
Journal of
Mathematical

Inequalities

Volume 15, Number 1 (2021), 131–142 doi:10.7153/jmi-2021-15-12

ORDERING EXTREMES OF SCALE RANDOM

VARIABLES UNDER ARCHIMEDEAN COPULA

GHOBAD BARMALZAN ∗ , SEYED MASIH AYAT AND ABBAS AKRAMI

(Communicated by Z. S. Szewczak)

Abstract. In this paper, we discuss the hazard rate order and reversed hazard rate order of parallel
and series systems when the components follow general scale model under Archimedean copula
for dependence. Several examples are presented for illustrations as well.

1. Introduction

For modelling lifetime data possessing varying hazard shapes, it is desirable that
the assumed lifetime distribution has considerable flexibility. A general family of dis-
tributions which includes some well-known distributions such as normal, exponentiated
Weibull and gamma as special cases is the scale family of distributions. Suppose F(·) is
an absolutely continuous distribution function with corresponding probability density
function f (·) . Then, independent random variables X1, · · · ,Xn are said to belong to
the scale family of distributions if λ1X1, · · · ,λnXn are independent and identically dis-
tributed (i.i.d) with common distribution F(·) , where λi > 0 for i = 1, · · · ,n . In other
words, X1, · · · ,Xn are said to belong to the scale family of distributions if Xi ∼ F(λix) ,
i = 1, · · · ,n . In this case, F(·) is said to be the baseline distribution function and λi ’s
are the scale parameters. Stochastic comparisons of order statistics in the scale models
were first introduced by Pledger and Proschan (1971) and since then, many researchers
have worked in this direction including recently by Hu (1995), Bon and Paltanea (2006),
and Khaledi et al. (2011).

One of the most commonly used systems in reliability is an r -out-of-n system.
This system comprising of n components, works iff at least r components work, and
it includes parallel, fail-safe and series systems all as special cases corresponding to
r = 1, r = n− 1 and r = n , respectively. Let X1, · · · ,Xn denote the lifetimes of com-
ponents of a system and X1:n � · · · � Xn:n represent the corresponding order statis-
tics. Then, Xn−r+1:n corresponds to the lifetime of a r -out-of-n system. Due to this
direct connection, the theory of order statistics becomes quite important in studying
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(n− r+1)-out-of-n systems and in characterizing their important properties. For com-
prehensive discussions on various properties of order statistics and their applications,
one may refer to Balakrishnan and Rao (1998a,b) and David and Nagaraja (2003).

The comparison of important characteristics associated with lifetimes of technical
systems is an interesting topic in reliability theory, since it usually enables us to ap-
proximate complex systems with simpler systems and subsequently obtaining various
bounds for important ageing characteristics of the complex system. A convenient tool
for this purpose is the theory of stochastic orderings. Stochastic comparisons of series
and parallel systems with heterogeneous components have been discussed extensively
for the various lifetimes. We refer the readers to Zhao and Balakrishnan (2011a, 2011b),
Fang and Zhang (2013), Kochar and Xu (2014), Li and Li (2015), Li and Fang (2015),
Fang et al. (2016), Amini-Seresht et al. (2016), Barmalzan et al. (2017), Ding et al.
(2017), for detailed discussions on this topic. Several researchers made some progress
in comparing order statistics of random variables with Archimedean copulas. See; for
example, Rezapour and Alamatsaz (2014), Li and Fang (2015), Li and Li (2015), Li et
al. (2015), Fang et al. (2016), Zhang et al. (2018) and Fang and Li (2019).

Many authors discuss on ordering different order statistics from one sample and
studying the impact of sample size on a given order statistic. For i.i.d. random vari-
ables, Boland et al. (1994) were among the first to prove that order statistics can
be ordered in terms of the hazard rate order and even the likelihood ratio order, and
Raqab and Amin (1996) further established the existence of the likelihood ratio or-
der between order statistics from i.i.d. samples of different sizes. In the context of
Xk �hr Xn+1 , k = 1, · · · ,n , Boland et al. (1994) firstly established the hazard rate order
Xi−1:n �hr Xi:n+1 and further proved that Xn+1 �hr Xk implies Xi:n �hr Xi:n+1 . Later,
for a sample with observations arrayed in the likelihood ratio order, Bapat and Kochar
(1994) established the likelihood ratio order between two general order statistics. In the
literature, some discussions can be found on stochastic order between order statistics
from either one dependent sample or two dependent samples of different sizes.

The rest of this paper is organized as follows. Section 2 reviews some basic con-
cepts that will be used in the sequel. In Section 3, we discuss the hazard rate order
and reversed hazard rate order of parallel systems when the components follow scale
model under Archimedean copula for dependence. The hazard rate order and reversed
hazard rate order of series systems when the components follow scale model under
Archimedean copula have been discussed in Section 4. Finally, some concluding re-
marks are made in in Section 5. Several examples are presented for illustrations as
well.

2. Preliminaries

In this section, we first present the definitions of some well-known concepts relat-
ing to stochastic orders and copulas. Throughout, we use ‘increasing’ to mean ‘non-
decreasing’ and similarly ‘decreasing’ to mean ‘non-increasing’.
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2.1. Stochastic orders

The following definition introduce some well-known orders that compare the mag-
nitude of two random variables.

DEFINITION 1. Suppose X and Y are two non-negative random variables with
density functions f and g , distribution functions F and G , survival functions F =
1−F and G = 1−G , hazard rates rX = f/F and rY = g/G , and reversed hazard rates
r̃X = f/F and r̃Y = g/G , respectively. Then, X is said to be smaller than Y in the
sense of

(i) usual stochastic order (denoted by X �st Y ) if F(x) � G(x) for all x ∈ R
+ . For

all increasing functions φ : R → R , X �st Y if and only if E(φ(X)) � E(φ(Y )) ,
when the expectations exist;

(ii) hazard rate order (denoted by X �hr Y ) if G(x)/F(x) is increasing in x ∈ R
+ .

In fact, X �hr Y if and only if rY (x) � rX (x) for all x ∈ R
+ ;

(iii) reversed hazard rate order (denoted by X �rh Y ) if G(x)/F(x) is increasing in
x ∈ R

+ . In fact, X �rh Y if and only if r̃X(x) � r̃Y (x) for all x ∈ R
+ .

It is well-known that both the hazard rate and reversed hazard rate orders imply
the usual stochastic order. For a comprehensive discussion on various stochastic orders
and their applications, we refer the readers to Müller and Stoyan (2002) and Shaked
and Shanthikumar (2007).

2.2. Archimedean copula

Many stochastic comparisons between univariate random variables have been de-
fined and discussed in a variety of contexts; see, Müller and Stoyan (2002) and Shaked
and Shanthikumar (2007) for pertinent details. Most of the univariate stochastic orders
are based on comparisons of marginal distributions of the underlying variables, with-
out taking dependence between them into account. In the present work, we discuss
stochastic comparisons of series and parallel systems with dependent scale distributed
components under an Archimedean copula.

Archimedean copulas have been used extensively due to their mathematical tracta-
bility as well as their ability to capture wide range of dependence. For a decreasing and
continuous function ψ : [0,∞)−→ [0,1] such that ψ(0) = 1, ψ(+∞) = 0 and ψ = φ−1

being the pseudo-inverse,

Cψ (u1, · · · ,un) = ψ(φ(u1)+ · · ·+ φ(un)) for all ui ∈ [0,1], i = 1, · · · ,n,

is said to be an Archimedean copula with generator ψ if (−1)kψ [k](x) � 0 for k =
0, · · · ,n− 2 and (−1)n−2ψ [n−2](x) is decreasing and convex. The Archimedean cop-
ula family includes many well-known copulas such as independence (product) copula,
Clayton copula, and Ali-Mikhail-Haq (AMH) copula. For detailed discussions on cop-
ulas and their properties, one may refer to Nelsen (2006) and McNeil and N ěslehová
(2009).
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3. Results for parallel systems

In this section, we discuss the reversed hazard rate order and the hazard rate order
of parallel systems with dependent general scale components, respectively.

THEOREM 1. Suppose X1, · · · ,Xn+1 are random variables with Xi ∼ F(λix) and
associated Archimedean copula with generator ψ . Further,

(i) Suppose that −ln(ψ(ex)) is convex and φ(F(x)) is log-concave on the R . If
λn+1 � max{λ1, . . . ,λn} , then we have Xn:n �rh Xn+1:n+1 .

(ii) Suppose that −ln(ψ(ex)) is convex and φ(F(x)) is log-convex on the R . If
λn+1 � min{λ1, . . . ,λn} , then we have Xn:n �rh Xn+1:n+1 .

Proof. (i) The distribution function of Xn:n is given by

FXn:n(x) = ψ

[
n

∑
i=1

φ (F(λix))

]
, x ∈ R

+.

Then, to prove the desired result, it is sufficient to show that FXn+1:n+1(x)/FXn:n(x) is
increasing in x. Taking the derivative of FXn+1:n+1(x)/FXn:n(x) with respect to x , we
have[

FXn+1:n+1(x)
FXn:n(x)

]′
=

[
ψ
[
∑n+1

i=1 φ (F(λix))
]

ψ [∑n
i=1 φ (F(λix))]

]′

sgn
=

ψ ′ [∑n+1
i=1 φ (F(λix))

]
ψ
[
∑n+1

i=1 φ (F(λix))
] n+1

∑
i=1

λiF ′(λix)
ψ ′ (φ (F(λix)))

−ψ ′ [∑n
i=1 φ (F(λix))]

ψ [∑n
i=1 φ (F(λix))]

n

∑
i=1

λiF ′(λix)
ψ ′ (φ (F(λix)))

=
ψ ′ (∑n+1

i=1 φ (F(λix)
)

ψ
(
∑n+1

i=1 φ (F(λix))
) × ∑n+1

i=1 φ (F(λix))×∑n+1
i=1

λiF
′(λix)

ψ ′(φ(F(λix)))

∑n+1
i=1 φ (F(λix))

− ψ ′ (∑n
i=1 φ (F(λix))

ψ (∑n
i=1 φ (F(λix)))

× ∑n
i=1 φ (F(λix))×∑n

i=1
λiF ′(λix)

ψ ′(φ(F(λix)))

∑n
i=1 φ (F(λix))

,

where
sgn
= means both sides have the same sign. Since the convexity of −ln(ψ(ex))

implies that tψ ′(t)
ψ(t) is decreasing in t � 0, we have, for all x ,

ψ ′ (∑n+1
i=1 φ (F(λix))

)
∑n+1

i=1 φ (F(λix))

ψ
(
∑n+1

i=1 φ (F(λix))
) � ψ ′ (∑n

i=1 φ (F(λix)))∑n
i=1 φ (F(λix))

ψ (∑n
i=1 φ (F(λix)))

� 0.

Since ∑n
i=1

λiF ′(λix)
ψ ′(φ(F(λix))

� 0, to prove
[

FXn+1:n+1
(x)

FXn:n(x)

]′
� 0 it is sufficient to show that

∑n+1
i=1

λiF ′(λix)
ψ ′(φ(F(λix))

∑n+1
i=1 φ (F(λix))

�
∑n

i=1
λiF ′(λix)

ψ ′(φ(F(λix))

∑n
i=1 φ (F(λix))

,
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which is equivalent to that, for all x ,

n

∑
i=1

λn+1F ′(λn+1x)φ (F(λix))
ψ ′ (φ (F(λn+1x)))

�
n

∑
i=1

λiF ′(λix)φ (F(λn+1x))
ψ ′ (φ (F(λix)))

⇐⇒ 0 �
n

∑
i=1

φ (F(λn+1(x))φ (F(λix))

×
[

λn+1F ′(λn+1x)
ψ ′ (φ (F(λn+1x)))φ (F(λn+1x))

− λiF ′(λix)
ψ ′ (φ (F(λix)))φ (F(λix))

]
. (1)

For i = 1, . . . ,n , with

λn+1F ′(λn+1x)
ψ ′ (φ (F(λn+1x)))φ (F(λn+1x))

− λiF ′(λix)
ψ ′ (φ (F(λix)))φ (F(λix))

� 0, (2)

we observe taht the inequality (1) is satisfied. Further, (2) is equivalent to

d ln(φ(F(λn+1x))
dx

− d ln(φ(F(λix))
dx

� 0.

From the assumption λn+1 � λi , for all i = 1, · · · ,n , and F(x) is an increasing function,
we have F(λix) � F(λn+1x) , for all i = 1, . . . ,n . Now, we conclude that FXn+1:n+1(x)/
FXn:n(x) is increasing in x if φ(F(x)) be log-concave.

(ii) The proof is similar to that of Part (i) and is therefore omitted for the sake of
brevity. �

EXAMPLE 1. It should be mentioned that the condition “− lnψ(ex) is convex
and φ(F(x)) is log-convex” in Part (ii) of Theorem 1 are not uncommon and we can
verify them for some Archimedean copulas and some marginals. For example, consider
ψ(x) = (x+1)−1 . Thus, − ln(ψ(ex)) is convex. Let us take F(x) = 1− e−λ x,(x >
0,λ > 0) , then φ(F(x)) = 1

F(x) −1 = 1
eλx−1

. Now, it is easy to observe that φ(F(x)) is
log-convex.

THEOREM 2. Suppose X1, · · · ,Xn+1 are random variables with Xi ∼ F(λix) and
associated Archimedean copula with generator ψ . Further,

(i) Suppose that −ln(1−ψ(ex)) is convex and φ(F(x)) is log-convex on the R . If
λn+1 � max{λ1, · · · ,λn} , then we have Xn:n �hr Xn+1:n+1 .

(ii) Suppose that −ln(1−ψ(ex)) is concave and φ(F(x)) is log-convex on the R . If
λn+1 � min{λ1, · · · ,λn} , then we have Xn:n �hr Xn+1:n+1 .

Proof. The survival function of Xn:n is given by

FXn:n(x) = 1−ψ

[
n

∑
i=1

φ (F(λix))

]
, x ∈ R

+.
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Then, to prove the desired result, it is sufficient to show that FXn+1:n+1(x)/FXn:n(x) is

increasing in x. Taking the derivative of FXn+1:n+1(x)/FXn:n(x) with respect to x , we
obtain[

FXn+1:n+1(x)

FXn:n(x)

]′
=

[
1−ψ

[
∑n+1

i=1 φ (F(λix))
]

1−ψ [∑n
i=1 φ (F(λix))]

]′

sgn
=

−ψ ′ [∑n+1
i=1 φ (F(λix))

]
1−ψ

[
∑n+1

i=1 φ (F(λix))
] n+1

∑
i=1

λiF ′(λix)
ψ ′ (φ (F(λix)))

+
ψ ′ [∑n

i=1 φ (F(λix))]
1−ψ [∑n

i=1 φ (F(λix))]

n

∑
i=1

λiF ′(λix)
ψ ′ (φ (F(λix)))

=
−ψ ′ (∑n+1

i=1 φ (F(λix)
)

1−ψ
(
∑n+1

i=1 φ (F(λix))
) × ∑n+1

i=1 φ (F(λix))×∑n+1
i=1

λiF
′(λix)

ψ ′(φ(F(λix)))

∑n+1
i=1 φ (F(λix))

+
ψ ′ (∑n

i=1 φ (F(λix))
1−ψ (∑n

i=1 φ (F(λix)))
× ∑n

i=1 φ (F(λix))×∑n
i=1

λiF ′(λix)
ψ ′(φ(F(λix)))

∑n
i=1 φ (F(λix))

.

The convexity of −ln(1−ψ(ex)) implies −tψ ′(t)
1−ψ(t) is decreasing in t � 0 and then, we

have, for all x ,

0 �
−ψ ′ (∑n+1

i=1 φ (F(λix))
)

∑n+1
i=1 φ (F(λix))

1−ψ
(
∑n+1

i=1 φ (F(λix))
) � −ψ ′ (∑n

i=1 φ (F(λix)))∑n
i=1 φ (F(λix))

1−ψ (∑n
i=1 φ (F(λix)))

.

Because ∑n
i=1

λiF ′(λix)
ψ ′(φ(F(λix))

� 0, to prove
[

1−FXn+1:n+1(x)
1−FXn:n(x)

]′
� 0 it suffices to show, for all

x ,

∑n+1
i=1

λiF ′(λix)
ψ ′(φ(F(λix))

∑n+1
i=1 φ (F(λix))

�
∑n

i=1
λiF ′(λix)

ψ ′(φ(F(λix))

∑n
i=1 φ (F(λix))

,

which is equivalent to showing that, for all x ,

n

∑
i=1

λn+1F ′(λn+1x)φ (F(λix))
ψ ′ (φ (F(λn+1x)))

�
n

∑
i=1

λiF ′(λix)φ (F(λn+1x))
ψ ′ (φ (F(λix)))

⇐⇒ 0 �
n

∑
i=1

φ (F(λn+1(x))φ (F(λix))

×
[

λn+1F ′(λn+1x)
ψ ′ (φ (F(λn+1x)))φ (F(λn+1x))

− λiF ′(λix)
ψ ′ (φ (F(λix)))φ (F(λix))

]
(3)

For i = 1, . . . ,n , with

λn+1F ′(λn+1x)
ψ ′ (φ (F(λn+1x)))φ (F(λn+1x))

− λiF ′(λix)
ψ ′ (φ (F(λix)))φ (F(λix))

� 0, (4)
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we can see that the inequality (3) is satisfied. Further, (4) is equivalent to

d ln(φ(F(λn+1x))
dx

− d ln(φ(F(λix))
dx

� 0.

Due to the condition λi � λn+1 , for all i = 1, . . . ,n , and increasing property of F(x) ,
we have F(λix) � F(λn+1x) , for all i = 1, . . . ,n . Thus, it suffices that φ(F(x)) is
log-convex.

(ii) The proof is similar to that of Part (i) and is therefore omitted for the sake of
brevity. �

EXAMPLE 2. It should be mentioned that the condition “− ln(1−ψ(ex)) is con-
vex and φ(F(x)) is log-convex” in Part (i) of Theorem 2 are satisfied by some Archime-
dean copulas and some marginals. For example, consider ψ(x) = (x+1)−1 . Thus,
− ln(1−ψ(ex)) is convex. Now, let us take F(x) = 1−e−λ x,(λ > 0) , then φ(F(x)) =

1
F(x) −1 = 1

eλx−1
and so, φ(F(x)) is log-convex.

4. Results for series systems

In this section, we discuss the reversed hazard rate order and the hazard rate order
of series systems with dependent general scale components, respectively.

THEOREM 3. Suppose X1, · · · ,Xn+1 are random variables with Xi ∼ F(λix) and
associated survival Archimedean copula with generator ψ . Further,

(i) Suppose that −ln(1−ψ(ex)) is convex and φ(1−F(x)) is log-concave on the
R . If λn+1 � max{λ1, · · · ,λn} , then we have X1:n+1 �rh X1:n .

(ii) Suppose that −ln(1−ψ(ex)) is concave and φ(1−F(x)) is log-concave on the
R . If λn+1 � min{λ1, · · · ,λn} , then we have X1:n+1 �rh X1:n .

Proof. The distribution function of X1:n is given by

FX1:n(x) = 1−ψ

[
n

∑
i=1

φ (1−F(λix))

]
.

Then, for obtaining the desired result, it is sufficient to show that FX1:n(x)/FX1:n+1(x)
is increasing in x. Taking the derivative of FX1:n(x)/FX1:n+1(x) with respect to x , we
obtain [

FX1:n(x)
FX1:n+1(x)

]′
=

[
1−ψ [∑n

i=1 φ (1−F(λix))]
1−ψ

[
∑n+1

i=1 φ (1−F(λix))
]
]′

sgn
=

ψ ′ (∑n
i=1 φ (1−F(λix))

1−ψ (∑n
i=1 φ (1−F(λix))

×
n

∑
i=1

λiF ′(λix)
ψ ′ (φ (1−F(λix))

− ψ ′ (∑n+1
i=1 φ (1−F(λix)

)
1−ψ

(
∑n+1

i=1 φ (1−F(λix)
) × n+1

∑
i=1

λiF ′(λix)
ψ ′ (φ (1−F(λix))
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=
ψ ′ (∑n

i=1 φ (1−F(λix)))
1−ψ (∑n

i=1 φ (1−F(λix))
× ∑n

i=1 φ (1−F(λix))
∑n

i=1 φ (1−F(λix))

×
n

∑
i=1

λiF ′(λix)
ψ ′ (φ (1−F(λix))

− ψ ′ (∑n+1
i=1 φ (1−F(λix))

)
1−ψ

(
∑n+1

i=1 φ (1−F(λix))
) × ∑n+1

i=1 φ (1−F(λix))
∑n

i=1 φ (1−F(λix))

×
n+1

∑
i=1

λiF ′(λix)
ψ ′ (φ (1−F(λix))

.

As the convexity of −ln(1−ψ(ex)) implies that tψ ′(t)
1−ψ(t) is increasing in t � 0, we have,

for all x ,

0 �
ψ ′ (∑n+1

i=1 φ (1−F(λix))
)

∑n+1
i=1 φ (1−F(λix))

1−ψ
(
∑n+1

i=1 φ (1−F(λix)))
)

� ψ ′ (∑n
i=1 φ (1−F(λix)))∑n

i=1 φ (1−F(λix))
1−ψ (∑n

i=1 φ (1−F(λix)))
.

Because
n

∑
i=1

λiF ′(λix)
ψ ′ [φ (1−F(λix))]

� 0,

to prove [FX1:n(x)/FX1:n+1(x)]
′ � 0 it suffices to verify, for all x ,

∑n
i=1

λiF ′(λix)
ψ ′(φ(1−F(λix)))

∑n
i=1 φ (1−F(λix))

�
∑n+1

i=1
λiF ′(λix)

ψ ′(φ(1−F(λix)))

∑n+1
i=1 φ (1−F(λix))

,

which is equivalent to showing that, for all x ,

n

∑
i=1

λn+1F ′(λn+1x)φ (1−F(λix))
ψ ′ (φ (1−F(λn+1x)))

�
n

∑
i=1

λiF ′(λix)φ (1−F(λn+1x))
ψ ′ (φ (1−F(λix)))

⇐⇒ 0 �
n

∑
i=1

φ (1−F(λn+1x))φ (1−F(λix))

×
[

λn+1F ′(λn+1x)
ψ ′ (φ (1−F(λn+1x)))φ (1−F(λn+1x))

− λiF ′(λix)
ψ ′ (φ (1−F(λix)))φ (1−F(λix))

]

⇐⇒ 0 �
n

∑
i=1

φ (1−F(λn+1x))φ (1−F(λix))

×
[
−d (ln(φ(1−F(λn+1x))))

dx
+

d (ln(φ(1−F(λix))))
dx

]
. (5)

Since λi � λn+1 , for all i , then (5) holds if

d2 ln(φ(1−F(x)))
dx2
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is negative. Thus, it suffices that φ(1−F(x)) is log-concave.
(ii) The proof is similar to that of Part (i) and is therefore omitted for the sake of

brevity. �

EXAMPLE 3. The condition “− ln(1−ψ(ex)) is convex and φ(1−F(x)) is log-
concave” in Part (i) of Theorem 3 are satisfied by some Archimedean copulas and some
marginals. Consider ψ(x) = (x+1)−1 . Thus, − ln(1−ψ(ex)) is convex. On the other
hand, if we set F(x) = 1−e−λ x,(λ > 0) , then φ(1−F(x)) = 1

F(x) −1 = eλ x−1. Now,

it is easy to observe that φ(1−F(x)) is log-concave.

THEOREM 4. Suppose X1, · · · ,Xn+1 are random variables with Xi ∼ F(λix) and
associated survival Archimedean copula with generator ψ . Further,

(i) Suppose that −ln(ψ(ex)) is convex and φ(1−F(x)) is log-convex on the R . If
λn+1 � max{λ1, · · · ,λn} , then we have X1:n+1 �hr X1:n .

(ii) Suppose that −ln(ψ(ex)) is concave and φ(1−F(x)) is log-convex on the R . If
λn+1 � min{λ1, · · · ,λn} , then we have X1:n+1 �hr X1:n .

Proof. The survival function of X1:n is given by

FX1:n(x) = ψ

(
n

∑
i=1

φ(1−F(λix))

)
.

Then, to prove the desired result, it is sufficient to show that FX1:n(x)/FX1:n+1(x) is

increasing in x. Taking the derivative of FX1:n(x)/FX1:n+1(x) with respect to x , we
obtain [

FX1:n(x)

FX1:n+1(x)

]′

=

(
ψ [∑n

i=1 φ (1−F(λix))]
ψ
[
∑n+1

i=1 φ (1−F(λix))
]
)′

sgn
=

ψ ′ (∑n
i=1 φ (1−F(λix))

ψ (∑n
i=1 φ (1−F(λix))

×
n

∑
i=1

−λiF ′(λix)
ψ ′ (φ (1−F(λix))

−ψ ′ (∑n+1
i=1 φ (1−F(λix)

)
ψ
(
∑n+1

i=1 φ (1−F(λix)
) ×

n+1

∑
i=1

−λiF ′(λix)
ψ ′ (φ (1−F(λix))

=
ψ ′ (∑n

i=1 φ (1−F(λix)))
ψ (∑n

i=1 φ (1−F(λix))
× ∑n

i=1 φ (1−F(λix))
∑n

i=1 φ (1−F(λix))
×

n

∑
i=1

−λiF ′(λix)
ψ ′ (φ (1−F(λix))

−ψ ′ (∑n+1
i=1 φ (1−F(λix))

)
ψ
(
∑n+1

i=1 φ (1−F(λix))
) × ∑n+1

i=1 φ (1−F(λix))
∑n

i=1 φ (1−F(λix))
×

n+1

∑
i=1

−λiF ′(λix)
ψ ′ (φ (1−F(λix))

.
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As the convexity of −ln(ψ(ex)) implies that tψ ′(t)
ψ(t) is decreasing in t � 0, we have, for

all x ,

ψ ′ (∑n+1
i=1 φ (1−F(λix))

)
∑n+1

i=1 φ (1−F(λix))

ψ
(
∑n+1

i=1 φ (1−F(λix)))
)

� ψ ′ (∑n
i=1 φ (1−F(λix)))∑n

i=1 φ (1−F(λix))
ψ (∑n

i=1 φ (1−F(λix)))
� 0.

Because
n

∑
i=1

−λiF ′(λix)
ψ ′ [φ (1−F(λix))]

� 0,

to prove

(
FX1:n

FX1:n+1

)′
� 0 it suffices to verify, for all x ,

∑n
i=1

−λiF ′(λix)
ψ ′(φ(1−F(λix)))

∑n
i=1 φ (1−F(λix))

�
∑n+1

i=1
−λiF ′(λix)

ψ ′(φ(1−F(λix)))

∑n+1
i=1 φ (1−F(λix))

,

which is equivalent to showing that, for all x ,
n

∑
i=1

−λn+1F ′(λn+1x)φ (1−F(λix))
ψ ′ (φ (1−F(λn+1x)))

�
n

∑
i=1

−λiF ′(λix)φ (1−F(λn+1x))
ψ ′ (φ (1−F(λix)))

⇐⇒ 0 �
n

∑
i=1

φ (1−F(λn+1x))φ (1−F(λix))

×
[

λn+1F ′(λn+1x)
ψ ′ (φ (1−F(λn+1x)))φ (1−F(λn+1x))

− λiF ′(λix)
ψ ′ (φ (1−F(λix)))φ (1−F(λix))

]

⇐⇒ 0 �
n

∑
i=1

φ (1−F(λn+1x))φ (1−F(λix))

×
[
−d (ln(φ(1−F(λn+1x))))

dx
+

d (ln(φ(1−F(λix))))
dx

]
. (6)

Due to the condition λi � λn+1 , for all i , (6) holds if

d2 ln(φ(1−F(x)))
dx2

is positive. Thus, it suffices that φ(1−F(x)) is log-convex.
(ii) The proof is similar to that of Part (i) and is therefore omitted for the sake of

brevity. �

EXAMPLE 4. Here again, it should be mentioned that the condition “− lnψ(ex) is
convex and φ(1−F(x)) is log-concave” in Part (i) of Theorem 4 are satisfied by some
survival Archimedean copulas and some marginals. For example, consider ψ(x) =
(x+1)−1 . Thus, − ln(ψ(ex)) is convex. On the other hand, let us set F(x) = 1−
e−λ x,(λ > 0) , then φ(1−F(x)) = 1

1−F(x) −1 = eλ x −1. Now, it is easy to verify that

φ(1−F(x)) is log-concave.
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5. Concluding remarks

In this paper, we have established the hazard rate order and reversed hazard rate
order of series and parallel systems when the components follow general scale model
under Archimedean copula. Several examples are also presented for illustrations.
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