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Abstract. In this paper, we present a new iterative algorithm for finding a common element of
the set of solutions of a split variational inequality problem, the set of fixed points of an infinite
family of nonexpansive mappings and the set of solutions of a variational inclusion problem in
Hilbert spaces. Under some mild conditions imposed on algorithm parameters, we prove that the
proposed iterative algorithm have strong convergence.

1. Introduction

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H .

In this article, our study is related to a classical variational inequality problem
(VIP) which aims to find an element x† ∈C such that

〈Bx†,x− x†〉 � 0, ∀x ∈C, (1.1)

where B : H → H is a given operator. It is well known that x� ∈ VI(B,C) if and only
if x� = PC(x� − ζBx�) , where ζ > 0, in other words, the VIP is equivalent to the fixed
point problem (see [2]).

Variational inequality problem (VIP) was introduced by Stampacchia [14] and
provide a useful tool for researching a large variety of interesting problems arising
in physics, economics, finance, elasticity, optimization, network analysis, medical im-
ages, water resources, and structural analysis. For some related work, please refer to
References ([12], [13], [15]–[22]).

The another motivation of this article is the split common fixed point problem
which aims to find a point u ∈ H1 such that

u ∈ Fix(T ) and Au ∈ Fix(S). (1.2)

The split common fixed point problem can be regarded as a generalization of the split
feasibility problem. Recall that the split feasibility problem is to find a point satisfying

u ∈C and Au ∈ Q, (1.3)
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where C and Q are two nonempty closed convex subsets of real Hilbert spaces H1

and H2 , respectively and A : H1 → H2 is a bounded linear operator. Inverse problems
in various disciplines can be expressed as the split feasibility problems and the split
common fixed point problem. Problem (1.2) was firstly introduced by Censor and Segal
[26]. Note that solving (1.2) can be translated to solve the fixed point equation

u = S(u− τA∗(I−T )Au), τ > 0.

Whereafter, Censor and Segal proposed an algorithm for directed operators. Since then,
there has been growing interest in the split common fixed point problem ([23], [25],
[27], [29]–[33]).

Now, we recall that the variational inclusion problem is to find an element x† ∈C
such that

θ ∈ D(x†)+R(x†), (1.4)

where D :C → H is a single-valued mapping, R : C → 2H is a set-valued mapping and
θ is the zero vector in H .

The set of solutions of the problem (1.4) is denoted by I(D,R) . If H = Rm , then
the problem (1.4) becomes the generalized equation introduced by Robinson ([3]). If
D≡ 0, then the problem (1.4) becomes the inclusion problem introduced by Rockafellar
([4]). It is known that the problem (1.4) provides a convenient framework for the uni-
fied study of optimal solutions in many optimization related areas including mathemat-
ical programming, complementarity problems, variational inequalities, optimal control,
mathematical economics, equilibria and game theory, etc. Also, various types of varia-
tional inclusions problems have been extended and generalized, for more details, refer
to ([6]–[11]) and the references therein.

In this article, we will study the following split variational inequality problem of
finding an element x� such that

x� ∈ Fix(S)
⋂

VI(B,C)
⋂

I(D,R) and Ax� ∈
∞⋂

n=1

Fix(Tn)
⋂

VI(F,Q). (1.5)

Subsequently, we construct a new algorithm for solving the split variational inequality
problem (1.5). Strong convergence theorems are established under some mild assump-
tions.

2. Preliminaries

In this section, we collect some tools including some definitions, useful inequali-
ties and lemmas which will be used to derive our main results in the next section.

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖·‖ , respectively.
Let C be a nonempty closed convex subset of H . Let T : C −→C be an operator. We
use Fix(T ) to denote the set of fixed points of T , that is, Fix(T ) = {u|u = Tu,u ∈C}.

First, we give some definitions related to the involed operators.

DEFINITION 2.1. An operator T : C −→C is called to be nonexpansive if ‖Tu−
Tv‖ � ‖u− v‖ for all u,v ∈C .
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DEFINITION 2.2. An operator T : C −→C is called to be firmly nonexpansive if
‖Tu−Tv‖2 � ‖u− v‖2−‖(I−T )u− (I−T )v‖2 for all u,v ∈C , or equivalently,

〈Tu−Tv,u− v〉� ‖Tu−Tv‖2 (2.1)

for all u,v ∈C .

DEFINITION 2.3. An operator T : C −→ C is called to be α -averaged, if there
exists a nonexpansive operator U such that T = (1−α)I +αU , where I is an identity
mapping.

DEFINITION 2.4. An operator T : C −→ C is said to be quasinonexpansive if
‖Tx− x†‖ � ‖x− x†‖ for all x ∈C and x† ∈ Fix(T ) , or equivalently,

〈x−Tx,x− x†〉 � 1
2
‖x−Tx‖2 (2.2)

for all x ∈C and x† ∈ Fix(T ) .

REMARK 2.5. Obviously, if Fix(T ) 
= /0 , then nonexpansive operators are quasi-
nonexpansive operators.

DEFINITION 2.6. An operator T : C −→ C is said to be strictly quasinonexpan-
sive if ‖Tx− x†‖ < ‖x− x†‖ for all x ∈C and x† ∈ Fix(T ) .

REMARK 2.7. It is well known that an averaged operator T with Fix(T ) 
= /0 is
strictly quasinonexpansive. For more details, Please refer to [1].

DEFINITION 2.8. An operator F :C−→H is said to be α -inverse strongly mono-
tone if 〈Fx−Fx†,x− x†〉 � α‖Fx−Fx†‖2 for some constant α > 0 and all x,x† ∈C.

Usually, some additional smoothness properties of the mapping are required in the
study of the convergence of fixed point algorithms, such as demi-closedness.

DEFINITION 2.9. An operator T is said to be demiclosed at w if, for any se-
quence {un} which weakly converges to u∗ , and if Tun −→ w , then Tu∗ = w .

Recall that the projection from H onto C , denoted PC , assigns to each u ∈ H , the
unique point PCu ∈C satisfying

‖u−PCu‖ = in f{‖u− v‖ : v ∈C}.

PC can be characterized by

〈u−PCu,v−PCu〉 � 0 (2.3)
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for all u ∈ H,v ∈C , and PC : H →C is firmly nonexpansive, that is,

〈u − v,PCu−PCv〉 � ‖PCu−PCv‖2

or ‖PCu−PCv‖2 � ‖u− v‖2−‖(I−PC)u− (I−PC)v‖2

for all u,v ∈ H .
For all u,v ∈ H , the following conclusions hold:

‖tu+(1− t)v‖2 = t‖u‖2 +(1− t)‖v‖2− t(1− t)‖u− v‖2, t ∈ [0,1],

‖u+ v‖2 = ‖u‖2 +2〈u,v〉+‖v‖2

and

‖u+ v‖2 � ‖u‖2 +2〈v,u+ v〉.
In the following text, we employ the following notations:
• un ⇀ u stands for that {un} converges weakly to u ;
• un → u stands for that {un} converges strongly to u ;
• Fix(T ) means the set of fixed points of T ;
• ωw(un) means the set of cluster points in the weak topology, that is,

ωw(un) = {u : ∃unj ⇀ u}.

LEMMA 2.10. ([24]) Let H be a Hilbert space and C(
= /0) ⊂ H be a closed
convex set. If F : C → H is an α -inverse strongly monotone operator, then

‖x− γFx− (y− γFy)‖2 � ‖x− y‖2 + γ(γ −2α)‖Fx−Fy‖2, ∀x,y ∈C.

Especially, I− γF is nonexpansive provided 0 � γ � 2α .

LEMMA 2.11. ([9]) Let C be a nonempty closed convex of a real Hilbert space
H . Let T : C →C be a nonexpansive mapping. Then I−T is demiclosed at zero, that
is, if xn ⇀ x ∈C and xn−Txn → 0 , then x = Tx.

Let {Tn}∞
n=1 :C→C be an infinite family of nonexpansivemappings and λ1,λ2, . . .

be real numbers such that 0 � λi � 1 for each i ∈ N . For any n ∈ N , define a mapping
Wn of C into C as follows:

Un,n+1 = I,

Un,n = λnTnUn,n+1 +(1−λn)I,
Un,n−1 = λn−1Tn−1Un,n +(1−λn−1)I,
. . .

Un,k = λkTkUn,k+1 +(1−λk)I,
Un,k−1 = λk−1Tk−1Un,k +(1−λk−1)I,
. . .

Un,2 = λ2T2Un,3 +(1−λ2)I,
Wn = Un,1 = λ1T1Un,2 +(1−λ1)I.

(2.4)
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Such a mapping Wn is called the W -mapping generated by Tn,Tn−1, . . . ,T1 and λn,λn−1,
. . . ,λ1 . We have the following crucial lemma concerning Wn in ([5]):

LEMMA 2.12. Let {Tn}∞
n=1 : C → C be an infinite family of nonexpansive map-

pings such that
⋂∞

n=1 Fix(Tn) 
= /0 . Let λ1,λ2, . . . be real numbers such that 0 � λi �
b < 1 for each i � 1 . Then we have the following:

(1) For any x ∈C and k � 1 , the limit limn→∞Un,kx exists;
(2) Fix(W) =

⋂∞
n=1 Fix(Tn) , where Wx = limn→∞Wnx = limn→∞Un,1x, ∀x ∈C;

(3) For any bounded sequence {xn} ⊂C, limn→∞Wxn = limn→∞Wnxn .

LEMMA 2.13. ([28]) Assume that {αn} is a sequence of nonnegative real num-
bers such that

αn+1 � (1− γn)αn + δn, n ∈ N,

where {γn} is a sequence in (0,1) and {δn} is a sequence such that
(1) ∑∞

n=1 γn = ∞;
(2) limsupn→∞

δn
γn

� 0 or ∑∞
n=1 |δn| < ∞;

Then limn→∞ αn = 0.

3. Main results

Throughout the present article, let H1 and H2 be two real Hilbert spaces. Let
C(
= /0) ⊂ H1 and Q(
= /0) ⊂ H2 be two closed convex sets. We use 〈·, ·〉 to denote the
inner product and ‖ · ‖ stands for the corresponding norm.

Next, we show two lemmas for quasinonexpansive operators. These lemmas will
be very useful for our main theorem.

LEMMA 3.1. Let T1 : C →C be strictly quasinonexpansive operator, and let T2 :
C → C be quasinonexpansive operator. Suppose that Fix(T1)

⋂
Fix(T2) 
= /0 . Then

Fix(T1)
⋂

Fix(T2) = Fix(T1T2) .

Proof. Fix(T1)
⋂

Fix(T2) ⊂ Fix(T1T2) is obvious. We only need to prove that

Fix(T1T2) ⊂ Fix(T1)
⋂

Fix(T2).

Let x� ∈ Fix(T1T2) and z ∈ Fix(T1)
⋂

Fix(T2) . We consider the following two cases:
(i) T2x� ∈ Fix(T1) . Then T2x� = T1T2x� = x� . Therefore, x� ∈ Fix(T2)

⋂
Fix(T1) .

(ii) T2x� /∈ Fix(T1) , and hence x� /∈ Fix(T2) . Since T1 is strictly quasinonexpan-
sive, we have that ‖x� − z‖ = ‖T1T2x� − z‖ < ‖T2x� − z‖ � ‖x� − z‖ , which yields a
contradiction. �

REMARK 3.2. As a matter of fact, in Lemma 3.1, assuming that T1 : C → C is
quasinonexpansive operator and T2 : C →C is strictly quasinonexpansive operator, the
conclusion still holds.
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LEMMA 3.3. Assume that {ϖn} is a sequence of nonnegative real numbers such
that

ϖn+1 � (1−αn)ϖn + αnδn, n � 1,

where {αn} is a sequence in (0,1) such that ∑∞
n=1 αn = ∞ . Then limsupn→∞ δn � 0.

Proof. By contradiction, we suppose that

lim sup
n→∞

δn = −κ < 0,

which implies that there exists large enough positive integer N such that δn < − κ
2 for

all n > N . Note that

ϖn+1 � (1−αn)ϖn + αnδn

= ϖn + αn(δn−ϖn)

< ϖn − αnκ
2

(3.1)

for all n > N . Thus,

ϖn+1 � ϖN+1 − κ
2

n

∑
i=N+1

αi.

Taking limsupn→∞ in the last inequality, we have

0 � lim sup
n→∞

ϖn+1 � ϖN+1 − κ
2

∞

∑
i=N+1

αi = −∞,

which yields a contradiction. Consequently, limsupn→∞ δn � 0. �

In the sequel, we state several assumptions and symbols:
(H1): A : H1 −→ H2 is a bounded linear operator with its adjoint A∗ .
(H2): {Tn}∞

n=1 : Q → Q is an infinite family of nonexpansive mappings.
(H3): S : C −→ C is a nonexpansive operator and Sδ = (1− δ )I + δS , where

δ ∈ (0,1) .
(H4): limn→∞ αn = 0 and ∑∞

n=0 αn = ∞ .
(H5): B : C → H1 is a β -inverse strongly monotone operator.
(H6): F : H2 → H2 is an α -inverse strongly monotone operator.
(H7): D : C → H1 is a κ -inverse strongly monotone operator.
(H8): R is a maximal monotone operator on H , such that the domain D(R) of R

is included in C .
(H9): JR,λ = (I + λR)−1 is the resolvent of R for λ .
(H10): Ω = {x�|x� ∈Fix(S)

⋂
VI(B,C)

⋂
I(D,R) and Ax� ∈⋂∞

n=1 Fix(Tn)
⋂

VI(F,Q)} .
Throughout this paper, we assume that Ω 
= /0 .

REMARK 3.4. It is well known that the resolvent JR,λ is firmly nonexpansive and
R−10 = Fix(JR,λ ) for all λ > 0(see [1]).
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In the sequel, we present the following iterative algorithm to solve (1.5).

ALGORITHM 3.5. Let x† ∈C be a fixed point. Let x1 ∈C be an initial value. Let
{αn} be a real number sequence in (0,1) . Let γ ∈ (0,2β ) , ς ∈ (0,2) , ξ ∈ (0,2α)
and λ ∈ (0,2κ) be four real constants. Assume that the sequence {xn} has been con-
structed. For the current iteration xn , compute

yn = xn−SδPC(I− γB)xn,

zn = Axn−WnPQ(I− ξF)Axn.
(3.2)

Case 1. If ‖yn +A∗zn‖ 
= 0, then continue and construct xn+1 via the following
manner

un = PC(xn− ςτn(yn +A∗zn)),

xn+1 = αnx
† +(1−αn)JR,λ (un−λDun)

(3.3)

where

τn =
‖yn‖2 +‖zn‖2

‖yn +A∗zn‖2 . (3.4)

Case 2. If ‖yn +A∗zn‖ = 0, then continue and construct xn+1 via the following
manner

xn+1 = αnx
† +(1−αn)JR,λ (xn−λDxn). (3.5)

REMARK 3.6. Observing that Sδ , Wn and W are averaged operators and there-
fore strictly quasinonexpansive operators, in view of Lemma 3.1, we obtain that

Fix(Sδ PC(I− γB)) = Fix(Sδ )
⋂

VI(B,C) = Fix(S)
⋂

VI(B,C),

Fix(WnPQ(I− ξF)) = Fix(Wn)
⋂

VI(F,Q)

and
Fix(WPQ(I− ξF)) = Fix(W )

⋂
VI(F,Q).

From now on, we will divide our main result into several propositions.

PROPOSITION 3.7. ‖yn +A∗zn‖ = 0 if and only if xn ∈ Ωn , where

Ωn = {x�|x� ∈ Fix(S)
⋂

VI(B,C) and Ax� ∈ Fix(Wn)
⋂

VI(F,Q)} 
= /0.

Evidently, Ω ⊂ Ωn .

Proof. Noting that Fix(Wn) =
⋂n

j=1 Fix(Tj)(see Lemma 3.1 in [5]), it is obvious
that xn ∈ Ωn then ‖yn +A∗zn‖ = 0. To see the converse, assume that ‖yn +A∗zn‖ = 0.
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In virtue of Lemma 2.10, we have that Sδ PC(I− γB) and WnPQ(I− ξF) is nonexpan-
sive. Then, for any x† ∈ Ωn , in the light of Definition 2.4, we can derive

0 = 〈yn +A∗zn,xn− x†〉
= 〈xn −Sδ PC(I− γB)xn,xn− x†〉

+ 〈A∗(I−WnPQ(I− ξF))Axn,xn− x†〉
= 〈xn −Sδ PC(I− γB)xn,xn− x†〉

+ 〈(I−WnPQ(I− ξF))Axn,Axn−Ax†〉
� 1

2
(‖xn−Sδ PC(I− γB)xn‖2 +‖(I−WnPQ(I− ξF))Axn‖2)

=
1
2
(‖yn‖2 +‖zn‖2).

(3.6)

It follows that

‖xn−Sδ PC(I− γB)xn‖2 +‖(I−WnPQ(I− ξF))Axn‖2 = 0,

which implies that xn ∈ Fix(Sδ PC(I− γB)) and Axn ∈ Fix(WnPQ(I− ξF)) . In view of
Remark 3.6, we have that xn ∈ Fix(S)

⋂
VI(B,C) and Axn ∈ Fix(Wn)

⋂
VI(F,Q) , that

is, xn ∈ Ωn . This completes the proof. �

PROPOSITION 3.8. The sequence {xn} generated by Algorithm 3.5 is bounded.

Proof. Let x� ∈ Ω , that is, PC(x�−ζBx�) = JR,λ (x�−λDx�) = Sx� = x� for ζ ,λ >

0, and PQ(Ax� − ξFAx�) = TnAx� = Ax� for ∀ξ > 0 and all n � 1. First, in case 1, by
virtue of (3.6), we can derive that

‖un− x�‖ = ‖PC(xn− ςτn(yn +A∗zn))− x�‖2

� ‖xn− x�− ςτn(yn +A∗zn)‖2

� ‖xn− x�‖2 + ς2τ2
n‖yn +A∗zn‖2−2〈ςτn(yn +A∗zn),xn − x�〉

� ‖xn− x�‖2 + ς2τ2
n‖yn +A∗zn‖2− ςτn(‖yn‖2 +‖zn‖2)

� ‖xn− x�‖2− ς(1− ς)
(‖yn‖2 +‖zn‖2)2

‖yn +A∗zn‖2

(3.7)

and consequently,

‖xn+1− x�‖ = ‖αnx
† +(1−αn)JR,λ (un−λDun)− x�‖

= ‖αn(x† − x�)+ (1−αn)(JR,λ (un−λDun)− x�)‖
� αn‖x† − x�‖+(1−αn)‖JR,λ (un−λDun)− x�‖

(by(3.10)) � αn‖x† − x�‖+(1−αn)‖un− x�‖
(by(3.7)) � αn‖x† − x�‖+(1−αn)‖xn− x�‖

� max{‖x†− x�‖,‖xn− x�‖}.

(3.8)
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In case 2, we can obtain that

‖xn+1− x�‖ = ‖αnx
† +(1−αn)JR,λ (xn−λDxn)− x�‖

= ‖αn(x†− x�)+ (1−αn)(JR,λ (xn−λDxn)− x�)‖
� αn‖x†− x�‖+(1−αn)‖JR,λ (xn −λDxn)− x�‖

(by(3.12)) � αn‖x†− x�‖+(1−αn)‖xn− x�‖
� max{‖x†− x�‖,‖xn− x�‖}.

(3.9)

Hence, by induction, we deduce

‖xn+1− x�‖ � max{‖x†− x�‖,‖xn− x�‖} � · · · � max{‖x†− x�‖,‖x1− x�‖}.
Therefore, the sequence {xn} is bounded. �

THEOREM 3.9. Under the assuptions (H1)–(H10) , the sequence {xn} gener-
ated by Algorithm 3.5 converges strongly to PΩx† .

Proof. Let x� = PΩx† . In case 1, observe that

‖JR,λ (un−λDun)− x�‖2

= ‖JR,λ (un−λDun)− JR,λ(x� −λDx�)‖2

� ‖(un−λDun)−(x�−λDx�)‖2−‖(I−JR,λ )(un−λDun)−(I−JR,λ )(x�−λDx�)‖2

� ‖un− x�‖2 + λ (λ −2d)‖Dun−Dx�‖2

−‖un− JR,λ (un−λDun)−λ (Dun−Dx�)‖2

� ‖xn− x�‖2− ς(1− ς)
‖yn‖2 +‖zn‖2

‖yn +A∗zn‖2 + λ (λ −2d)‖Dun−Dx�‖2

−‖un− JR,λ (un−λDun)−λ (Dun−Dx�)‖2.

(3.10)

Hence, we get

‖xn+1−x�‖2

= ‖αn(x† − x�)+ (1−αn)(JR,λ (un−λDun)− x�)‖2

� (1−αn)‖JR,λ (un −λDun)− x�‖2 +2αn〈x† − x�,xn+1− x�〉

� (1−αn)(‖xn− x�‖2− ς(1− ς)
‖yn‖2 +‖zn‖2

‖yn +A∗zn‖2 + λ (λ −2d)‖Dun−Dx�‖2

−‖un− JR,λ (un−λDun)−λ (Dun−Dx�)‖2)

+2αn〈x†− x�,xn+1− x�〉
� (1−αn)‖xn− x�‖2 + αn[2〈x†− x�,xn+1− x�〉

− 1−αn

αn
ς(1− ς)

(‖yn‖2 +‖zn‖2)2

‖yn +A∗zn‖2 +
1−αn

αn
λ (λ −2d)‖Dun−Dx�‖2

− 1−αn

αn
‖un− JR,λ(un −λDun)−λ (Dun−Dx�)‖2].

(3.11)
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In case 2, note that

‖JR,λ (xn −λDxn)− x�‖2

= ‖JR,λ (xn −λDxn)− JR,λ (x� −λDx�)‖2

� ‖(xn−λDxn)− (x�−λDx�)‖2

−‖(I− JR,λ )(xn−λDxn)− (I− JR,λ )(x� −λDx�)‖2

� ‖xn− x�‖2 + λ (λ −2d)‖Dxn−Dx�‖2

−‖xn− JR,λ (xn −λDxn)−λ (Dxn−Dx�)‖2

(3.12)

and therefore,

‖xn+1− x�‖2 = ‖αn(x†− x�)+ (1−αn)(JR,λ (xn−λDxn)− x�)‖2

� (1−αn)‖JR,λ (xn−λDxn)− x�‖2 +2αn〈x† − x�,xn+1− x�〉
� (1−αn)(‖xn − x�‖2 + λ (λ −2d)‖Dxn−Dx�‖2

−‖xn− JR,λ (xn−λDxn)−λ (Dxn−Dx�)‖2)

+2αn〈x† − x�,xn+1− x�〉
� (1−αn)‖xn− x�‖2 + αn[2〈x†− x�,xn+1− x�〉

− 1−αn

αn
‖xn− JR,λ (xn −λDxn)−λ (Dxn−Dx�)‖2

+
1−αn

αn
λ (λ −2d)‖Dxn−Dx�‖2].

(3.13)

Now, let ϖn = ‖xn− x�‖ and

πn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2〈x†− x�,xn+1− x�〉− 1−αn

αn
ς(1− ς)

(‖yn‖2 +‖zn‖2)2

‖yn +A∗zn‖2

− 1−αn

αn
‖un− JR,λ (un−λDun)−λ (Dun−Dx�)‖2

+
1−αn

αn
λ (λ −2d)‖Dun−Dx�‖2, case 1,

2〈x†− x�,xn+1− x�〉+ 1−αn

αn
λ (λ −2d)‖Dxn−Dx�‖2

− 1−αn

αn
‖xn− JR,λ(xn −λDxn)−λ (Dxn−Dx�)‖2, case 2.

(3.14)

According to (3.11), (3.13) and (3.14), we can obtain

ϖn+1 � (1−αn)ϖn + αnπn, n � 1. (3.15)

Evidently, πn � 2〈x†− x�,xn+1 − x�〉 � 2‖x†− x�‖×‖xn+1− x�‖ . Hence, the sequence
{πn} is bounded due to the boundedness of {xn} . Thanks to Lemma 3.3, we obtain
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0 � limsupn→∞ πn < +∞. Therefore, there exists a subsequence {πnk} of {πn} such
that

lim sup
n→∞

πn = lim
k→∞

πnk . (3.16)

From now on, without loss of generality, we assume that xnk ⇀ x̂ owing to the
boundedness of the sequence {xn} . Suppose that there exists a subsequence {πnk j

} of

{πnk} in case 1. Note that

limsupn→∞πn = lim
k→∞

πnk = lim
j→∞

πnk j

= lim
j→∞

2〈x† − x�,xnk j
+1− x�〉−

1−αnk j

αnk j

ς(1− ς)
(‖ynk j

‖2 +‖znk j
‖2)2

‖ynk j
+A∗znk j

‖2

−
1−αnk j

αnk j

‖unk j
− JR,λ (unk j

−λDunk j
)−λ (Dunk j

−Dx�)‖2

+
1−αnk j

αnk j

λ (λ −2d)‖Dunk j
−Dx�‖2.

(3.17)

Due to the boundedness of real sequence {〈x† − x�,xnk j
+1 − x�〉} , without loss of gen-

erality, we may assume lim j→∞〈x† − x�,xnk j
+1 − x�〉 exists. Then we have that the

following limits also exists

lim
j→∞

1−αnk j

αnk j

ς(1− ς)
(‖ynk j

‖2 +‖znk j
‖2)2

‖ynk j
+A∗znk j

‖2 , (3.18)

lim
j→∞

1−αnk j

αnk j

‖unk j
− JR,λ (unk j

−λDunk j
)−λ (Dunk j

−Dx�)‖2 (3.19)

and

lim
j→∞

1−αnk j

αnk j

λ (λ −2d)‖Dunk j
−Dx�‖2. (3.20)

It follows from (3.18) that

lim
j→∞

(‖ynk j
‖2 +‖znk j

‖2)2

‖ynk j
+A∗znk j

‖2 = 0. (3.21)

By the boundedness of the sequence {yn +A∗zn} , we have

lim
j→∞

‖ynk j
‖2 +‖znk j

‖2 = 0, (3.22)
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which implies that

lim
j→∞

‖ynk j
‖ = lim

j→∞
‖xnk j

−Sδ PC(I− γB)xnk j
‖ = 0 (3.23)

and

lim
j→∞

‖znk j
‖ = lim

j→∞
‖Axnk j

−Wnkj
PQ(I− ξF)Axnk j

‖ = 0. (3.24)

Evidently, Sδ PC(I− γB) :C →C is nonexpansive. Applying Lemma 2.11 to (3.23), we
have

x̂ = Sδ PC(I− γB)x̂. (3.25)

In virtue of Remark 3.6, we can derive that x̂ ∈ Fix(S)
⋂

VI(B,C). It follows from
(3.20) and (3.19) that

lim
j→∞

‖Dunk j
−Dx�‖ = 0 (3.26)

and

lim
j→∞

‖unk j
− JR,λ(unk j

−λDunk j
)−λ (Dunk j

−Dx�)‖2 = 0. (3.27)

Hence, we have that

lim
j→∞

‖unk j
− JR,λ(unk j

−λDunk j
)‖ = 0. (3.28)

Note that

lim
j→∞

‖unk j
− xnk j

‖ = lim
j→∞

‖PC(xnk j
− ςτnk j

(ynk j
+A∗znk j

))−PCxnk j
‖

� lim
j→∞

ς‖τnk j
(ynk j

+A∗znk j
)‖

= lim
j→∞

ς
‖ynk j

‖2 +‖znk j
‖2

‖ynk j
+A∗znk j

‖
= 0,

(3.29)

which implies that unk j
⇀ x̂ . Since JR,λ (I − λD) is nonexpansive, applying Lemma

2.12 to (3.28), we have
x̂ = JR,λ (x̂−λDx̂),

which implies that x̂ ∈ I(D,R) . In the light of the boundedness of the sequence PQ(I−
ξF)Axn and Lemma 2.12, we obtain that

lim
j→∞

‖WPQ(I− ξF)Axnk j
−Wnkj

PQ(I− ξF)Axnk j
‖ = 0.

This together with (3.24) implies that

lim
j→∞

‖Axnk j
−WPQ(I− ξF)Axnk j

‖ = 0. (3.30)
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Since WPQ(I− ξF) is nonexpansive, in view of Lemma 2.12, we have that

Ax̂ = WPQ(I− ξF)Ax̂. (3.31)

Thanks to Remark 3.6, we can also get that Ax̂∈ Fix(W )
⋂

VI(F,Q) . Hence, we obtain
that x̂ ∈ Ω .

Next, we assume that there exists a subsequence {πnk j
} of {πnk} in case 2, by

Proposition 3.7, we get that xnk j
∈ Ωnk j

, that is, xnk j
∈ Fix(S)

⋂
VI(B,C) and Axnk j

∈
Fix(Wnkj

)
⋂

VI(F,Q) . Hence, we have that x̂ ∈ Fix(S)
⋂

VI(B,C) , Ax̂ ∈ VI(F,Q) and

Axnk j
= Wnkj

Axnk j
. Therefore, by virtue of the boundedness of the sequence {Axn} ,

applying Lemma 2.12, we have that

lim
j→∞

‖WAxnk j
−Wnkj

Axnk j
‖ = ‖WAxnk j

−Axnk j
‖ = 0. (3.32)

Since W is nonexpansive, by Lemma 2.12, we derive that Ax̂ = WAx̂ , that is, Ax̂ ∈
Fix(W) . Observe that

limsupn→∞πn = lim
k→∞

πnk = lim
j→∞

πnk j

= lim
j→∞

2〈x†− x�,xnk j
+1 − x�〉+

1−αnk j

αnk j

λ (λ −2d)‖Dxnk j
−Dx�‖2

−
1−αnk j

αnk j

‖xnk j
− JR,λ (xnk j

−λDxnk j
)−λ (Dxnk j

−Dx�)‖2.

(3.33)

Subsequently, we may assume that the limit limn→∞〈x† − x�,xnk j
+1 − x�〉 exists. Then,

the following two limits also exists:

lim
j→∞

−
1−αnk j

αnk j

‖xnk j
− JR,λ (xnk j

−λDxnk j
)−λ (Dxnk j

−Dx�)‖2 (3.34)

and

lim
j→∞

1−αnk j

αnk j

λ (λ −2d)‖Dxnk j
−Dx�‖2. (3.35)

By a similar argument as in case 1, we have

lim
j→∞

‖xnk j
− JR,λ (xnk j

−λDxnk j
)‖ = 0 (3.36)

and therefore x̂ = JR,λ (x̂−λDx̂) which implies that x̂ ∈ I(D,R) . Consequently, x̂ ∈ Ω .
In case 1, from (3.3), we get

‖xnk j
+1− xnk j

‖ = ‖αnk j
x† +(1−αnk j

)JR,λ (unk j
−λDunk j

)− xnk j
‖

� αnk j
‖x†− xnk j

‖+(1−αnk j
)‖unk j

− xnk j
‖

+(1−αnk j
)‖JR,λ (unk j

−λDunk j
)−unk j

‖.
(3.37)
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It follows from (3.28) and (3.29) that

lim
j→∞

‖xnk j
+1− xnk j

‖ = 0. (3.38)

In case 2, from (3.5), we have

‖xnk j
+1− xnk j

‖ = ‖αnk j
x† +(1−αnk j

)JR,λ (xnk j
−λDxnk j

)− xnk j
‖

� αnk j
‖x†− xnk j

‖+(1−αnk j
)‖JR,λ (xnk j

−λDxnk j
)− xnk j

‖.(3.39)

By (3.36), we derive that

lim
j→∞

‖xnk j
+1− xnk j

‖ = 0. (3.40)

Hence, in case 1 or case 2, xnk j
+1 ⇀ x̂ ∈ Ω . Therefore,

lim sup
n→∞

πn � lim
j→∞

〈x† − x�,xnk j
+1− x�〉 = 〈x†− x�, x̂− x�〉 � 0. (3.41)

Finally, applying Lemma 2.13 to (3.15), we get xn → x� = PΩx† which ends the proof.
�

ALGORITHM 3.10. Let x† ∈ C be a given point. Let x1 ∈ C be an initial value.
Let {αn} be a real number sequence in (0,1) . Let γ ∈ (0,2β ) , ς ∈ (0,2) and ξ ∈
(0,2α) be three real constants. Assume that the sequence {xn} has been constructed.
For the current iteration xn , compute

yn = xn−SPC(I− γB)xn,

zn = Axn−WnPQ(I− ξF)Axn.
(3.42)

Case 1. If ‖yn +A∗zn‖ 
= 0, then continue and construct xn+1 via the following
manner

un = PC(xn − ςτn(yn +A∗zn)),

xn+1 = αnx
† +(1−αn)un

(3.43)

where

τn =
‖yn‖2 +‖zn‖2

‖yn +A∗zn‖2 . (3.44)

Case 2. If ‖yn +A∗zn‖ = 0, then continue and construct xn+1 via the following
manner

xn+1 = αnx
† +(1−αn)xn. (3.45)
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COROLLARY 3.11. Let

Ω̂ = {x�|x� ∈ Fix(S)
⋂

VI(B,C) and Ax� ∈
∞⋂

n=1

Fix(Tn)
⋂

VI(F,Q)}.

Suppose that Ω̂ 
= /0 . Under the assuptions (H1)–(H6) , the sequence {xn} generated
by Algorithm 3.10 converges strongly to PΩ̂x† .

ALGORITHM 3.12. Let x† ∈ C be a given point. Let x1 ∈ C be an initial value.
Let {αn} be a real number sequence in (0,1) . Let ς ∈ (0,2) be a real constants.
Assume that the sequence {xn} has been constructed. For the current iteration xn ,
compute

yn = xn−Sxn,

zn = Axn−WnAxn.
(3.46)

Case 1. If ‖yn +A∗zn‖ 
= 0, then continue and construct xn+1 via the following
manner

un = PC(xn − ςτn(yn +A∗zn)),

xn+1 = αnx
† +(1−αn)un

(3.47)

where

τn =
‖yn‖2 +‖zn‖2

‖yn +A∗zn‖2 . (3.48)

Case 2. If ‖yn +A∗zn‖ = 0, then continue and construct xn+1 via the following
manner

xn+1 = αnx
† +(1−αn)xn. (3.49)

COROLLARY 3.13. Let

Ω̂ = {x�|x� ∈ Fix(S) and Ax� ∈
∞⋂

n=1

Fix(Tn)}.

Suppose that Ω̂ 
= /0 . Under the assuptions (H1)–(H4) , the sequence {xn} generated
by Algorithm 3.12 converges strongly to PΩ̂x† .
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