+G(u),

where F is unknown, F and G are two set-valued mappings from R
n to 2R

n
. For-

tunately, for any given G(u�) , the solution u� of the set-valued variational inequality
problem

(F(u�)+G(u�))�(u− u�) � 0, ∀u ∈ Ω, (1.3)

can be obtained. Under the certain assumption, we can solve the problem by using the
information in (1.3) and the problem is explicit structure. Under the assumption F and
G are strongly monotone, they proved the global convergence of the method. Utilize
an operator splitting method, first getting the solution of (1.3) from the oracle and then
solving the following system of nonlinear equations to obtain the next iteration {u�+1} :

ϑ�(u) = 0, (1.4)

ϑ�(u) = u+ λG(u)−u�−λG(u�)+ α(u�− u�), (1.5)

λ and α are two parameters and {u�} is the current iterate. The problem (1.3) can
also be regarded as a perturbation of the underlying mapping from F +G to F +G+
(G(u�)−G). From the given assumption, F is strongly monotone and G is monotone,
they proved the global convergence of the method.

In this paper, we consider a new perturbation strategy where the underlying map-
ping from F + G to F + G + (G(u�)−G), we also add the regularization term to a
proximal point algorithm regularization term [15]. The resulted perturbation form of
(1.3) is

(
F(u�)+G(u�)

)�
(u− u�)+

(
1
λ

(u�−u�)
)�

(u− u�) � 0, ∀u ∈ Ω, (1.6)

where λ is a positive parameter. Another perturbation technique for solving a varia-
tional inequality problem is the Tikhonov regularization [13, 16]. When applied to the
variational inequality problem (1.3), it leads to solving the following problem

(
F(u�)+G(u�)

)�
(u− u�)+

(
ε�u

�
)�

(u− u�) � 0, ∀u ∈ Ω, (1.7)

where {ε�} is a sequence of positive parameters. By letting ε� −→ 0, we can get a
solution of the subproblem (1.3). Comparing (1.6) with (1.7), the coefficient 1

λ of our
regularization term is not required to tend to 0, which is important from the numeri-
cal point of view, since it provides more flexibility in choosing the parameter. Hence,
our algorithm is different from the proximal point algorithm and the Tikhonov regular-
ization algorithm. To improve the efficiency of the algorithm, we also adopt the two
strategy as in [17, 18].
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The first strategy is that the system of nonlinear equations are approximately solve.
Note that it is expansive or even impossible to find the exact solution of (1.4). Hence,
we find an approximate solution which satisfies the condition

‖ϑ�(u�+1)‖ � η�‖u�− u�‖, (1.8)

where {η�} is a nonnegative sequence satisfying

∞

∑
�=0

η2
� < +∞.

The second strategy is to use a varying parameter λ� and choose it self-adaptively. The
computational results in [19, 20, 21] indicated that the operator splitting algorithms with
fixed parameters may converge very slowly, and He et al. [20], Han [21] suggested to
choose the parameters self-adaptively.

Throughout this paper, we make the assumption that the solution of set-valued
variational inequality, denoted by Ω∗ , is nonempty, we know that the solution set Ω∗
is nonempty when the underlying mapping T is strongly monotone and compact if Ω
is compact.

The rest of this paper is organised as follows. In section 2, we summarize some
fruitful concepts and definitions. In section 3, we first describe our exact version of
operator splitting method with perturbation strategy, and then prove its global conver-
gence under certain mild assumption. In section 4, we discuss the self-adaptive strategy
and last section we find the approximate solution of set-valued variational inequality
problems.

2. Preliminaries

For any vector u,v ∈ R
n , u�v is their inner product is define by Euclidean norm

‖u‖ =
√

u�u . PΩ(·) denotes the projection under the Euclidean norm of a point onto
Ω , i.e.

PΩ(v) = argmin{‖v−u‖ | u ∈ Ω},
where Ω is a nonempty closed convex subsets of R

n . The property of the projection
mapping is

(w−PΩ(v))�(v−PΩ(v)) � 0, ∀v ∈ R
n, w ∈ Ω (2.1)

and PΩ is nonexpansive, i.e.

‖PΩ(u)−PΩ(v)‖ � ‖u− v‖, ∀u,v ∈ R
n. (2.2)

It is well known [22] that solving the set-valued variational inequality is equivalent to
solving the projection equation

u = PΩ[u−λT(u)],

where λ is an arbitrary positive constant. Hence, solving the set-valued variational
inequality amounts to finding a zero point of the continuous non-smooth function

ϕ(u,λ ) = u−PΩ[u−λT(u)]. (2.3)
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LEMMA 2.1. [23] For a given u ∈ R
n , let λ̃ � λ > 0. Then it holds that

‖ϕ(u, λ̃)‖ � ‖ϕ(u,λ )‖ (2.4)

and
‖ϕ(u, λ̃)‖

λ̃
� ‖ϕ(u,λ )‖

λ
. (2.5)

DEFINITION 2.2. A set-valued operator T : Ω −→ 2R
n

is said to be

(i) monotone, if
(u− v)�(T (u)−T(v)) � 0,∀ u,v ∈ Ω;

(ii) strongly monotone with modulus μ > 0, if

(u− v)�(T (u)−T(v)) � μ‖u− v‖2,∀ u,v ∈ Ω;

(iii) inverse strongly monotone with modulus μ > 0, if

(u− v)�(T (u)−T(v)) � μ‖T (u)−T(v)‖2,∀ u,v ∈ Ω;

(iv) Lipschitz continuous with respect to constant ζ > 0, if

‖T (u)−T(v)‖ � ζ‖u− v‖, ∀ u,v ∈ Ω.

DEFINITION 2.3. A set-valued operator T : Ω−→ 2R
n

is said to be Ĥ -Lipschitz
continuous if there exists a constant δ > 0 such that

Ĥ (T (u),T (v)) � δ‖u− v‖, ∀u,v ∈ Ω,

where Ĥ : 2R
n ×2R

n −→ (−∞,+∞)
⋃{+∞} is the Hausdorff metric, i.e.

Ĥ (A,B) = max{sup
u∈A

inf
v∈B

‖u− v‖,sup
u∈B

inf
v∈A

‖u− v‖}, ∀A,B ∈ 2R
n
.

3. Convergence theory

In this section we describe an algorithm and prove its global convergence.

ALGORITHM 3.1.

Step 0. Choose an arbitrary initial point u0 ∈ Ω , ε > 0, 2 > αmax > α0 > 0, λ0 > 0,
and a nonnegative sequence {τ�} satisfying

∞

∑
�=0

τ� < +∞. (3.1)

Set � = 0.
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Step 1. For given {u�}, observe the system at an equilibrium state to obtain a solution
of the following set valued variational inequality problem

(F(u�)+G(u�)+
1
λ�

(u� −u�))�(u− u�) � 0, ∀u ∈ Ω. (3.2)

Step 2. Choose αmax � α� � α0 and solve the following system of nonlinear equa-
tions to get the next iterate {u�+1}

u�+1 + λ�G(u�+1) = u� + λ�G(u�)−α�(u�− u�) (3.3)

and
Ĥ (G(u�+1),G(u�)) � δ‖u�+1−u�‖.

Step 3. If
‖u�+1−u�‖ � ε, stop,

otherwise choose a new parameter

λ�+1 ∈
[

1
1+ τ�

λ�,(1+ τ�)λ�

]
.

Set � = �+1 and go to Step 1.

Since F is assumed to be monotone, the mapping F� define by

F�(u) ≡ F(u)+G(u�)+
1
λ�

(u−u�)

is strongly monotone. Consequently, (3.2) possesses a unique solution and we can
observe the system to get the solution. Moreover, since G is monotone, the operator
I +λ�G is strongly monotone with modulus 1 for any parameter λ� > 0, and there is a
unique solution of the system of equations (3.3).

REMARK 3.2. We note that, if u�+1 = u�, then, we have

u� = u�

from (3.3), and (3.2) can be rewritten as

(F(u�)+G(u�))�(u− u�) � 0, ∀u ∈ Ω, (3.4)

which means that u� is a solution of the problem (1.1). Hence, it is reasonable to use

‖u�+1−u�‖ � ε

as the stopping criterion. If
‖u�+1−u�‖ � ε,

then u�+1 can be regarded as an approximate solution (1.1).
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LEMMA 3.3. Assume that F and G are set-valued monotone mappings. Then the
sequence {u�} generated by Algorithm 3.1 satisfies

(u�− u�)�(u�−u∗+ λ�(G(u�)−G(u))) � ‖u�− u�‖2, (3.5)

where u ∈ Ω is an arbitrary solution of problem (1.1) with T ≡ F +G.

Proof. Setting u = u� in (3.2), we have

(F(u�))�(u∗ − u�)+ (G(u�))�(u∗ − u�)+
1
λ�

(u�−u�)�(u∗ − u�) � 0. (3.6)

Then setting u = u� in (1.1), we obtain

(F(u∗))�(u�−u∗)+ (G(u∗))�(u�−u∗) � 0. (3.7)

Adding (3.6), (3.7) and rearranging terms, we have

(G(u�)−G(u∗))�(u�− u�) � (G(u�)−G(u∗))�(u�−u∗)+ (F(u�)−F(u∗))�(u�−u∗)

+
1
λ�

(u�− u�)�(u∗ − u�)

� 1
λ�

(u�− u�)�(u∗ − u�), (3.8)

where the second inequality follows from the monotonicity of F and G . Thus

(u�− u�)�(u�−u∗+ λ�(G(u�)−G(u∗)))

= (u�− u�)�(u�−u∗)+
1
λ�

(u�− u�)�(G(u�)−G(u∗))

� (u�− u�)�(u�−u∗)+ (u�− u�)�(u∗ − u�)

= ‖u�− u�‖2. (3.9)

This completes the proof. �

LEMMA 3.4. Assume that F and G are set-valued monotone mappings, and

2 > αmax � α� � α0 > 0 for all �.

Then the sequence {u�} generated by Algorithm 3.1 satisfies

‖u�+1−u∗+ λ�(G(u�+1)−G(u∗))‖2

� ‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 −α�(2−α�)‖u�− u�‖2. (3.10)
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Proof. Using (3.3), we have

‖u�+1−u∗+ λ�(G(u�+1)−G(u∗))‖2 = ‖u�−u∗+ λ�(G(u�)−G(u∗))−α�(u�− u�)‖2

� ‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 + α2
� ‖u�− u�‖2

−2α�(u�− u�)�(u�−u∗+ λ�(G(u�)−G(u∗)))

� ‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 + α2
� ‖u�− u�‖2

−2α�‖u�− u�‖2

� ‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 −α�(2−α�)‖u�− u�‖2,
(3.11)

where the inequality follows from Lemma 3.3. Hence, proof is completed. �

REMARK 3.5. Since
0 < λ�+1 � (1+ τ�)λ�,

it follows from the monotonicity of G that

‖u�+1−u∗+ λ�+1(G(u�+1)−G(u∗))‖2 � (1+ τ�)2‖u�+1−u∗+ λ�(G(u�+1)−G(u∗))‖2

� (1+ τ�)2‖u�−u∗+ λ�(G(u�)−G(u∗))‖2

−α�(2−α�)‖u�− u�‖2. (3.12)

Denote

Sp =
∞

∏
�=0

(1+ τ�)2.

Then (3.1) implies
Sp < +∞,

and we have

{λ�} ⊂
[

1√
Sp

λ0,
√

Spλ0

]
= [λmin,λmax] ,

i.e. the sequence {λ�} is bounded.

THEOREM 3.6. Assume that F and G are set-valued monotone mappings, and

2 > αmax � α� � α0 > 0 for all �.

Then the sequence {u�} generated by Algorithm 3.1 converges to a solution of (1.1).

Proof. Using (3.12) and 2 > α� > 0, we have

‖u�+1−u∗+ λ�+1(G(u�+1)−G(u∗))‖2 � (1+ τ�)2‖u�−u∗+ λ�(G(u�)−G(u∗))‖2

�
�

∏
κ=0

(1+ τκ)2‖u0−u∗+ λ0(G(u0)−G(u∗))‖2

� Sp‖u0−u∗+ λ0(G(u0)−G(u∗))‖2 < +∞.
(3.13)
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From the monotonicity of G , the sequence {u�} is bounded. Furthermore, it follows
from (3.12) that

α�(2−α�)‖u�− u�‖2

� (1+ τ�)2‖u�−u∗+ λ�(G(u�)−G(u∗))‖2−‖u�+1−u∗+ λ�+1(G(u�+1)−G(u∗))‖2

= (‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 −‖u�+1−u∗+ λ�+1(G(u�+1)−G(u∗))‖2)

+ (2τ� + τ2
� )‖u�−u∗+ λ�(G(u�)−G(u∗))‖2. (3.14)

Summing both sides for all �, we have

∞

∑
�=0

α�(2−α�)‖u�− u�‖2 �
∞

∑
�=0

(‖u�−u∗+ λ�(G(u�)−G(u∗))‖2

−‖u�+1−u∗+ λ�+1(G(u�+1)−G(u∗))‖2)

+
∞

∑
�=0

(2τ� + τ2
� )‖u�−u∗+ λ�(G(u�)−G(u∗))‖2

�
(

∞

∑
�=0

(2τ� + τ2
� )Sp +1

)
‖u0−u∗+ λ0(G(u0)−G(u∗))‖2

< +∞, (3.15)

here the second inequality of (3.15) follows from (3.13) and the last inequality follows
from (3.1). Since {α�} is uniformly bounded away from 0 and 2, we have from (3.15)
that

lim
�−→∞

‖u�− u�‖ = 0. (3.16)

From (3.3),
lim

�−→∞
‖u�−u�+1‖ = 0.

Since {u�} is bounded, it has at least one cluster point. Let ũ ∈ Ω be a cluster point
and {u� j} be the corresponding subsequence converging to ũ . It follows from (3.16)
that {u� j} also converges to ũ . Since

Ĥ (F(u�),F(ũ)) � δ‖u�− ũ‖ = 0 as � −→ ∞

and
Ĥ (G(u�),G(ũ)) � δ‖u�− ũ‖ = 0 as � −→ ∞.

Therefore
F(u�) −→ F(ũ)

and
G(u�) −→ G(ũ).

On the other hand, (3.2) is equivalent to

ϕ(u�,λ�) = u�−PΩ[u�−λ�(F(u�)+G(u�))] = 0. (3.17)
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By using (2.4) and λ� � λmin for all � , we have that (3.17) is equivalent to

ϕ(u�,λmin) = 0. (3.18)

Hence, taking limit along this subsequence, it follows from the continuity of ϕ(·, ·) ,
‖ϕ(ũ,λmin)‖ = lim

j−→∞
‖ϕ(u� j ,λmin)‖ = 0,

which implies that ũ ∈ Ω is a solution of (1.1). The inequality (3.10) indicates that the
whole sequence {u�} has just one cluster point. Hence, {u�} converges to ũ , a solution
of (1.1). This completes the proof. �

4. Self-adaptive strategy

We showed in section 3 that if the parameter λ� satisfy

0 < λL � λ� � λU < +∞, ∀� � 0. (4.1)

Then the algorithm generates a sequence {u�} which converges to a solution of (1.1).
This means that λ� can be selected randomly provided that the condition (4.1) is ful-
filled, then the efficiency of the algorithm depends on a suitable λ�. Now, for a given
constant τ > 0,

λ�+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1+ τ�

λ�, if ρ� > 1+ τ,

(1+ τ�)λ�, if ρ� >
1

1+ τ
,

λ�, otherwise,

(4.2)

where τ� � 0, ∑∞
�=0 τ� < +∞, and

ρ� =
‖λ�(T (u�+1)−T(u�))‖

‖u�+1−u�‖ . (4.3)

From (4.2) we have

‖λ�(T (u�+1)−T(u�))‖ ≈ ‖u�+1−u�‖.
Hence, if

‖λ�(T (u�+1)−T (u�))‖ > (1+ τ)‖u�+1−u�‖,
we should decrease λ in the next iteration, otherwise we should increase λ when

‖λ�(T (u�+1)−T(u�))‖ <
1

1+ τ
‖u�+1−u�‖.

Since the mapping T is not fully known and the system of nonlinear equation (3.3)
only involved with the known part G . Therefore from the self-adaptive strategy (4.2),
(4.3), using G instead of T , we have

ρ ′
� =

‖λ�(G(u�+1)−G(u�))‖
‖u�+1−u�‖ (4.4)
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then the set

λ�+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
1+ τ�

λ�, if ρ ′
� > 1+ τ,

(1+ τ�)λ�, if ρ ′
� >

1
1+ τ

,

λ�, otherwise.

(4.5)

5. Approximate solution

Since u� is a solution of (3.2). Therefore ũ� satisfies

‖ũ�− u�‖ � η�‖u�− ũ�‖, (5.1)

we regard it as an approximate solution, where η� � 0 and
∞

∑
�=0

η2
� < +∞.

Now (3.3) can be rewritten as finding a zero point of ϑ� ,

ϑ�(u) = u+ λ�G(u)− (u� + λ�G(u�)−α�(u�− ũ�)). (5.2)

We find an approximate solution of {u�+1} which satisfies

‖ϑ�(u�+1)‖ � η�‖u�− ũ�‖. (5.3)

From above two strategies into Algorithm 3.1, we have

ALGORITHM 5.1.

Step 0. Choose an arbitrary initial point u0 ∈ Ω , ε > 0, 1 > α0 > 0, λ0 > 0, and a
nonnegative sequence {τ�} satisfying

∞

∑
�=0

τ� < +∞. (5.4)

Set � = 0.

Step 1. For given u�, observe the system at an equilibrium state to obtain an approx-
imate solution ũ� of (3.2) satisfying (5.1).

Step 2. Choose 1
2 > α� � α0 and find the next iteration {u�+1} according to (5.3).

Step 3. If
‖u�+1−u�‖ � ε,

stop, otherwise choose a new parameter

λ�+1 ∈
[

1
1+ τ�

λ�,(1+ τ�)λ�

]
,

according to the self-adaptive rule (4.4).

Set � = �+1 and go to Step 1.
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LEMMA 5.2. Assume that F and G are set-valued monotone mappings. Then the
sequence {u�} generated by Algorithm 5.1 satisfies

‖u�+1−u∗+ λ�(G(u�+1)−G(u∗))‖2

�
(

1+
8η2

�

α�

)
‖u�−u∗+ λ�(G(u�)−G(u∗))‖2−α�‖u�− u�‖2

−α�‖u�− ũ�‖2−
(

3α�

4
− α3

�

4
−α2

� −2α�η� −η2
�

)
‖u�− ũ�‖2. (5.5)

Proof. Using (5.2), we have

‖u�+1−u∗+ λ�(G(u�+1)−G(u∗))‖2

� ‖u�−u∗+ λ�(G(u�)−G(u∗))−α�(u�− ũ�)+ ϑ�(u�+1)‖2

� ‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 + α2
� ‖u�− ũ�‖2 +‖ϑ�(u�+1)‖2

−2α�

(
u�−u∗+ λ�(G(u�)−G(u∗))

)�
(u�− ũ�)−2α�(u�− ũ�)�ϑ�(u�+1)

−2
(
u�−u∗+ λ�(G(u�)−G(u∗))

)�
ϑ�(u�+1). (5.6)

For any two vectors a and b in R
n , we have

2‖a‖‖b‖� p‖a‖2 +
1
p
‖b‖2, ∀p > 0. (5.7)

Therefore

2

(
u�−u∗+ λ�(G(u�)−G(u∗))

)�
ϑ�(u�+1)

� 4η2
�

α�
‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 +

α�

4η2
�

‖ϑ�(u�+1)‖2

� 4η2
�

α�
‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 +

α�

4
‖u�− ũ�‖2, (5.8)

where the last inequality follows from (5.3).
Let u� be the solution of (3.2). Then, we have

−2α�

(
u�−u∗+ λ�(G(u�)−G(u∗))

)�
(u�− ũ�)

� −2α�‖u�− u�‖2−2α�

(
u�−u∗+ λ�(G(u�)−G(u∗))

)�
(u�− ũ�)

� −2α�‖u�− u�‖2 + α�

(
4η2

�

α2
�

‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 +
α2

�

4η2
�

‖u�− ũ�‖2
)

= −α�‖u�− u�‖2−α�‖u�− ũ� + ũ�− u�‖2

+
4η2

�

α�
‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 +

α3
�

4η2
�

‖u�− ũ�‖2
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� −α�‖u�− u�‖2−α�‖u�− ũ�‖2−α�‖u�− ũ�‖2 +2α�η�‖u�− ũ�‖2

+
4η2

�

α�
‖u�−u∗+ λ�(G(u�)−G(u∗))‖2 +

α3
�

4
‖u�− ũ�‖2, (5.9)

where the first inequality follows from Lemma 3.3, the second inequality follows from
(5.7) and last inequality follows from (5.1) Substituting (5.8) and (5.9) into (5.6) and
rearranging term, we get (5.5) immediately. This completes the proof. �

REMARK 5.3. Since
η� −→ 0 as � −→ ∞,

if we take

0 < α0 � α� <
1
2
,

then there exists �1 � 0 such that for all � � �1,

3α�

4
− α3

�

4
−α2

� −2α�η� −η2
� > 0. (5.10)

Without loss of generality, we assume that (5.10) holds for all � � 0.

THEOREM 5.4. Assume that F and G are set-valued monotone mappings and

1
2

> α� � α0 > 0 for all �.

Then the sequence {u�} generated by Algorithm 5.1 converges to a solution of (1.1).

Proof. Combining (3.12), (5.5) and the assumption 1
2 > α� � α0 > 0, we have

‖u�+1−u∗+ λ�+1(G(u�+1)−G(u∗))‖2

� (1+ τ�)2
(

1+
8η2

�

α�

)
‖u�−u∗+ λ�(G(u�)−G(u∗))‖2−α�‖u�− u�‖2

�
�

∏
κ=0

(1+ τκ)2
�

∏
κ=0

(
1+

8η2
κ

α0

)
‖u0−u∗+ λ0(G(u0)−G(u∗))‖2

� SpSη‖u0−u∗+ λ0(G(u0)−G(u∗))‖2, (5.11)

where

Sp =
∞

∏
�=0

(1+ τ�)2

and

Sη =
∞

∏
�=0

(
1+

8η2
�

α0

)
.

Since τ� > 0, η� � 0, ∑∞
�=0 τ� < +∞ , ∑∞

�=0 η2
� < +∞, we have

Sp < +∞ and Sη < +∞.
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From (5.11), we get that {u�} is bounded, and

α�‖u�− u�‖2 � (1+ τ�)2
(

1+
8η2

�

α�

)
‖u�−u∗+ λ�(G(u�)−G(u∗))‖2

−‖u�+1−u∗+ λ�+1(G(u�+1)−G(u∗))‖2. (5.12)

Summing the above sides for all � � �1 and using a similar way as (3.15), we have

∞

∑
�=�1

α�‖u�− u�‖2

�
(

∞

∑
�=0

(
(2τ� + τ2

� )
(

1+
8η2

�

α�

)
+

8η2
�

α�

)
SpSη +1

)

×‖u0−u∗+ λ0(G(u0)−G(u∗))‖2 < +∞. (5.13)

Thus
lim

�−→∞
‖u�− u�‖ = 0,

and
Ĥ (G(u�),G(u�)) � δ‖u�− u�‖ = 0, as � −→ ∞.

From the similar argument as those in Theorem 3.6, we assert that the sequence {u�}
generated by Algorithm 5.1 converges to a solution of (1.1). This completes the proof. �
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