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ADDITIVE DOUBLE p-FUNCTIONAL
INEQUALITIES IN 3-HOMOGENEOUS F-SPACES
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Abstract. In this paper, we introduce and solve the following additive double p -functional in-
equalities
[fCety+2)+ fxr—y) = f(2) =2 @) <llp1 (f(x+y+2) = fx) = f(y) = FQR))]

oy —faer)—f)

where py,p, are fixed nonzero complex numbers with [2p; |2 + [p2]P2 < 1, and

IfCx+y+2) = f(x) = f) = FRI <L (f(x+y+2) + f(x=y) = f(2) = 2f (1))

2)
+Hlp2(f(x+y+2) = f(x+y) = f(2)]l

where py,p, are fixed nonzero complex numbers with [py %2 +[pa|P2 < 1.
By adopting the direct method, we have made an attempt to prove the Hyers-Ulam stability
of the additive double p -functional inequalities in f3 -homogeneous F -spaces.

1. Introduction

Based on the consideration of the stability of the group homomorphism, the func-
tional equations encounter stability problems that have been originated from the well-
known equation of Ulam [18].

Given a group G and a metric group G’ with metric p(-,-). Given € > 0, does
there exist a 6 > 0 such that if f: G — G satisfies p(f(xy), f(x)f(y)) < 6 for all
x,y € G, then a homomorphism 4 : G — G’ exists with p(f(x),h(x)) < & forall xe G?

In the case of Banach space in equation studied by Ulam, the first affirmative par-
tial answer was published by Hyers [6]. Firstly, for the additive mappings, the Hyers
Theorem generalized form was solved by Aoki [1], and further, for linear mapping,
it was generalized by Rassias [16] taking an unbounded Cauchy difference in consid-
eration. Givruta [5] replaced the unbounded Cauchy difference by a general control
function to generalize the Rassias Theorem.
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Park [13, 14] defined additive p -functional inequalities and proved the Hyers-
Ulam stability of the additive p -functional inequalities in Banach spaces and non-
Archimedean normed spaces. A number of studies have been carried out for inves-
tigating the stability problems of various functional equations (see [3, 4, 7, 8, 9, 12]).

In [15], Park et al. investigated the following inequalities

If )+ £0) + Hzf(”y”)

[f)+fO)+ @I < Ifx+y+2),
1)+ /) +2/(2) Hzf( )H

in Banach spaces. In addition to aforementioned literature, a recent study was published
by Lu et al. [11], in their findings, they investigated 3-variable Jensen p -functional
inequalities in complex Banach spaces that are associated with the following functional
equations:

)

Jx+y+2)+flx+y—2)=2f(x) =2f(y) =
fx+y+z)—flx—y—2)—=2f(y) —2f(z) =

Although various studies have been successfully conducted in the context of sta-
bility problems, however, the non-linear structure of F -spaces (infinite-dimensional)
has not yet received considerable attention from the earlier researchers. The nonlinear
structure of F -spaces (infinite-dimensional) plays a vital role in functional analysis,
consequently, it is essential to re-investigate such structures. As an illustration, the
LP(]0,1]) for 0 < p < 1 equipped with the metric d(f,g) = [|f(x) — g(x)|Pdx is an
F -space instead of a Banach space. Besides these, for F -spaces, several results can be
consulted in [2, 10] and the references therein.

DEFINITION 1.1. Consider X be a linear space. A non-negative valued function
|| - || achieves an F -norm if satisfies the following conditions:

(1) ||x|| =0 if and only if x = 0;

) [|Ax]| = [lx][ forall A, |A[=1;

3) el < [l + [yl or all %,y € X
(4) ||Anx|| — O provided A, — 0;

(5) [|[Axy]| — O provided x, — 0;

(6) || Anxnl| — O provided A, — 0,x, — 0.

Then (X,]|-||) is called an F*-space. An F -space is a complete F*-space.
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An F -norm s called 8-homogeneous (B > 0) if ||zx|| = |¢|P||x| forall x € X and
all 1 € C (see [17, 19]).

Considering the current gaps, in this paper, we have made an attempt to investigate
the additive double p -functional inequalities and successfully proved the Hyers-Ulam
stability of the additive double p -functional inequalities in § -homogeneous F -spaces.

In order to achieve the proposed objectives of this work, we have organized the
paper in the following sections: Section 2 deals with proving the Hyers-Ulam stability
of the additive double p -functional inequality (1) in 3 -homogeneous F -spaces.

In Section 3, we prove the Hyers-Ulam stability of the additive double p -functional
inequality (2) in 8 -homogeneous F -spaces.

During the entire course of this work, B, B, are considered as positive real num-
bers with B; < 1 and B, < 1. Furthermore, X is assumed as 3| -homogeneous F -space
while Y is a B, -homogeneous F -space.

2. Additive double p -functional inequality (1)

This section solely emphasis an assumption stating that the p;,p, are considered
as fixed complex numbers with [2p; |2 +[p,|P2 < 1. We investigate the additive double
p -functional inequality (1) in 8 -homogeneous F -spaces.

LEMMA 2.1. A mapping f:X —Y satisfies

[fx+y+2)+ fx—y) = f2) =2f D) <llp1(f(x+y+2) = f(x) = F0) = F2))

Flp2(f(x+y+2) = flx+y) = f(2)]
3)

forall x,y,z € X ifandonly if f:X —Y is additive.

Proof. Assume that f: X — Y satisfies (3). Letting x =y =z =0 in (3), we get
(1= 201" = [p2|) | F(0) ]| <O

Then f(0) =0.
Letting y =0 in (3), we get

(1= = |2l f(x +2) = f(x) = f()] <O

and so
fx+2) =f)+ /()
for all x,z € X . Proving that the f is additive and obviously the converse is true. [

The next theorem pertains to presenting the Hyers-Ulam stability of the additive
double p -functional inequality (3) in -homogeneous F -spaces.
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THEOREM 2.1. Let r> g? and 0 be nonnegative real numbers, andlet f: X —Y
be a mapping such that

[fx+y+2)+ fx—y) = f(2) =2f @) <llp1(f(x+y+2) = f(x) = F0) = F @)
+p2(f(x+y+2) = flx+y) = f(2)]
+O(Ixl|I"+ Iyl +llzl")

4)
forall x,y,z € X. Then there exists a unique additive mapping A : X — Y such that
260
—A < d 5

forall x€ X.

Proof. Letting x =y =z=0 in (4), we get f(0) =0. Letting x=y, z=0 in (4),
then we obtain

20

[£(2x) = 2f(x)[| < WIIXH’ (6)
forall x € X. So
X 20
b (5)| < e
forall x € X. Hence
m—1
1 m X 26 2
Pr(5) i) < Z [T [pu PP 2 e @

for all nonnegative integers m and [ with m > [ and all x € X . It follows from (7) that
the sequence {2"f(5;)} is a Cauchy sequence for all x € X. Since Y is complete, the
sequence {2"f(57)} converges. Hence, the mapping A : X — Y can be defined as:

A= tim 27 (3,

for all x € X. Furthermore, by considering / = 0 and setting the limit m — o in (7),
we get (5).
It follows from (4) that

[A(x+y+2) +Ax—y) —A(z) —2A(x)]|
f<x+y+z) iy

) () () (5)]
< mzﬁw(‘ p (f(”zyfz) _f<2x_n) _f<2y_") _f<2£)> H

o (r () -1 (2) (%)) [) + tm Zpma o+ o+ 11
— Ipr (A 3+ 2) ~ AL~ AD) ~ A + Ipa(AGr-+3 +2) — Al +3) - A)]

= lim 2P

n—oo
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forall x,y,z € X. Hence
[Ax+y+2) +Ax—y) —Az) = 2A) [ < [|p1(A(x +y+2) — A(x) —A(y) —A(2))]]
Flp2(Alx+y+2) —Alx+y) —A2))]]

forall x,y,z € X. By Lemma 2.1, the mapping A : X — Y is additive.
Now, we show the uniqueness of A. Assuming 7 : X — Y as another additive
mapping satisfying (5) that yields:

()75
A(z) ()| +2

< 4.2Png )
= (1= |py|B2)(2Pir — 2B2) 2B I

IAGx) =T (x)| =27

< LI

r(5) (3]

which tends to zero as n — oo for all x € X. So we can conclude that A(x) = T'(x) for
all x € X. This proves the uniqueness of A. Thus the mapping A: X — Y is a unique
additive mapping satisfying (5). O

THEOREM 2.2. Consider r < ﬁ 2 and O be nonnegative real numbers, and let

f:X — Y be a mapping satisfying ( 4) Then there exists a unique additive mapping
A: X —Y such that

26
—_A < r 8
forall xe X.
Proof. Tt follows from (6) that
260
2 - r
1= 300 < g2y
for all x € X. Hence
1., . ml 26 oy
?f(z ) sz(z ) = 12;1 ( ‘p ‘ﬁz)zﬁz 2[32, ” H (9)

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (9) that
the sequence {2%, f(2"x)} is a Cauchy sequence for all x € X . Since Y is complete, the
sequence {% f(2"x)} converges. Hence, the mapping A : X — Y can be defined as:

A() = lim 5 7(2")

for all x € X. Moreover, letting [ = 0 and passing the limit m — oo in (9), we get (8).
The rest of the proof is similar to the proof of Theorem 2.1. [J
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3. Additive double p -functional inequality (2)

This section aims at assuming that p;, p, are fixed complex numbers with |p; \ﬁz +
|2 \ﬁz < 1. Here we have made considerable efforts in investigating the additive double
p -functional inequality (2) in 3 -homogeneous F -spaces.

LEMMA 3.1. A mapping f: X — Y satisfies

1fe+y+2) =) =) = @I <lp1(f(x+y+2) + f(x—y) = f(2) =2/ (x))

Fllp2(f(x+y+2) = flx+y) = ()]l
(10)

forall x,y,z€ X ifandonly if f:X —Y is additive.

Proof. Assume that f: X — Y satisfies (10). Letting x =y =z =0 in (10), we
get

(2% —|p1|P> = oo £ (0) ]| < 0.

Then f(0) =0.
Letting y =0 in (10), we get

(=11l = |p2lP) | (x+2) = f(x) = f(2)]| <O
and so
fx+2)=fx)+ /()
forall x,z € X. Proving that the f is additive and obviously the converse is true. [

In the next paras, we present the Hyers-Ulam stability of the additive double p -
functional inequality (10) in 8 -homogeneous F -spaces.

THEOREM 3.1. Let r> ﬁ—f and 0 be nonnegative real numbers, andlet f: X —Y
be a mapping such that

[f(x+y+2) = fx) = fO) = @I <lpr1 (f(x+y+2) + flx—y) = f(z) = 2f (X))l
+lp2(fx+y+2) = flx+y) = f)I  (AD
+O([lx"+ 1yl + llzll")

forall x,y,z € X. Then there exists a unique additive mapping A : X — Y such that

20

1760 = A0 < o5 8

(1" (12)

forall x € X.
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Proof. Considering x =y =z=0 in (11), we get f(0) =0. Letting x=y,z=0
in (11), then we obtain

1F(2x) =2/ ()|l <

pe-ar()]

for all x € X. Hence

(X om 20 2B
(3)- = (E S

for all nonnegative integers m and [ with m > [ and all x € X. It follows from (14)
that the sequence {2"f(5)} is a Cauchy sequence for all x € X . Since Y is complete,
the sequence {2"f(57)} converges. So one can define the mapping A : X — Y by

A(x) = lim 2"f<i)
n—o0 2”
for all x € X . Moreover, letting [ = 0 and passing the limit m — oo in (14), we get (12).
It follows from (11) that

forall x€ X. So
26

S Pl

JA(x+y+2) —A(x) —AQ) —AR)]|
~m2 s (25) ~1(3) - (3) (5|
et ((522) () A(3) ()

y

e (1 (B2 - (522) -1 (£))]) + tim S et o+ 21

=[lp1(Alx+y+2) +Alx—y) —A(z) = 2A(x))[| + [|p2(A(x + y+2) —Alx+y) —A2))]]

for all x,y,z € X. Hence

[A(x+y+2) —Alx) —A(y) =A@ < [pr(A(x+y+2) +A(x—y) —A(z) = 2A(x))|
+lIp2(A(x+y+2) —Alx+y) —A(2))||

forall x,y,z € X. By Lemma 3.1, the mapping A : X — Y is additive.
Now, we show the uniqueness of A. Assuming T : X — Y as another additive
mapping satisfying (12) that yields:

A(3)-(3))
A(3) ()| +2

< 4.2Png )
= (1= |py|B2)(2Pir — 2B2) 2B I

IAGx) =T ()| =27

< LI

(5) (5]
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which tends to zero as n — oo for all x € X. So we can conclude that A(x) = T'(x) for
all x € X. This proves the uniqueness of A. Thus the mapping A : X — Y is a unique
additive mapping satisfying (12). U

THEOREM 3.2. Consider r < % and 0 be nonnegative real numbers, and let
f:X =Y be a mapping satisfying (11). Then there exists a unique additive mapping
A : X — Y such that

20

—A < r 15
forall x€ X.
Proof. Tt follows from (13) that
26
2x ——|x||"
1= 3709 < gy
for all x € X. Hence
1., m - 26 oy
ACE: >——f (2" g o v 28 (16)

for all nonnegative integers m and [/ with m > [ and all x € X . It follows from (16) that
the sequence {2#, f(2"x)} is a Cauchy sequence for all x € X . Since Y is complete, the

sequence {% f(2"x)} converges. So we can define the mapping A : X — Y by

A(x) = lim (2"

I’l*}oo

forall x € X. Moreover, letting [ = 0 and passing the limit m — oo in (16), we get (15).
The rest of the proof is similar to the proof of Theorem 3.1. [J
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