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BOUNDING THE SÁNDOR–YANG MEANS FOR THE COMBINATIONS

OF CONTRAHARMONIC AND ARITHMETIC MEANS

WEI-MAO QIAN, HUI-ZUO XU, ZAI-YIN HE AND YU-MING CHU ∗

(Communicated by A. Witkowski)

Abstract. In the article, we prove that t1 = 1/2+
√

21/(2p)e(π−4)/(4p) −1/2 , t2 = 1/2+
√

6p/(12p) ,

t3 = 1/2+
√

(1+
√

2)
√

2/p/e1/p −1/2 and t4 = 1/2+
√

3p/(6p) are the best possible param-
eters on the interval [1/2,1] such that the double inequalities

Cp[t1u+(1− t1)v,t1v+(1− t1)u]A1−p(u,v) < Q(u,v)e
A(u,v)
T (u,v)−1

< Cp[t2u+(1− t2)v,t2v+(1− t2)u]A1−p(u,v),

Cp[t3u+(1− t3)v,t3v+(1− t3)u]A1−p(u,v) < A(u,v)e
Q(u,v)

N S (u,v) −1

< Cp[t4u+(1− t4)v,t4v+(1− t4)u]A1−p(u,v)

hold for all u,v > 0 with u �= v and p ∈ [1/2,∞) , where A(u,v) = (u + v)/2 , Q(u,v) =√
(u2 + v2)/2 , C(u,v) = (u2 + v2)/(u+ v) , T (u,v) = (u− v)/[2arctan((u− v)/(u+ v))] and

N S (u,v) = (u−v)/[2sinh−1((u−v)/(u+v))] are respectively the arithmetic, quadratic, con-
traharmonic, Seiffert and Neuman-Sándor means of u and v , and sinh−1(x) = log(x+

√
x2 +1)

is the inverse hyperbolic sine function.

1. Introduction

A real-valued function M : (0,∞)× (0,∞) → (0,∞) is said to be a bivariate mean
[3] if

min{x,y} � M(x,y) � max{x,y}
for all x,y ∈ (0,∞) .

It is well-known that the bivariate means have wide applications in mathematics
and other natural sciences [1, 4, 6, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 36, 38], they have attracted the attention of many
researchers [7, 8, 9, 10, 11, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56,
58, 59, 60].
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Let x,y > 0. Then the Schwab-Borchardt mean SB(x,y) [34, 35] of x and y is
defined by

SB(u,v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
y2−x2

arccos (x/y) , x < y,

x, x = y,√
x2−y2

cosh−1 (x/y)
, x > y,

where cosh−1(x) = log(x+
√

x2−1) is the inverse hyperbolic cosine functions. Carl-
son [5] proved that

SB(x,y) =
2∫ ∞

0

dt

(t + y2)
√

t + x2

.

We clearly see that the Schwab-Borchardt mean SB(x,y) is strictly increasing in
both x and y , and nonsymmetric and homogeneous of degree one with respect to its
variables x and y . Many symmetric bivariate means can be derived from the Schwab-
Borchardt mean, for example,

T (u,v) =
u− v

2arctan
(

u−v
u+v

) = SB[A(u,v),Q(u,v)], (1.1)

N S (u,v) =
u− v

2sinh−1 ( u−v
u+v

) = SB[Q(u,v),A(u,v)] (1.2)

and
L (u,v) =

u− v
logu− logv

= SB[A(u,v),G(u,v)]

are respectively the Seiffert mean, Neuman-Sándor mean and logarithmic mean of two
positive numbers u and v , where

G(u,v) =
√

uv, A(u,v) =
u+ v

2
, Q(u,v) =

√
u2 + v2

2
(1.3)

are respectively the geometric, arithmetic, and quadratic means, and sinh−1(x)= log(x+√
x2 +1) is the inverse hyperbolic sine function.

In 2012, Sándor [40] introduced a new symmetric mean of two positive numbers
u and v defined by

X(u,v) = A(u,v)eG(u,v)/SB[G(u,v),A(u,v)])−1.

In 2017, as an example of a family of two-parameter hyperbolic means, Yang [51]
showed that SY (x,y) = yex/SB(x,y)−1 is a nonsymmetric mean of x and y , and intro-
duced two Sándor-type symmetric means as follows:

SYAQ(u,v) = SY (A(u,v),Q(u,v)) = Q(u,v)e
A(u,v)
T (u,v)−1

, (1.4)

SYQA(u,v) = SY (Q(u,v),A(u,v)) = A(u,v)e
Q(u,v)

N S (u,v)−1
. (1.5)
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In what follows, we call SYAQ(u,v) and SYQA(u,v) Sándor-Yang means.
Let u,v > 0, t ∈ [1/2,1] , p ∈ [1/2,∞) and

CA(t, p;u,v) = Cp[tu+(1− t)v,tv+(1− t)u]A1−p(u,v), (1.6)

where

C(u,v) =
u2 + v2

u+ v
(1.7)

is the contraharmonic mean of u and v . Then from (1.6) and (1.7) we clearly see that

CA(t,1/2;u,v) = Q[tu+(1− t)v,tv+(1− t)u], (1.8)

CA(t,1;u,v) = C[tu+(1− t)v,tv+(1− t)u] (1.9)

are respectively the one-parameter quadratic and contraharmonic means, and the func-
tion t → CA(t, p;u,v) is strictly increasing on [1/2,1] for fixed p ∈ [1/2,∞) and
u,v > 0 with u �= v .

Recently, the Sándor-Yang means have been the subject of intensive research.
Zhao, Qian and Song [57] proved that α = log2/[1+ log2−√

2log(1+
√

2)] = 1.5517· · ·,
β = 5/3, λ = 4log2/(4+2log2−π) = 1.2351 · · · and μ = 4/3 are the best possible
constants such that the double inequalities

Mα(u,v) < SYQA(u,v) < Mβ (u,v), Mλ (u,v) < SYAQ(u,v) < Mμ(u,v) (1.10)

hold for all u,v > 0 with u �= v , where

Mr(u,v) =
(

ur + vr

2

)1/r

(u �= v), M0(u,v) =
√

uv = G(u,v)

is the r th power mean of u and v .
It is well known that the inequalities

H(u,v) = M−1(u,v) < M0(u,v) = G(u,v) < M1(u,v) (1.11)

= A(u,v) < M2(u,v) = Q(u,v) < C(u,v)

hold for all u,v > 0 with u �= v , and the function r →Mr(u,v) is strictly increasing for
fixed u,v > 0 with u �= v .

From (1.3), (1.6) and (1.7) we clearly see that

CA(1/2, p;u,v) = A(u,v), (1.12)

CA(1, p;u,v) = A(u,v)
[
Q(u,v)
A(u,v)

]2p

� Q(u,v) (1.13)

for all u,v > 0 with u �= v and p ∈ [1/2,∞) .
Inequalities (1.10)–(1.13) lead to

CA(1/2, p;u,v) = A(u,v) = M1(u,v) < SYAQ(u,v) (1.14)

< SYQA(u,v) < M2(u,v) = Q(u,v) � CA(1, p;u,v).
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Motivated by inequality (1.14), it is natural to ask what are the best parameters t1 =
t1(p) , t2 = t2(p) , t3 = t3(p) and t4 = t4(p) ∈ [1/2,1] such that the double inequalities

CA(t1, p;u,v) < SYAQ(u,v) < CA(t2, p;u,v),

CA(t3, p;u,v) < SYQA(u,v) < CA(t4, p;u,v)

hold for all u,v > 0 with u �= v and p ∈ [1/2,∞)? The aim of this article is to answer
this question.

2. Lemmas

In order to prove our main results, we need introduce and establish three lemmas
which we present in this section.

LEMMA 2.1. (See [2]) Let x1,x2 ∈ R with x1 < x2 , F,G : [x1,x2] → R be con-
tinuous on [x1,x2] and differentiable on (x1,x2) with G′(x) �= 0 on (x1,x2) . Then the
functions

F(x)−F(x1)
G(x)−G(x1)

,
F(x)−F(x2)
G(x)−G(x2)

are (strictly) increasing (decreasing) on (x1,x2) if F ′(x)/G′(x) is (strictly) increasing
(decreasing) on (x1,x2) .

LEMMA 2.2. Let p ∈ [1/2,∞) , u,x ∈ (0,1) and

F(u, p;x) = p log(1+ux2)− 1
2

log(1+ x2)− arctan(x)
x

+1. (2.1)

Then the following statements are true:
(1) F(u, p;x) > 0 for x ∈ (0,1) if and only if u � 1/(6p);
(2) F(u, p;x) < 0 for x ∈ (0,1) if and only if u � e(π+2 log2−4)/(4p)−1 .

Proof. It follows from (2.1) that

F(u, p;0+) = 0, (2.2)

F(u, p;1−) = p log(1+u)− 1
2

log2− π
4

+1, (2.3)

∂F(u, p;x)
∂x

=
(2p−1)x+ arctan(x)

1+ux2 [u− f (x)], (2.4)

where

f (x) =
x− arctan(x)

(2p−1)x3 + x2 arctan(x)
.

Let f1(x) = x− arctan(x) and f2(x) = (2p−1)x3 + x2 arctan(x) . Then we clearly
see that

f1(0+) = f2(0+) = 0, f (x) =
f1(x)
f2(x)

(2.5)
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and elaborated computations lead to

f ′1(x)
f ′2(x)

=
1

2[(1+x2)arctan(x)]
x +3(2p−1)x2 +2(3p−1)

. (2.6)

Noting that x > arctan(x) for x ∈ (0,1) , and

d
[

(1+x2)arctan(x)
x

]
dx

=
x2 arctan(x)+ x− arctan(x)

x2 > 0

for all x ∈ (0,1) . Thus the function x �→ [(1 + x2)arctan(x)]/x is strictly increasing
and maps (0,1) onto (1,π/2) . It follows from (2.6) that the function f ′1(x)/ f ′2(x) is
strictly decreasing on (0,1) . Therefore, f (x) is strictly decreasing on (0,1) by Lemma
2.1 and (2.5). Moreover, making use of L’Hôpital’s rule we get

f (0+) = lim
x→0

f ′1(x)
f ′2(x)

=
1
6p

, (2.7)

f (1−) =
4−π

4(2p−1)+ π
. (2.8)

We divide the proof into two cases.
Case 1 u ∈ [1/(6p),1) . Then from (2.4) and (2.7) together with the monotonicity

of f (x) we clearly see that the function x → F(u, p;x) is strictly increasing on (0,1) .
Therefore, F(u, p;x) > 0 for all x ∈ (0,1) follows from (2.2).

Case 2 u ∈ (0,1/(6p)) . Then it follows from (2.4), (2.7) and (2.8) together with
the monotonicity of f (x) that either the function x → F(u, p;x) is strictly decreasing
on the whole interval (0,1) or there exists x∗ ∈ (0,1) such that F(u, p;x) is strictly
decreasing on (0,x∗) and strictly increasing on (x∗,1) . Consequently, in both cases,
inequality F(u, p;x) � 0 does not hold for all x ∈ (0,1) , and F(u, p;x) � 0 for all
x ∈ (0,1) if and only if F(u, p;1) � 0, namely u � e(π+2 log2−4)/(4p)−1 by (2.3). �

LEMMA 2.3. Let p ∈ [1/2,∞) , v,x ∈ (0,1) and

G(v, p;x) = p log(1+ vx2)−
√

1+ x2 sinh−1(x)
x

+1. (2.9)

Then the following statements are true:
(1) G(v, p;x) > 0 for x ∈ (0,1) if and only if v � 1/(3p);
(2) G(v, p;x) < 0 for x ∈ (0,1) if and only if v � ((1+

√
2)

√
2/e)1/p−1 .

Proof. It follows from (2.9) that

G(v, p;0+) = 0, (2.10)

G(v, p;1−) = p log(1+ v)−
√

2log(1+
√

2)+1 (2.11)
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and
∂G(v, p;x)

∂x
=

(2p−1)x
√

1+ x2 + sinh−1(x)
(1+ vx2)

√
1+ x2

[v−g(x)], (2.12)

where

g(x) =
x
√

1+ x2− sinh−1(x)
(2p−1)x3

√
1+ x2 + x2 sinh−1(x)

.

Let g1(x) = x
√

1+ x2−sinh−1(x) and g2(x) = (2p−1)x3
√

1+ x2+x2 sinh−1(x) .
Then we clearly see that

g1(0+) = g2(0+) = 0, g(x) =
g1(x)
g2(x)

(2.13)

and
g′1(x)
g′2(x)

=
1√

1+x2 sinh−1(x)
x +2(2p−1)x2 +3p−1

. (2.14)

Noting that x > sinh−1(x) for x ∈ (0,1) , and

d

[√
1+x2 sinh−1(x)

x

]
dx

=
x
√

1+ x2− sinh−1(x)
x2
√

1+ x2
> 0

for all x ∈ (0,1) . Thus the function x �→ [
√

1+ x2 sinh−1(x)]/x is strictly increasing
and maps (0,1) onto (1,

√
2log(1+

√
2)) . It follows from (2.14) that g′1(x)/g′2(x) is

strictly decreasing on (0,1) . Therefore, g(x) is strictly decreasing on (0,1) by Lemma
2.1 and (2.13). Moreover, making use of L’Hôpital’s rule we get

g(0+) = lim
x→0

g′1(x)
g′2(x)

=
1
3p

, (2.15)

g(1−) =
√

2− log(1+
√

2)
(2p−1)

√
2+ log(1+

√
2)

:= λ . (2.16)

We divide the proof into two cases.
Case 1 v ∈ [1/(3p),1) . Then from (2.12) and (2.15) together with the monotonic-

ity of g(x) we know that the function x → G(v, p;x) is strictly increasing on (0,1) .
Therefore, G(v, p;x) > 0 for all x ∈ (0,1) follows from (2.10).

Case 2 v ∈ (0,1/(3p)) . Then it follows from (2.12), (2.15) and (2.16) together
with the monotonicity of g(x) that either the function x → G(v, p;x) is strictly de-
creasing on the whole interval (0,1) or there exists x∗0 ∈ (0,1) such that G(v, p;x)
is strictly decreasing on (0,x∗0) and strictly increasing on (x∗0,1) . Consequently, in
both cases, inequality G(v, p;x) � 0 does not hold for all x ∈ (0,1) , and G(v, p;x) � 0

for all x ∈ (0,1) if and only if G(v, p;1) � 0, namely v � [(1 +
√

2)
√

2/e]1/p − 1 by
(2.11). �
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3. Main results

THEOREM 3.1. Let t1,t2 ∈ [1/2,1] and p ∈ [1/2,∞) . Then the double inequality

CA(t1, p;u,v) < SYAQ(u,v) < CA(t2, p;u,v)

holds for all u,v > 0 with u �= v if and only if t1 � 1/2+
√

21/(2p)e(π−4)/(4p)−1/2
and t2 � 1/2+

√
6p/(12p) .

Proof. Without loss of generality, we assume that u > v > 0. Let t ∈ [1/2,1] and
x = (u− v)/(u+ v)∈ (0,1) . Then from (1.1), (1.3), (1.4), (1.6) and (1.7) we get

CA(t, p;u,v)
A(u,v)

=
[
1+(2t−1)2x2]p , (3.1)

SYAQ(u,v)
A(u,v)

=
√

1+ x2earctan(x)/x−1. (3.2)

It follows from (3.1) and (3.2) that

log

[
CA(t, p;u,v)
SYAQ(u,v)

]
= log

[
CA(t, p;u,v)

A(u,v)

]
− log

[
SYAQ(u,v)

A(u,v)

]
(3.3)

= p log[1+(2t−1)2x2]− 1
2

log(1+ x2)− arctan(x)
x

+1.

Therefore, Theorem 3.1 follows easily from Lemma 2.2 and (3.3). �

THEOREM 3.2. Let t3,t4 ∈ [1/2,1] and p ∈ [1/2,∞) . Then the double inequality

CA(t3, p;u,v) < SYQA(u,v) < CA(t4, p;u,v)

holds for all u,v > 0 with u �= v if and only if t3 � 1/2+
√

(1+
√

2)
√

2/p/e1/p−1/2

and t4 � 1/2+
√

3p/(6p) .

Proof. Without loss of generality, we assume that u > v > 0. Let t ∈ [1/2,1] and
x = (u− v)/(u+ v)∈ (0,1) . Then from (1.2), (1.3) and (1.5) we get

SYQA(u,v)
A(u,v)

= e[
√

1+x2 sinh−1(x)]/x−1. (3.4)

It follows from (3.1) and (3.4) that

log

[
CA(t, p;u,v)
SYQA(u,v)

]
= log

[
CA(t, p;u,v)

A(u,v)

]
− log

[
SYQA(u,v)

A(u,v)

]

= p log[1+(2t−1)2x2]−
√

1+ x2 sinh−1(x)
x

+1. (3.5)

Therefore, Theorem 3.2 follows easily from Lemma 2.3 and (3.5). �
From (1.8), (1.9) and Theorems 3.1 and 3.2 we get Corollary 3.3 immediately.
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COROLLARY 3.3. Let t5,t6,t7,t8,t9,t10,t11,t12 ∈ [1/2,1] . Then the double in-
equalities

Q[t5u+(1− t5)v, t5v+(1− t5)u] < SYAQ(u,v) < Q[t6u+(1− t6)v,t6v+(1− t6)u],

Q[t7u+(1− t7)v, t7v+(1− t7)u] < SYQA(u,v) < Q[t8u+(1− t8)v,t8v+(1− t8)u],

C[t9u+(1− t9)v, t9v+(1− t9)u] < SYAQ(u,v) < C[t10u+(1− t10)v,t10v+(1− t10)u],

C[t11u+(1− t11)v, t11v+(1− t11)u] < SYQA(u,v) <C[t12u+(1− t12)v, t12v+(1− t12)u]

hold for all u,v > 0 with u �= v if and only if

t5 � 1/2+
√

2e(π−4)/2−1/2 ≈ 0.7747, t6 � 1/2+
√

3/6 ≈ 0.7886,

t7 � 1/2+
√

(1+
√

2)2
√

2/e2−1/2 ≈ 0.8990, t8 � 1/2+
√

6/6 = 0.9082,

t9 � 1/2+
√√

2e(π−4)/4−1/2 ≈ 0.6878, t10 � 1/2+
√

6/12 ≈ 0.7041,

t11 � 1/2+
√

(1+
√

2)
√

2/e−1/2 ≈ 0.7643, t12 � 1/2+
√

3/6 ≈ 0.7886.

Let x∈ (0,1) , p∈ [1/2,∞) , u = 1+x , v = 1−x , t1 = 1/2+
√

21/(2p)e(π−4)/(4p)−1/2,

t2 = 1/2+
√

6p/(12p) , t3 = 1/2+
√

(1+
√

2)
√

2/p/e1/p−1/2 and t4 = 1/2+
√

3p/(6p) .
Then equations (1.1)–(1.7) and Theorems 3.1 and 3.2 lead to the conclusion that the
double inequalities

1+ p log

[
1+

((
2

e(4−π)/2

) 1
2p

−1

)
x2

]
− 1

2
log
(
1+ x2)

<
arctan(x)

x
< 1+ p log

(
1+

x2

6p

)
− 1

2
log
(
1+ x2) , (3.6)

1+ p log

⎡
⎣1+

⎛
⎝
(

(1+
√

2)
√

2

e

) 1
p

−1

⎞
⎠x2

⎤
⎦− 1

2
log
(
1+ x2)

<
sinh−1(x)

x
< 1+ p log

(
1+

x2

3p

)
− 1

2
log
(
1+ x2) (3.7)

hold for all x ∈ (0,1) and p ∈ [1/2,∞) .
Let p = 1/2 in (3.6) and (3.7), then we obtain the following Corollary 3.4.
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COROLLARY 3.4. The double inequalities

1+
1
2

log

[
1+
(

2

e(4−π)/2
−1

)
x2
]
− 1

2
log
(
1+ x2)

<
arctan(x)

x
< 1+

1
2

log

(
1+

x2

3

)
− 1

2
log
(
1+ x2) ,

1+
1
2

log

[
1+

(
(1+

√
2)2

√
2

e2 −1

)
x2

]
− 1

2
log
(
1+ x2)

<
sinh−1(x)

x
< 1+

1
2

log

(
1+

2x2

3

)
− 1

2
log
(
1+ x2)

hold for all x ∈ (0,1) .

REMARK 3.5. One of the referees pointed out the functions on the right-hand
sides of (3.6) and (3.7) are strictly increasing on p ∈ [1/2,∞) , and while the functions
on the left-hand sides are strictly decreasing on p ∈ [1/2,∞) . Actually, for fixed a > 0
with a �= 1 and x ∈ (0,1) , set f1(t) = log[1+(at −1)x2]/t and f2(t) = log[1+ tx2]/t ,
then by Lemma 2.1 we easily obtain that f1(t) is strictly increasing on (0,∞) , and f2(t)
are strictly decreasing on (0,∞) . Letting t = 1/p in f1(t) , and t = 1/(3p) , t = 1/(6p)
in f2(t) , then the assertions about the monotonicity properties of the functions on two
sides of (3.6) and (3.7) with respect to p follow. In conclusion, the upper and lower
bounds in Corollary 3.4 are optimal.
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SÁNDOR-YANG MEANS FOR CONTRAHARMONIC AND ARITHMETIC MEANS 665

[31] Y.-X. LI, T. MUHAMMAD, M. BILAL, M. ALTAF KHAN, A. AHMADIAN, AND B. A. PANSERA,
Fractional simulation for Darcy-Forchheimer hybrid nanoliquid flow with partial slip over a spinning
disk, Alex. Eng. J., 2021, 60, 4787–4796.

[32] Y.-X. LI, A. RAUF, M. NAEEM, M. A. BINYAMIN, AND A. ASLAM, Valency-based topological
properties of linear hexagonal chain and hammer-like benzenoid, Complexity, 2021, 2021, Article ID
9939469, 16 pages.

[33] Y.-X. LI, F. SHAH, M. IJAZ KHAN, R. CHINRAM, Y. ELMASRY, AND T.-C. SUN, Dynamics of
Cattaneo-Christov double diffusion (CCDD) and arrhenius activation law on mixed convective flow
towards a stretched Riga device, Chaos Solitons Fractals, 2021, 148, Article ID 111010, 5 pages.
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