ADDITIVE DOUBLE ρ –FUNCTIONAL INEQUALITIES IN β –HOMOGENEOUS F –SPACES

QI LIU*, SHAOMO ZHUANG AND YONGJIN LI*

(Communicated by J. Pečarić)

Abstract. In this paper, we introduce and solve the following additive double ρ -functional inequalities

$$||f(x+y+z) + f(x-y) - f(z) - 2f(x)|| \le ||\rho_1(f(x+y+z) - f(x) - f(y) - f(z))|| + ||\rho_2(f(x+y+z) - f(x+y) - f(z))||$$
(1)

where ρ_1, ρ_2 are fixed nonzero complex numbers with $|2\rho_1|^{\beta_2} + |\rho_2|^{\beta_2} < 1$, and

$$||f(x+y+z) - f(x) - f(y) - f(z)|| \le ||\rho_1(f(x+y+z) + f(x-y) - f(z) - 2f(x))|| + ||\rho_2(f(x+y+z) - f(x+y) - f(z))||$$
(2)

where ρ_1, ρ_2 are fixed nonzero complex numbers with $|\rho_1|^{\beta_2} + |\rho_2|^{\beta_2} < 1$.

By adopting the direct method, we have made an attempt to prove the Hyers-Ulam stability of the additive double ρ -functional inequalities in β -homogeneous F-spaces.

1. Introduction

Based on the consideration of the stability of the group homomorphism, the functional equations encounter stability problems that have been originated from the well-known equation of Ulam [18].

Given a group G and a metric group G' with metric $\rho(\cdot,\cdot)$. Given $\varepsilon > 0$, does there exist a $\delta > 0$ such that if $f: G \to G'$ satisfies $\rho(f(xy), f(x)f(y)) < \delta$ for all $x, y \in G$, then a homomorphism $h: G \to G'$ exists with $\rho(f(x), h(x)) < \varepsilon$ for all $x \in G$?

In the case of Banach space in equation studied by Ulam, the first affirmative partial answer was published by Hyers [6]. Firstly, for the additive mappings, the Hyers Theorem generalized form was solved by Aoki [1], and further, for linear mapping, it was generalized by Rassias [16] taking an unbounded Cauchy difference in consideration. Găvruta [5] replaced the unbounded Cauchy difference by a general control function to generalize the Rassias Theorem.

^{*} Corresponding author.

Mathematics subject classification (2020): 39B52, 39B62.

Keywords and phrases: Hyers-Ulam stability, additive double ρ -functional inequality, β -homogeneous F-spaces.

Park [13, 14] defined additive ρ -functional inequalities and proved the Hyers-Ulam stability of the additive ρ -functional inequalities in Banach spaces and non-Archimedean normed spaces. A number of studies have been carried out for investigating the stability problems of various functional equations (see [3, 4, 7, 8, 9, 12]).

In [15], Park et al. investigated the following inequalities

$$||f(x) + f(y) + f(z)|| \le \left| \left| 2f\left(\frac{x+y+z}{2}\right) \right| \right|,$$

$$||f(x) + f(y) + f(z)|| \le ||f(x+y+z)||,$$

$$||f(x) + f(y) + 2f(z)|| \le \left| \left| 2f\left(\frac{x+y}{2} + z\right) \right| \right|$$

in Banach spaces. In addition to aforementioned literature, a recent study was published by Lu et al. [11], in their findings, they investigated 3-variable Jensen ρ -functional inequalities in complex Banach spaces that are associated with the following functional equations:

$$f(x+y+z) + f(x+y-z) - 2f(x) - 2f(y) = 0,$$

$$f(x+y+z) - f(x-y-z) - 2f(y) - 2f(z) = 0.$$

Although various studies have been successfully conducted in the context of stability problems, however, the non-linear structure of F-spaces (infinite-dimensional) has not yet received considerable attention from the earlier researchers. The nonlinear structure of F-spaces (infinite-dimensional) plays a vital role in functional analysis, consequently, it is essential to re-investigate such structures. As an illustration, the $L^p([0,1])$ for $0 equipped with the metric <math>d(f,g) = \int |f(x) - g(x)|^p dx$ is an F-space instead of a Banach space. Besides these, for F-spaces, several results can be consulted in [2,10] and the references therein.

DEFINITION 1.1. Consider X be a linear space. A non-negative valued function $\|\cdot\|$ achieves an F-norm if satisfies the following conditions:

- (1) ||x|| = 0 if and only if x = 0;
- (2) $\|\lambda x\| = \|x\|$ for all λ , $|\lambda| = 1$;
- (3) $||x+y|| \le ||x|| + ||y||$ for all $x, y \in X$;
- (4) $\|\lambda_n x\| \to 0$ provided $\lambda_n \to 0$;
- (5) $\|\lambda x_n\| \to 0$ provided $x_n \to 0$;
- (6) $\|\lambda_n x_n\| \to 0$ provided $\lambda_n \to 0, x_n \to 0$.

Then $(X, \|\cdot\|)$ is called an F^* -space. An F-space is a complete F^* -space.

An *F*-norm is called β -homogeneous $(\beta > 0)$ if $||tx|| = |t|^{\beta} ||x||$ for all $x \in X$ and all $t \in \mathbb{C}$ (see [17, 19]).

Considering the current gaps, in this paper, we have made an attempt to investigate the additive double ρ -functional inequalities and successfully proved the Hyers-Ulam stability of the additive double ρ -functional inequalities in β -homogeneous F-spaces.

In order to achieve the proposed objectives of this work, we have organized the paper in the following sections: Section 2 deals with proving the Hyers-Ulam stability of the additive double ρ -functional inequality (1) in β -homogeneous F-spaces.

In Section 3, we prove the Hyers-Ulam stability of the additive double ρ -functional inequality (2) in β -homogeneous F-spaces.

During the entire course of this work, β_1, β_2 are considered as positive real numbers with $\beta_1 \leqslant 1$ and $\beta_2 \leqslant 1$. Furthermore, X is assumed as β_1 -homogeneous F-space while Y is a β_2 -homogeneous F-space.

2. Additive double ρ -functional inequality (1)

This section solely emphasis an assumption stating that the ρ_1, ρ_2 are considered as fixed complex numbers with $|2\rho_1|^{\beta_2} + |\rho_2|^{\beta_2} < 1$. We investigate the additive double ρ -functional inequality (1) in β -homogeneous F-spaces.

LEMMA 2.1. A mapping $f: X \to Y$ satisfies

$$||f(x+y+z) + f(x-y) - f(z) - 2f(x)|| \le ||\rho_1(f(x+y+z) - f(x) - f(y) - f(z))|| + ||\rho_2(f(x+y+z) - f(x+y) - f(z))||$$
(3)

for all $x, y, z \in X$ if and only if $f: X \to Y$ is additive.

Proof. Assume that $f: X \to Y$ satisfies (3). Letting x = y = z = 0 in (3), we get

$$(1-|2\rho_1|^{\beta_2}-|\rho_2|^{\beta_2})||f(0)|| \le 0.$$

Then f(0) = 0.

Letting y = 0 in (3), we get

$$(1 - |\rho_1|^{\beta_2} - |\rho_2|^{\beta_2}) ||f(x+z) - f(x) - f(z)|| \le 0$$

and so

$$f(x+z) = f(x) + f(z)$$

for all $x, z \in X$. Proving that the f is additive and obviously the converse is true. \square

The next theorem pertains to presenting the Hyers-Ulam stability of the additive double ρ -functional inequality (3) in β -homogeneous F-spaces.

THEOREM 2.1. Let $r > \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping such that

$$||f(x+y+z)+f(x-y)-f(z)-2f(x)|| \le ||\rho_1(f(x+y+z)-f(x)-f(y)-f(z))|| + ||\rho_2(f(x+y+z)-f(x+y)-f(z))|| + \theta(||x||^r + ||y||^r + ||z||^r)$$
(4)

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{2\theta}{(1 - |\rho_1|^{\beta_2})(2^{\beta_1 r} - 2^{\beta_2})} ||x||^r$$
 (5)

for all $x \in X$.

Proof. Letting x = y = z = 0 in (4), we get f(0) = 0. Letting x = y, z = 0 in (4), then we obtain

$$||f(2x) - 2f(x)|| \le \frac{2\theta}{1 - |\rho_1|^{\beta_2}} ||x||^r$$
 (6)

for all $x \in X$. So

$$\left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| \le \frac{2\theta}{2^{\beta_1 r} (1 - |\rho_1|^{\beta_2})} \|x\|^r$$

for all $x \in X$. Hence

$$\left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\| \leqslant \sum_{i=l}^{m-1} \frac{2\theta}{(1 - |\rho_{1}|^{\beta_{2}}) 2^{\beta_{1} r}} \frac{2^{\beta_{2} j}}{2^{\beta_{1} r j}} \|x\|^{r} \tag{7}$$

for all nonnegative integers m and l with m>l and all $x\in X$. It follows from (7) that the sequence $\{2^nf(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x\in X$. Since Y is complete, the sequence $\{2^nf(\frac{x}{2^n})\}$ converges. Hence, the mapping $A:X\to Y$ can be defined as:

$$A(x) := \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$$

for all $x \in X$. Furthermore, by considering l = 0 and setting the limit $m \to \infty$ in (7), we get (5).

It follows from (4) that

$$\begin{aligned} &\|A(x+y+z) + A(x-y) - A(z) - 2A(x)\| \\ &= \lim_{n \to \infty} 2^{\beta_2 n} \left\| f\left(\frac{x+y+z}{2^n}\right) + f\left(\frac{x-y}{2^n}\right) - f\left(\frac{z}{2^n}\right) - 2f\left(\frac{x}{2^n}\right) \right\| \\ &\leq \lim_{n \to \infty} 2^{\beta_2 n} \left(\left\| \rho_1 \left(f\left(\frac{x+y+z}{2^n}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right) - f\left(\frac{z}{2^n}\right) \right) \right\| \\ &+ \left\| \rho_2 \left(f\left(\frac{x+y+z}{2^n}\right) - f\left(\frac{x+y}{2^n}\right) - f\left(\frac{z}{2^n}\right) \right) \right\| \right) + \lim_{n \to \infty} \frac{2^{\beta_2 n} \theta}{2^{\beta_1 n r}} (\|x\|^r + \|y\|^r + \|z\|^r) \\ &= \|\rho_1 (A(x+y+z) - A(x) - A(y) - A(z))\| + \|\rho_2 (A(x+y+z) - A(x+y) - A(z))\| \end{aligned}$$

for all $x, y, z \in X$. Hence

$$||A(x+y+z) + A(x-y) - A(z) - 2A(x)|| \le ||\rho_1(A(x+y+z) - A(x) - A(y) - A(z))|| + ||\rho_2(A(x+y+z) - A(x+y) - A(z))||$$

for all $x, y, z \in X$. By Lemma 2.1, the mapping $A: X \to Y$ is additive.

Now, we show the uniqueness of A. Assuming $T: X \to Y$ as another additive mapping satisfying (5) that yields:

$$||A(x) - T(x)|| = 2^{\beta_{2}n} ||A\left(\frac{x}{2^{n}}\right) - T\left(\frac{x}{2^{n}}\right)||$$

$$\leq 2^{\beta_{2}n} ||A\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right)|| + 2^{\beta_{2}n} ||T\left(\frac{x}{2^{n}}\right) - f\left(\frac{x}{2^{n}}\right)||$$

$$\leq \frac{4 \cdot 2^{\beta_{2}n} \theta}{(1 - |\rho_{1}|^{\beta_{2}})(2^{\beta_{1}r} - 2^{\beta_{2}})2^{\beta_{1}nr}} ||x||^{r}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that A(x) = T(x) for all $x \in X$. This proves the uniqueness of A. Thus the mapping $A : X \to Y$ is a unique additive mapping satisfying (5). \square

THEOREM 2.2. Consider $r < \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping satisfying (4). Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{2\theta}{(1 - |\rho_1|^{\beta_2})(2^{\beta_2} - 2^{\beta_1 r})} ||x||^r$$
(8)

for all $x \in X$.

Proof. It follows from (6) that

$$\left\| f(x) - \frac{1}{2}f(2x) \right\| \le \frac{2\theta}{2^{\beta_2}(1 - |\rho_1|^{\beta_2})} \|x\|^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{2^{l}} f(2^{l} x) - \frac{1}{2^{m}} f(2^{m} x) \right\| \leqslant \sum_{i=l}^{m-1} \frac{2\theta}{(1 - |\rho_{1}|^{\beta_{2}}) 2^{\beta_{2}}} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \|x\|^{r}$$

$$\tag{9}$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (9) that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges. Hence, the mapping $A: X \to Y$ can be defined as:

$$A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (9), we get (8). The rest of the proof is similar to the proof of Theorem 2.1. \square

3. Additive double ρ -functional inequality (2)

This section aims at assuming that ρ_1, ρ_2 are fixed complex numbers with $|\rho_1|^{\beta_2} + |\rho_2|^{\beta_2} < 1$. Here we have made considerable efforts in investigating the additive double ρ -functional inequality (2) in β -homogeneous F-spaces.

LEMMA 3.1. A mapping $f: X \rightarrow Y$ satisfies

$$||f(x+y+z) - f(x) - f(y) - f(z)|| \le ||\rho_1(f(x+y+z) + f(x-y) - f(z) - 2f(x))|| + ||\rho_2(f(x+y+z) - f(x+y) - f(z))||$$
(10)

for all $x, y, z \in X$ if and only if $f : X \to Y$ is additive.

Proof. Assume that $f: X \to Y$ satisfies (10). Letting x = y = z = 0 in (10), we get

$$(2^{\beta_2} - |\rho_1|^{\beta_2} - |\rho_2|^{\beta_2}) ||f(0)|| \le 0.$$

Then f(0) = 0.

Letting y = 0 in (10), we get

$$(1 - |\rho_1|^{\beta_2} - |\rho_2|^{\beta_2}) \|f(x+z) - f(x) - f(z)\| \le 0.$$

and so

$$f(x+z) = f(x) + f(z)$$

for all $x, z \in X$. Proving that the f is additive and obviously the converse is true. \square

In the next paras, we present the Hyers-Ulam stability of the additive double ρ -functional inequality (10) in β -homogeneous F-spaces.

THEOREM 3.1. Let $r > \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping such that

$$||f(x+y+z) - f(x) - f(y) - f(z)|| \le ||\rho_1(f(x+y+z) + f(x-y) - f(z) - 2f(x))|| + ||\rho_2(f(x+y+z) - f(x+y) - f(z))|| + \theta(||x||^r + ||y||^r + ||z||^r)$$
(11)

for all $x, y, z \in X$. Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{2\theta}{(1 - |\rho_1|^{\beta_2})(2^{\beta_1 r} - 2^{\beta_2})} ||x||^r$$
(12)

for all $x \in X$.

Proof. Considering x = y = z = 0 in (11), we get f(0) = 0. Letting x = y, z = 0 in (11), then we obtain

$$||f(2x) - 2f(x)|| \le \frac{2\theta}{1 - |\rho_1|^{\beta_2}} ||x||^r$$
 (13)

for all $x \in X$. So

$$\left\| f(x) - 2f\left(\frac{x}{2}\right) \right\| \le \frac{2\theta}{2^{\beta_1 r} (1 - |\rho_1|^{\beta_2})} \|x\|^r$$

for all $x \in X$. Hence

$$\left\| 2^{l} f\left(\frac{x}{2^{l}}\right) - 2^{m} f\left(\frac{x}{2^{m}}\right) \right\| \leqslant \sum_{i=l}^{m-1} \frac{2\theta}{(1 - |\rho_{1}|^{\beta_{2}}) 2^{\beta_{1} r}} \frac{2^{\beta_{2} j}}{2^{\beta_{1} r j}} \|x\|^{r}$$

$$\tag{14}$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (14) that the sequence $\{2^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{2^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $A: X \to Y$ by

$$A(x) := \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (14), we get (12). It follows from (11) that

$$\begin{split} &\|A(x+y+z) - A(x) - A(y) - A(z)\| \\ &= \lim_{n \to \infty} 2^{\beta_2 n} \left\| f\left(\frac{x+y+z}{2^n}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right) - f\left(\frac{z}{2^n}\right) \right\| \\ &\leq \lim_{n \to \infty} 2^{\beta_2 n} \left(\left\| \rho_1 \left(f\left(\frac{x+y+z}{2^n}\right) + f\left(\frac{x-y}{2^n}\right) - f\left(\frac{z}{2^n}\right) - 2f\left(\frac{x}{2^n}\right) \right) \right\| \\ &+ \left\| \rho_2 \left(f\left(\frac{x+y+z}{2^n}\right) - f\left(\frac{x+y}{2^n}\right) - f\left(\frac{z}{2^n}\right) \right) \right\| \right) + \lim_{n \to \infty} \frac{2^{\beta_2 n} \theta}{2^{\beta_1 n r}} (\|x\|^r + \|y\|^r + \|z\|^r) \\ &= \|\rho_1 (A(x+y+z) + A(x-y) - A(z) - 2A(x))\| + \|\rho_2 (A(x+y+z) - A(x+y) - A(z))\| \end{split}$$

for all $x, y, z \in X$. Hence

$$||A(x+y+z) - A(x) - A(y) - A(z)|| \le ||\rho_1(A(x+y+z) + A(x-y) - A(z) - 2A(x))|| + ||\rho_2(A(x+y+z) - A(x+y) - A(z))||$$

for all $x, y, z \in X$. By Lemma 3.1, the mapping $A: X \to Y$ is additive.

Now, we show the uniqueness of A. Assuming $T: X \to Y$ as another additive mapping satisfying (12) that yields:

$$||A(x) - T(x)|| = 2^{\beta_2 n} ||A\left(\frac{x}{2^n}\right) - T\left(\frac{x}{2^n}\right)||$$

$$\leq 2^{\beta_2 n} ||A\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right)|| + 2^{\beta_2 n} ||T\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right)||$$

$$\leq \frac{4 \cdot 2^{\beta_2 n} \theta}{(1 - |\rho_1|^{\beta_2})(2^{\beta_1 r} - 2^{\beta_2})2^{\beta_1 n r}} ||x||^r$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that A(x) = T(x) for all $x \in X$. This proves the uniqueness of A. Thus the mapping $A : X \to Y$ is a unique additive mapping satisfying (12). \square

THEOREM 3.2. Consider $r < \frac{\beta_2}{\beta_1}$ and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping satisfying (11). Then there exists a unique additive mapping $A: X \to Y$ such that

$$||f(x) - A(x)|| \le \frac{2\theta}{(1 - |\rho_1|^{\beta_2})(2^{\beta_2} - 2^{\beta_1 r})} ||x||^r$$
(15)

for all $x \in X$.

Proof. It follows from (13) that

$$\left\| f(x) - \frac{1}{2}f(2x) \right\| \le \frac{2\theta}{2^{\beta_2}(1 - |\rho_1|^{\beta_2})} \|x\|^r$$

for all $x \in X$. Hence

$$\left\| \frac{1}{2^{l}} f(2^{l} x) - \frac{1}{2^{m}} f(2^{m} x) \right\| \leqslant \sum_{i=l}^{m-1} \frac{2\theta}{(1 - |\rho_{1}|^{\beta_{2}}) 2^{\beta_{2}}} \frac{2^{\beta_{1} r j}}{2^{\beta_{2} j}} \|x\|^{r}$$
(16)

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (16) that the sequence $\{\frac{1}{2^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{2^n}f(2^nx)\}$ converges. So we can define the mapping $A: X \to Y$ by

$$A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (16), we get (15). The rest of the proof is similar to the proof of Theorem 3.1. \square

Acknowledgement. This work was supported by the National Natural Science Foundation of China (11971493).

REFERENCES

- T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. 2 (1950), 64–66.
- [2] F. Albiac, Nonlinear structure of some classical quasi-Banach spaces and F-spaces, J. Math. Anal. Appl. 340 (2008), 1312–1325.
- [3] Y. CHO, C. PARK AND R. SAADATI, Functional inequalities in non-Archimedean Banach spaces, Appl. Math. Lett. 23 (2010), 1238–1242.
- [4] P. W. CHOLEWA, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76–86.
- [5] P. GĂVRUTA, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431–436.

- [6] D. H. HYERS, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA. 27 (1941), 222–224.
- [7] S.-M. JUNG, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl. 232 (1999), 384–393.
- [8] K. Jun And H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867–878.
- [9] G. KIM AND H. SHIN, Approximately quadratic mappings in non-Archimedean fuzzy normed spaces, Nonlinear Funct. Anal. Appl. 23 (2018), 369–380.
- [10] N. J. KALTON, Curves with zero derivative in F-spaces, Glasg. Math. J. 22 (1981), 19–29.
- [11] G. Lu, Q. Liu, Y. Jin And J. Xie, 3-Variable Jensen ρ-functional equations, J. Nonlinear Sci. Appl. 9 (2016), 5995–6003.
- [12] G. LU AND C. PARK, Hyers-Ulam stability of additive set-valued functional equations, Appl. Math. Lett. 24 (2011), 1312–1316.
- [13] C. PARK, Additive ρ -functional inequalities and equations, J. Math. Inequal. 9 (2015), 17–26.
- [14] C. PARK, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal. 9 (2015), 397–407.
- [15] C. PARK, Y. CHO AND M. HAN, Functional inequalities associated with Jordan-von-Neumann-type additive functional equations, J. Inequal. Appl. 2007 (2007), Article ID 41820.
- [16] TH. M. RASSIAS, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [17] S. ROLEWICZ, Metric Linear Spaces, PWN-Polish Sci. Publ, Reidel and Dordrecht, 1984.
- [18] S. M. ULAM, A Collection of the Mathematical Problems, Interscience Publ., New York, 1960.
- [19] A. WILANSKY, Modern Methods in Topological Vector Space, McGraw-Hill International Book Co, New York, 1978.

(Received January 8, 2020)

Qi Liu Department of Mathematics Sun Yat-sen University Guangzhou 510275, P. R. China e-mail: liug325@mail2.sysu.edu.cn

Shaomo Zhuang Department of Mathematics Sun Yat-sen University Guangzhou 510275, P. R. China

e-mail: zhuangshm5@mail2.sysu.edu.cn

Yongjin Li
Department of Mathematics
Sun Yat-sen University
Guangzhou 510275, P. R. China
e-mail: stslyj@mail.sysu.edu.cn