
Journal of

Mathematical

Inequalities

Volume 15, Number 2 (2021), 559–573 doi:10.7153/jmi-2021-15-41

A NECESSARY AND SUFFICIENT CONDITION FOR THE

CONVEXITY OF THE ONE–PARAMETER GENERALIZED INVERSE

TRIGONOMETRIC SINE FUNCTION ACCORDING TO POWER MEAN
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∗

(Communicated by L. Mihoković)

Abstract. In the article, we present a necessary and sufficient condition such that the one-parameter

generalized inverse trigonometric sine function is convex with respect to power mean. As a

consequence, we provide the necessary and sufficient condition for the concavity of the one-

parameter generalized trigonometric sine function according to power mean.

1. Introduction

Let λ , T > 0 and p , q > 1. Then the well-known generalized Dirichlet prob-

lem for Laplacian equation on the interval (0,T ) or (p,q)-eigenvalue problem with

Dirichlet boundary condition and eigenvalue λ along with eigenfunction u(t) is given

by

{
(

|u′|p−2u′
)′

+ λ |u|q−2u = 0, t ∈ (0,T ),

u(0) = u(T ) = 0.

The complete solution for the above problem was given independent by Drábek

and Manásevich in [28], and Takeuchi in [59].

Let T = πp,q . Then the eigenvalue λ = p(p−1)/q and the corresponding eigen-

function u(t) = sinp,q(t) , where sinp,q is the two-parameter generalized trigonometric

sine function and

πp,q = 2

∫ 1

0
(1− tq)−1/pdt.

In particular, if p = q = 2, then sinp,q and πp,q reduce to the classical trigonometric

sine function sin and the circumference ratio π , respectively.
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An alternative equivalent definition for sinp,q can be obtained by the following

integral

arcsinp,q(x) =

∫ x

0
(1− tq)−1/pdt (p,q > 1,x ∈ [0,1]).

We denote its inverse function by sinp,q defined on [0,πp,q/2] due to the function x 7→
arcsinp,q(x) is strictly increasing from [0,1] onto [0,πp,q/2] . By defining sinp,q(x) =
sinp,q(πp,q − x) for x ∈ [πp,q/2,πp,q] , the function sinp,q can be extended to [0,πp,q] .
Then one can further extends sinp,q to [−πp,q,πp,q] as an odd function, and finally to

R by 2πp,q -periodicity.

In [45, 46], Lindqvist and Peetre investigated the one-parameter generalized in-

verse trigonometric sine function

arcsin∗p(x) = arcsin p
p−1 ,p(x) =

∫ x

0
(1− t p)−

p−1
p dt (p > 1,x ∈ [0,1]) (1.1)

and the generalized circumference ratio

π∗
p = 2arcsin∗p(1) = 2

∫ 1

0
(1− t p)−

p−1
p dt, (1.2)

and thereby obtained the one-parameter generalized trigonometric sine function sin∗p
defined on [0,π∗

p/2] as the inverse function of arcsin∗p . Using the similar extension

procedures as sinp,q , the function sin∗p can be defined on R .

Recently, the one-parameter generalized trigonometric sine function sin∗p has at-

tracted the attention of many researchers [14, 29, 45, 46]. Lindqvist and Peetre [46]

proved that the area closed by the p -circle

|x|p + |y|p = Rp

is π∗
pR2 and the q -length ( lq metric) of p -circle is 2π∗

pR . In particular, Edmunds,

Gurka and Lang [29], and Bakşi, Gurka and Lang [14] gave many important and basis

properties for the one-parameter generalized trigonometric sine function sin∗p . More

properties for sin∗p , sinp,q and other generalizations for the trigonometric function and

their applications, we recommend the literature [18, 19, 21, 22, 28, 36, 42, 43, 44, 47,

57, 59] to the readers.

It is well-known that convexity is an indispensable tool in inequality theory [6,

32, 58, 62, 63, 72, 74]. Recently, the generalizations, variants and extensions for the

convexity have been the subject of intensive research, for example, the s-convexity

[4, 51], m-convexity [70], (s,m)-convexity [2, 31], h -convexity [69], p -convexity [3],

ρ -convexity [10], tgs-convexity [30], η -convexity [41], harmonic convexity [1, 9],

GG- and GA-convexities [40], prevexity [13, 37] and exponential convexity [48, 50].

In particular, many inequalities can be found in the literature [5, 11, 12, 23, 33, 34, 35,

39, 49, 52, 53, 54, 55, 56, 64, 68, 75] via the convexity theory.

Let p ∈ R and x,y > 0. Then the p th power (Hölder) mean Mp(x,y) of x and y



A NECESSARY AND SUFFICIENT CONDITION FOR THE CONVEXITY 561

[24, 27, 66, 73] is defined by

Mp(x,y) =











(

xp + yp

2

)1/p

, p 6= 0,

√
xy, p = 0.

Let I ⊆ (0,∞) be an interval and f : I → (0,∞) be a continuous function. Then f

is said to be Ma,b -convex (concave) on I if the inequality

f (Ma(x,y)) 6 (>)Mb( f (x), f (y)) (1.3)

holds for all x,y ∈ I , and f is strictly Ma,b -convex (concave) if inequality (1.3) is strict

except for x = y .

In the past few years, numerous authors have studied the Ma,b -convexity (concav-

ity) properties for the special functions in geometric function theory including general-

ized trigonometric functions [16, 17, 20, 36, 38], Jacobian sine function [60], Gaussian

hypergeometric functions [8, 15, 71], elliptic integrals [25, 26, 61, 65, 67]. For ex-

ample, in 2012, Bhayo and Vuorinen [20] conjectured that the function sinp,q(x) is

M0,0 -convex on (0,1) for p,q ∈ (1,+∞) . Later, Jiang et al. [36] gave a positive an-

swer to this conjecture. In 2013, Baricz, Bhayo and Klén [16] proved that the function

arcsinp,q(x) is Ma,b -convex on (0,1) if (a,b) ∈ {a,b|a 6 0,b ∈ R}∪ {a,b|0 < a 6

b,b 6 1} . Recently, Bhayo [19] proved that arcsinp,p(x) is Ma,a -convex and sinp,p(x)
is Ma,a -concave on (0,1) if p > 1 and a > 0.

The main purpose of the article is to give the maximal regions in the (a,b)-plane

such that the function arcsin∗p(x) is Ma,b -convex or Ma,b -concave on (0,1) . As a corol-

lary, a necessary and sufficient condition for the Ma,b -concavity of the one-parameter

generalized trigonometric sine function sin∗p(x) is also derived. Our main results are

the Theorem 1.1 and Corollary 1.2 as follows.

THEOREM 1.1. Let p ∈ (1,+∞) . Then the one-parameter generalized inverse

trigonometric sine function arcsin∗p(x) is Ma,b -convex on (0,1) if and only if

(b,a) ∈ D = {(b,a)|a 6 1 + L(b)},
where

L(b) = inf
x∈(0,1)

[

(b−1)
x

arcsin∗p(x)(1− xp)1−1/p
+(p−1)

xp

1− xp

]

is a continuous function with L(b) = b− 1 if b > −p, and L(b) < b− 1 if b < −p.

Moreover, there does not exist (a,b) ∈ R
2 such that arcsin∗p(x) is Ma,b -concave on

(0,1) .

COROLLARY 1.2. Let p∈ (1,+∞) . Then the one-parameter generalized trigono-

metric sine function sin∗p(x) is Ma,b -concave on (0,π∗
p/2) if and only if

(a,b) ∈ D∗ = {(a,b)|b 6 1 + L(a)},
where the function L(·) is defined as in Theorem 1.1. Moreover, there does not exist

(a,b) ∈ R
2 such that sin∗p(x) is Ma,b -convex on (0,π∗

p/2) .
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2. Lemmas

In order to prove our main results Theorem 1.1 and Corollary 1.2, we need several

lemmas which we present in this section.

LEMMA 2.1. [7, Theorem 1.25, l’Hôptial Monotone Rule] Let a,b ∈ R with

a < b, f ,g : [a,b] → R be two continuous functions and differentiable on (a,b) such

that g′(x) 6= 0 for each x ∈ (a,b) . Then both the functions

f (x)− f (a)

g(x)−g(a)
and

f (x)− f (b)

g(x)−g(b)

are (strictly) increasing (decreasing) on (a,b) if f ′(x)/g′(x) is (strictly) increasing

(decreasing) on (a,b) .

LEMMA 2.2. Let p ∈ (1,+∞) . Then the function x → f (x) = arcsin∗p(x)/x is

strictly increasing from (0,1) onto (1,π∗
p/2) .

Proof. Let f1(x) = arcsin∗p(x) and f2(x) = x . Then f1(0) = f2(0) = 0, and

f ′1(x)/ f ′2(x) = (1− xp)1/p−1 is strictly increasing on (0,1) . It follows from Lemma

2.1 that f (x) is also strictly increasing on (0,1) . Moreover, by l’Hôptial’s Rule, we

have limx→0+ f (x) = limx→0+ f ′1(x)/ f ′2(x) = 1, limx→1− f (x) = π∗
p/2. �

LEMMA 2.3. The following statements are true:

(1) If p∈ (1,+∞) , then the function Fp(x)= [1+(p−2)xp]/(1−xp)1/p is strictly

increasing from (0,1) onto (1,+∞);

(2) If p ∈ (1,2] , then the function Gp(x) = [2(p− 2)x2p − 2(p− 2)xp + (p −
1)]/(1− xp)2/p is strictly increasing from (0,1) onto (p−1,+∞);

(3) If p ∈ (2,+∞) , then the function Hp(x) = −(p− 2)(p− 4)x2p +(p2 − 5p +
8)xp +(p−2) is positive on (0,1) .

Proof. (1) By differentiation, we have

F ′
p(x) =

(p−1)xp−1[−(p−2)xp +(p−1)]

(1− xp)1+1/p
.

Since x 7→ −(p−2)xp +(p−1) is strictly monotone on (0,1) , limx→0+ [−(p−2)xp +
(p− 1)] = (p− 1) > 0 and limx→1− [−(p− 2)xp + (p− 1)] = 1 > 0, we know that

F ′
p(x) > 0 for all x ∈ (0,1) and Fp(x) is strictly increasing on (0,1) . Moreover,

limx→0+ Fp(x) = 1, limx→1− Fp(x) = +∞ .

(2) If p = 2, then Gp(x) = G2(x) = 1/(1− x2) is strictly increasing from (0,1)
onto (1,+∞) . In the case of p ∈ (1,2) , differentiating Gp yields

G′
p(x)= 2xp−1(1−xp)−2/p−1[2(1− p)(p−2)x2p+(3p−2)(p−2)xp+(−p2+3p−1)].
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Due to (1− p)(p−2)> 0 and (3p−2)/[4(p−1)]> 1 for p ∈ (1,2) , one has

inf
x∈(0,1)

[2(1− p)(p−2)x2p+(3p−2)(p−2)xp +(−p2 + 3p−1)]

=2(1− p)(p−2)+ (3p−2)(p−2)+(−p2+ 3p−1) = p−1 > 0.

Consequently, G′
p(x) > 0 for all x∈ (0,1) , so that Gp(x) is strictly increasing on (0,1) .

Moreover, limx→0+ Gp(x) = p−1, limx→1− Gp(x) = +∞.
(3) By differentiation, we have

H ′
p(x) = −2p(p−2)(p−4)x2p−1+ p(p2 −5p + 8)xp−1 = pxp−1hp(x),

where

hp(x) = −2(p−2)(p−4)xp+ p2 −5p + 8.

Note that hp(x) is monotone on (0,1) and hp(0) = p2 − 5p + 8 > 0 for p > 2,

we get hp(x) > 0 for all x ∈ (0,1) , or there exists x0 ∈ (0,1) such that hp(x) > 0 for

x ∈ (0,x0) and hp(x) < 0 for x ∈ (x0,1) . Hence H ′
p(x) > 0 for all x ∈ (0,1) , or there

exists x0 ∈ (0,1) such that H ′
p(x) > 0 for x ∈ (0,x0) and H ′

p(x) < 0 for x ∈ (x0,1) ,

so that Hp(x) is strictly increasing on (0,1) , or is first increasing then decreasing on

(0,1) . Since Hp(0)= p−2 > 0 and Hp(1)=−(p−2)(p−4)+ p2−5p+8+(p−2)=
2(p−1) > 0 for p > 2, hence Hp(x) is positive on (0,1) . �

LEMMA 2.4. Let p ∈ (1,+∞) and ω(x) be defined by

ω(x) =

[

arcsin∗p(x)

x

]2

(1− xp)−2/p[2(p−2)x2p−2(p−2)xp +(p−1)]

+ 2

[

arcsin∗p(x)

x

]

(1− xp)−1/p[1 +(p−2)xp].

Then ω(x) is strictly increasing from (0,1) onto (p + 1,+∞) .

Proof. If p ∈ (1,2] , then it follows from Lemmas 2.1-2.3 that ω(x) is strictly

increasing on (0,1) . In the remanning case that p ∈ (2,+∞) , differentiating ω(x) and

multiplying both sides by x3(1− xp)1+2/p/[2arcsin∗p(x)
2] gives

x3

2
(1− xp)1+2/p ω ′(x)

[arcsin∗p(x)]2

=

[

x

arcsin∗p(x)

]2

(1− xp)2/p[1 +(p−2)xp]

+

[

x

arcsin∗p(x)

]

(1− xp)1/p
[

− (p−2)(p−4)x2p

+(p2 −5p + 8)xp +(p−2)
]

−2(p−2)2x3p + 3(p−2)2x2p

− (p2 −6p + 6)xp− (p−1).
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It was proved in [20, Theorem 1.1] that the inequality x
arcsin∗p(x)

> (1−xp)(p−1)/[p(1+p)]

holds for all x ∈ (0,1) . Hence, by Lemma 2.3(3), it is sufficient to prove that

ω1(x) ≡−2(p−2)2x3p + 3(p−2)2x2p − (p2 −6p + 6)xp− (p−1)

+ (1− xp)
2

1+p [−(p−2)(p−4)x2p +(p2 −5p + 8)xp +(p−2)]

+ (1− xp)
4

1+p [(p−2)xp + 1] (2.1)

is positive for all x ∈ (0,1) .

It follows from

(1− x)α =
∞

∑
n=0

(−α,n)

n!
xn > 1−αx− α

2
(1−α)x2 − (1−α)(2−α)

2
x3

for α ∈ (0,1) that

(1− xp)
2

1+p > 1− 2

1 + p
xp − p−1

(1 + p)2
x2p − p(p−1)

(1 + p)2
x3p. (2.2)

Using inequality (2.2) in (2.1) we obtain

(p + 1)4x−pω1(x) > ω2(x) ≡ 2p2(p + 1)3 + p(p + 1)2(2p3 −4p2−3p + 1)xp

−p(p−1)(p + 1)(2p3−5p + 1)x2p

−(p−1)(p5−2p4 + 3p3 −7p + 1)x3p

+(p−1)(p5−4p4 + p3 + 9p2 −5p + 2)x4p

+p(3p−4)(p−1)2x5p

+p2(p−2)(p−1)x6p. (2.3)

Noting that

p5 −4p4 + p3 + 9p2 −5p + 2

=[4−5(p−2)− (p−2)2]+ [9(p−2)2 + 6(p−2)4 +(p−2)5]

=
89

32
+

65

15

(

p− 5

2

)

+
91

4

(

p− 5

2

)2

+
47

2

(

p− 5

2

)3

+
17

2

(

p− 5

2

)4

+

(

p− 5

2

)5

.

The first identity shows that p5 −4p4 + p3 + 9p2 −5p + 2 > 0 for p ∈ (2,5/2) , while

the second one implies that p5 −4p4 + p3 +9p2−5p+2 > 0 for p ∈ [5/2,+∞) . Thus

p5 −4p4 + p3 + 9p2 −5p + 2 > 0 for all p ∈ (2,+∞) . This, together with (2.3), leads
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to the conclusion that

ω2(x) >2p2(p + 1)3 + p(p + 1)2(2p3 −4p2 −3p + 1)xp− p(p−1)(p + 1)

× (2p3 −5p + 1)x2p− (p−1)(p5−2p4 + 3p3−7p + 1)x3p

>(p + 1)2[2p2(p + 1)+ p(2p3−4p2 −3p + 1)]xp−
(

p−1)

× [p(p + 1)(2p3−5p + 1)+ (p5−2p4 + 3p3 −7p + 1)
]

x2p

=p(p + 1)2(2p3 −2p2 − p + 1)xp− (p−1)(3p5−2p3 −4p2 −6p + 1)x2p

>
[

p(p + 1)2(2p3 −2p2− p + 1)− (p−1)(3p5−2p3 −4p2−6p + 1)
]

x2p

=(p−1)(5p5 + 4p4− p3 −6p2 −7p + 1)x2p > 0

for all x ∈ (0,1) . Consequently, ω(x) is strictly increasing on (0,1) . Moreover,

lim
x→0+

ω(x) = p + 1, lim
x→1−

ω(x) = +∞.

This completes the proof. �

LEMMA 2.5. Let p ∈ (1,+∞) and ϕ(x) be defined by

ϕ(x) =
p(p−1)[arcsin∗p(x)]

2xp−1(1− xp)−1/p

arcsin∗p(x)[1 +(p−2)xp]− x(1− xp)1/p
.

Then ϕ(x) is strictly increasing from (0,1) onto (p + 1,+∞) .

Proof. Let

ϕ1(x) = [p(p−1)[arcsin∗p(x)]
2xp−1(1− xp)−1/p][1 +(p−2)xp]−1,

ϕ2(x) = arcsin∗p(x)− x(1− xp)1/p[1 +(p−2)xp]−1.

Then ϕ1(0) = ϕ2(0) = 0,

ϕ ′
1(x) =p(p−1)xp−2(1− xp)1/p−1[1 +(p−2)xp]−2

{

2xarcsin∗p(x)

× (1− xp)−1/p[1 +(p−2)xp]+
[

arcsin∗p(x)
]2

(1− xp)−2/p

× [2(p−2)x2p−2(p−2)xp +(p−1)]
}

,

ϕ ′
2(x) = p(p−1)xp(1− xp)1/p−1[1 +(p−2)xp]−2

and

ϕ ′
1(x)

ϕ ′
2(x)

=

[

arcsin∗p(x)

x

]2

(1− xp)−2/p[2(p−2)x2p−2(p−2)xp +(p−1)]

+ 2

[

arcsin∗p(x)

x

]

(1− xp)−1/p[1 +(p−2)xp].
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It follows from Lemma 2.4 that ϕ ′
1(x)/ϕ ′

2(x) is strictly increasing on (0,1) for

p ∈ (1,+∞) . Applying Lemma 2.1 we conclude that ϕ(x) is also strictly increasing on

(0,1) . Moreover,

lim
x→0+

ϕ(x) = lim
x→0+

ϕ ′
1(x)

ϕ ′
2(x)

= p + 1, lim
x→1−

ϕ(x) = +∞.

This completes the proof. �

REMARK 2.6. The proof of Lemma 2.6 implies that ϕ ′
2(x) > 0 and ϕ2(0) = 0.

Thus arcsin∗p(x)[1 + (p− 2)xp]− x(1− xp)1/p = [1 + (p− 2)xp]ϕ2(x) > 0 for all x ∈
(0,1) and p ∈ (1,+∞) .

LEMMA 2.7. Let x ∈ (0,1) , b ∈ R , p ∈ (1,+∞) , φb(x) be defined by

φb(x) = (b−1)
x

arcsin∗p(x)(1− xp)1−1/p
+(p−1)

xp

1− xp

and

L(b) = inf
x∈(0,1)

φb(x).

Then φb(x) is strictly increasing from (0,1) onto (b− 1,+∞) if and only if b > −p,

and there exists λ ∈ (0,1) such that φb(x) is strictly decreasing on (0,λ ) and strictly

increasing on (λ ,1) with the range (L(b),+∞) if b <−p. Moreover, L(b) = b−1 for

b > −p, and L(b) < b−1 for b < −p.

Proof. Let

φb1(x) = (b−1)x(1− xp)1/p +(p−1)arcsin∗p(x)x
p

and

φb2(x) = arcsin∗p(x)(1− xp).

Then φb1(0) = φb2(0) = 0,

φ ′
b1(x) = (b−1)(1− xp)1/p +(p−b)xp(1− xp)1/p−1 + p(p−1)arcsin∗p(x)x

p−1

and

φ ′
b2(x) = (1− xp)1/p − parcsin∗p(x)x

p−1.

Making use of the l’Hôptial Rule, we get

lim
x→0+

φb(x) = lim
x→0+

φ ′
b1(x)

φ ′
b2(x)

= b−1, lim
x→1−

φb(x) = +∞.

Differentiating φb(x) leads to

φ ′
b(x) =

arcsin∗p(x)[1 +(p−2)xp]− x(1− xp)1/p

[arcsin∗p(x)]2(1− xp)2−1/p
[(b−1)+ ϕ(x)],
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where ϕ(x) is defined as in Lemma 2.5. We divide the proof into two cases.

Case A. b > −p . Then it follows from Lemma 2.5 and Remark 2.6 that φ ′
b(x) > 0

for all x ∈ (0,1) , so that φb(x) is strictly increasing from (0,1) onto (b−1,+∞) .

Case B. b < −p . Then Lemma 2.5 and Remark 2.6 lead to the conclusion that

there exists λ ∈ (0,1) such that φb(x) is strictly decreasing on (0,λ ) and strictly in-

creasing on (λ ,1) . Thus, φb(x) ∈ (L(b),+∞) . �

LEMMA 2.8. Let x ∈ (0,1) , a,b ∈ R , p ∈ (1,+∞) , ηa,b(x) be defined by

ηa,b(x) =
[arcsin∗p(x)]

b−1x1−a

(1− xp)1−1/p

and L(b) be defined as in Lemma 2.7 . Then ηa,b(x) is strictly increasing on (0,1) if

and only if a 6 1 + L(b) and ηa,b(x) is piecewise monotone on (0,1) if a > 1 + L(b) .

Proof. Lemma 2.8 follows from Lemma 2.7 and the logarithmic differentiation of

ηa,b(x)

η ′
a,b(x)

ηa,b(x)
=

1

x

[

(b−1)x

arcsin∗p(x)(1− xp)1−1/p
+(1−a)+

(p−1)xp

1− xp

]

=
1

x
[φb(x)+ 1−a],

where φb(x) is defined as in Lemma 2.7. �

3. Proofs of Theorem 1.1 and Corollary 1.2

Proof of Theorem 1.1. We divide the proof of Theorem 1.1 into two cases.

Case 1 b 6= 0. Without loss of generality, we assume that 0 < x 6 y < 1. Let

J(x,y) = [arcsin∗p(Ma(x,y))]
b −

[arcsin∗p(x)]
b +[arcsin∗p(y)]

b

2
(3.1)

and t = Ma(x,y) . Then ∂ t/∂x = (x/t)a−1/2. If x < y , then t > x . Differentiating

J(x,y) with respect to x gives

∂J(x,y)

∂x
=

b[arcsin∗p(t)]
b−1(1− t p)1/p−1( x

t
)a−1

2
− 1

2
b[arcsin∗p(x)]

b−1(1− xp)1/p−1

=
b

2
xa−1[ηa,b(t)−ηa,b(x)], (3.2)

where ηa,b(x) is defined as in Lemma 2.8. Next, we divide the proof into two subcases.

Subcase 1.1 a 6 1+L(b) . Then it follows from (3.2) and Lemma 2.8 that ∂J(x,y)/
∂x > 0 if b > 0, and ∂J(x,y)/∂x < 0 if b < 0. Hence J(x,y) < J(y,y) = 0 if b > 0,

and J(x,y) > J(y,y) = 0 if b < 0. Thus from (3.1) we have

arcsin∗p(Ma(x,y)) 6 Mb(arcsin∗p(x),arcsin∗p(y))
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for a 6 1 + L(b) and b 6= 0, with equality if and only if x = y . Therefore, arcsin∗p(x)
is strictly Ma,b -convex for (b,a) ∈ {(b,a)|a 6 1 + L(b),b 6= 0} .

Subcase 1.2 a > 1 + L(b) . Then making use of (3.1), (3.2) and Lemma 2.8 to-

gether with the similar argument as in Subcase 1.1 we know that arcsin∗p(x) is neither

Ma,b -concave nor Ma,b -convex on (0,1) .

Case 2 b = 0. Then we assume that 0 < x 6 y < 1. Let

I(x,y) =
[arcsin∗p(Ma(x,y))]

2

arcsin∗p(x)arcsin∗p(y)
(3.3)

and t = Ma(x,y) . Then ∂ t/∂x = (x/t)a−1/2. Logarithmic differentiating I(x,y) with

respect to x gives

∂ I(x,y)

∂x

1

I(x,y)
=xa−1

[

t1−a

arcsin∗p(t)(1− t p)1−1/p
− x1−a

arcsin∗p(x)(1− xp)1−1/p

]

=xa−1[ηa,b(t)−ηa,b(x)], (3.4)

where ηa,b(x) is defined as in Lemma 2.8. Noting that b = 0 > −p , L(b) = −1. We

divide the proof into two subcases.

Subcase 2.1 a 6 1+L(b) = 0. It follows from (3.4) and Lemma 2.8 that ∂ I(x,y)/
∂x > 0 and I(x,y) 6 I(y,y) = 1. Therefore,

arcsin∗p(Ma(x,y)) 6 Mb(arcsin∗p(x),arcsin∗p(y))

follows from (3.3) with equality if and only if x = y , and arcsin∗p(x) is strictly Ma,b -

convex for (b,a) ∈ {(b,a)|a 6 0, b = 0} .

Subcase 2.2 a > 0. Then making use of (3.3), (3.4) and Lemma 2.8 together with

the similar argument as in Subcase 2.1 we know that arcsin∗p(x) is neither Ma,b -concave

nor Ma,b -convex on (0,1) . �

Proof of Corollary 1.2. If arcsin∗p(x) is Ma,b -convex on (0,1) , then the inequality

arcsin∗p(Ma(x,y)) 6 Mb(arcsin∗p(x),arcsin∗p(y))

holds for any x,y ∈ (0,1) . Let x = sin∗p(u) , y = sin∗p(v) for u,v ∈ (0,π∗
p/2) . Then

Ma(sin∗p(u),sin∗p(v)) 6 sin∗p(Mb(u,v)),

so that sin∗p(x) is Mb,a -concave on (0,π∗
p/2) . Therefore, by Theorem 1.1, Corollary

1.2 holds true. �

REMARK 3.1. According to Lemma 2.7, we draw some boundary curves of the

regions D∗ in Corollary 1.2 (see Figure 1) for p = 3/2,2,3,10, where b is the best

possible value with respect to fixed a ∈ R such that sin∗p is Ma,b -concave on (0,1) .
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(a) p = 3
2

(b) p = 2

(c) p = 3 (d) p = 10

Figure 1: The boundary curves b = 1+L(a) with different parameters p = 3/2,2,3,10
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