SINGULAR VALUE AND NORM
INEQUALITIES OF DAVIDSON–POWER TYPE

WASIM AUDEH

(Communicated by M. Krnić)

Abstract. Let \(A, B, X \) and \(Y \) be \(n \times n \) complex matrices such that \(A \) and \(B \) are positive semidefinite, then
\[
\|AX + YB\| \leq \frac{1}{4}(\|W_1\| + \|W_2\| + W_4),
\]
where
\[
W_1 = A + A^{1/2}X^*^2A^{1/2},
\]
\[
W_2 = B + B^{1/2}Y^2B^{1/2},
\]
\[
W_3 = A^{1/2}XB^{1/2} + A^{1/2}YB^{1/2}
\]
and
\[
W_4 = \sqrt{(\|W_1\| - \|W_2\|)^2 + 4\|W_3\|^2}.
\]

Multiple results are given in this paper.

1. Introduction

Let \(\mathbb{M}_n \) denote the algebra of all \(n \times n \) complex matrices. For \(A \in \mathbb{M}_n \), the singular values of \(A \) are the eigenvalues of \(|A| = (A^*A)^{1/2} \) which are denoted by \(s_1(A) \geq s_2(A) \geq \ldots \geq s_n(A) \), they satisfy \(s_j(A) = s_j(A^*) = s_j(|A|) \) for \(j = 1, 2, \ldots, n \). The spectral norm \(\|\cdot\| \) is defined as \(\|A\| = s_1(A) \) and the Schatten \(p \)-norms \(\|\cdot\|_p \) are defined as \(\|A\|_p = \left(\sum_{j=1}^n s_j^p(A) \right)^{1/p} \) for \(1 \leq p \leq \infty \). The symbol \(|||\cdot||| \) will denote any unitarily invariant norm which are norms on \(\mathbb{M}_n \) satisfying \(|||UAV||| = |||A||| \) for all \(A \in \mathbb{M}_n \) and all unitary matrices \(U, V \in \mathbb{M}_n \), (see, e.g., [6] or [11]). It is pointed out in [9] that if \(A, B \in \mathbb{M}_n \) are positive semidefinite, then
\[
\|A + B\| \leq \max \{\|A\|, \|B\|\} + \|AB\|^{1/2}.
\]
Kittaneh [13] gave a refinement of inequality (1.1) so that
\[
\|A + B\| \leq \max \{\|A\|, \|B\|\} + \left\|A^{1/2}B^{1/2}\right\|^{1/2}.
\]

Keywords and phrases: Concave function, positive semidefinite matrix, singular value, unitarily invariant norm, inequality.
Kittaneh [14] provided an improvement of inequality (1.2) as follows
\[\|A + B\| \leq \frac{1}{2} \left(\|A\| + \|B\| + \sqrt{\left(\|A\| - \|B\|\right)^2 + 4 \|A^{1/2}B^{1/2}\|^2} \right). \] (1.3)

It is shown in [4] that if \(A, B \in \mathbb{M}_n \) are positive semidefinite, then
\[s_j(A + B) \leq s_j \left(\left(A + \left| B^{1/2}A^{1/2} \right| \right) \oplus \left(B + \left| A^{1/2}B^{1/2} \right| \right) \right) \] (1.4)
for \(j = 1, 2, \ldots, 2n \). Norm inequalities versions of inequality (1.4) are listed below
\[\|A + B\| \leq \max \left\{ \left\| A + \left| B^{1/2}A^{1/2} \right| \right\|, \left\| B + \left| A^{1/2}B^{1/2} \right| \right\| \right\} \] (1.5)
and
\[\|A + B\|_p \leq \left(\left\| A + \left| B^{1/2}A^{1/2} \right| \right\|_p^p + \left\| B + \left| A^{1/2}B^{1/2} \right| \right\|_p^p \right)^{1/p} \] (1.6)
for \(1 \leq p \leq \infty \). Zhan in [15] showed that if \(A, B \in \mathbb{M}_n \) where \(A, B \) are positive semidefinite, then
\[s_j(A - B) \leq s_j(A \oplus B) \] (1.7)
for \(j = 1, 2, \ldots, 2n \). A generalization of inequality (1.4) is given in [2], so that
\[s_j(AX + XB) \leq s_j(C \oplus D) \] (1.8)
for \(j = 1, 2, \ldots, 2n \), where
\[
C = C_1 + |C_2|, \\
C_1 = \frac{1}{2} A + \frac{1}{2} A^{1/2} |X^*|^2 A^{1/2}, \\
C_2 = B^{1/2}X^*A^{1/2}, \\
D = D_1 + |D_2|, \\
D_1 = \frac{1}{2} B + \frac{1}{2} B^{1/2} |X|^2 B^{1/2}, \\
\text{and} \\
D_2 = A^{1/2}XB^{1/2}.
\]

Audeh, in the same paper, showed that
\[s_j(AX - XB) \leq s_j(M \oplus N) \] (1.9)
for \(j = 1, 2, \ldots, 2n \), where
\[
M = \frac{1}{2} A + \frac{1}{2} A^{1/2} |X^*|^2 A^{1/2} \\
\text{and} \\
N = \frac{1}{2} B + \frac{1}{2} B^{1/2} |X|^2 B^{1/2}.
\]

Readers interested in singular value inequalities should return to [1], [3], [4], [5] and [10]. We present a considerable generalizations of the inequalities (1.3), (1.4), (1.5), (1.6), (1.8) and (1.9).
2. Main results

We need the following lemmas. The first lemma is proved in [7], the second lemma is obtained in [6], the third lemma is provided in [8] and the fourth lemma is given in [12].

Lemma 2.1. Let $A, B \in \mathbb{M}_n$. Then

$$s_j(AB^*) \leq \frac{1}{2} s_j(A^*A + B^*B)$$

for $j = 1, 2, \ldots, n$.

Lemma 2.2. Let $A \in \mathbb{M}_n$ be positive semidefinite and let f be a non-negative increasing function on $[0, \infty)$. Then

$$s_j(f(A)) = f(s_j(A))$$

for $j = 1, 2, \ldots, n$.

Lemma 2.3. Let $A, B \in \mathbb{M}_n$ be normal and let f be a nonnegative concave function on $[0, \infty)$. Then

$$\|\|f(|A + B|)\|\| \leq \|\|f(|A|) + f(|B|)\|\|.$$

Lemma 2.4. Let $A, B, C, D \in \mathbb{M}_n(\mathbb{C})$. Then

$$\|\left[\begin{array}{cc} A & B \\ C & D \end{array}\right]\| \leq \|\| A \|\| \| B \|\|.$$

All functions in this study are continuous, the symbols A and B denote for positive semidefinite matrices. A considerable generalization of inequality (1.3) will now be presented.

Theorem 2.5. Let $A, B, X, Y \in \mathbb{M}_n(\mathbb{C})$. Then

$$\|AX + YB\| \leq \frac{1}{4} (\|W_1\| + \|W_2\| + W_4),$$

where

$$W_1 = A + A^{1/2}|X^*|^2A^{1/2},$$

$$W_2 = B + B^{1/2}|Y|^2B^{1/2},$$

$$W_3 = A^{1/2}XB^{1/2} + A^{1/2}YB^{1/2}$$

and

$$W_4 = \sqrt{\|W_1\|^2 - \|W_2\|^2 + 4\|W_3\|^2}.$$
Proof. Let \(S = \begin{bmatrix} A^{1/2} & YB^{1/2} \\ 0 & 0 \end{bmatrix} \) and \(T^* = \begin{bmatrix} A^{1/2}X & 0 \\ B^{1/2} & 0 \end{bmatrix} \). Then

\[
\|AX + YB\| = \|ST^*\| \\
\leq \frac{1}{2} \|S^*S + T^*T\| \\
= \frac{1}{2} \left\| \begin{bmatrix} A & A^{1/2}YB^{1/2} \\ B^{1/2} & Y^2B^{1/2} \end{bmatrix} \right\| \\
= \frac{1}{2} \left\| \begin{bmatrix} W_1 & W_3 \\ W_3^* & W_2 \end{bmatrix} \right\| \\
\leq \frac{1}{2} \left\| \begin{bmatrix} \|W_1\| & \|W_3\| \\ \|W_3^*\| & \|W_2\| \end{bmatrix} \right\| \\
= \frac{1}{4} \left(\|W_1\| + \|W_2\| + \sqrt{\|W_1\| - \|W_2\|}^2 + 4\|W_3\|^2 \right).
\]

Thus we have proven our claim. \(\square \)

Remark 2.6. Inequality (1.3) will be obtained by letting \(X = Y = I \) in inequality (2.1).

A generalization of inequality (1.9) will now be presented.

Theorem 2.7. Let \(A, B, X, Y \in \mathbb{M}_n \). Then

\[
s_j(AX - YB) \leq s_j(K \oplus L)
\] (2.2)

for \(j = 1, 2, \ldots, 2n \), where

\[
K = K_1 + |K_2|, \\
K_1 = \frac{1}{2}A + \frac{1}{2}A^{1/2}|X^*|^2A^{1/2}, \\
K_2 = \frac{1}{2}B^{1/2}Y^*A^{1/2} - \frac{1}{2}B^{1/2}X^*A^{1/2}, \\
L = L_1 + |L_2|, \\
L_1 = \frac{1}{2}B + \frac{1}{2}B^{1/2}|Y|^2B^{1/2}
\]

and

\[
L_2 = \frac{1}{2}A^{1/2}YB^{1/2} - \frac{1}{2}A^{1/2}XB^{1/2}.
\]
Proof. Let
\[S = \begin{bmatrix} A^{1/2} & YB^{1/2} \\ 0 & 0 \end{bmatrix}, \]
\[R^* = \begin{bmatrix} A^{1/2}X & 0 \\ -B^{1/2} & 0 \end{bmatrix}, \]
\[M = \begin{bmatrix} A & A^{1/2}YB^{1/2} \\ B^{1/2}Y^*A^{1/2} & B^{1/2}Y^*B^{1/2} \end{bmatrix} \]
and
\[N = \begin{bmatrix} A^{1/2}|X^*|^2 & A^{1/2} \\ -B^{1/2}X^*A^{1/2} & B \end{bmatrix}. \]
Thus,
\[sj(AX - YB) = sj(SR^*) \]
\[\leq \frac{1}{2} sj(S^*S + R^*R) \text{ (by Lemma 2.1)} \]
\[= sj\left(\frac{1}{2}M + \frac{1}{2}N \right) \]
\[= sj\left(\begin{bmatrix} K_1 & L_2 \\ K_2 & L_1 \end{bmatrix} \right) \]
\[= sj\left(\begin{bmatrix} K_1 & 0 \\ 0 & L_1 \end{bmatrix} + \begin{bmatrix} 0 & L_2 \\ K_2 & 0 \end{bmatrix} \right) \]
\[\leq sj\left(\begin{bmatrix} K_1 & 0 \\ 0 & L_1 \end{bmatrix} + \begin{bmatrix} 0 & L_2 \\ K_2 & 0 \end{bmatrix} \right) \]
\[= sj\left(\begin{bmatrix} K_1 & 0 \\ 0 & L_1 \end{bmatrix} + \begin{bmatrix} |K_2| & 0 \\ 0 & |L_2| \end{bmatrix} \right) \]
\[= sj\left(\begin{bmatrix} K_1 + |K_2| & 0 \\ 0 & L_1 + |L_2| \end{bmatrix} \right) \]
\[= sj\left(\begin{bmatrix} K & 0 \\ 0 & L \end{bmatrix} \right) = sj(K \oplus L). \]
Thus we have proven our claim. \(\square \)

Remark 2.8. Inequality (1.7) can be obtained by letting \(X = Y = I \) in inequality (2.2).

Remark 2.9. Inequality (1.9) can be given by letting \(Y = X \) in inequality (2.2).

As an application of Theorem 2.7, we present the following result which is a generalization of inequalities (1.4) and (1.8).
Corollary 2.10. Let $A, B, X, Y \in \mathbb{M}_n$. Then

$$s_j(AX + YB) \leq s_j(C \oplus D) \quad (2.3)$$

for $j = 1, 2, \ldots, 2n$, where

$$C = C_1 + |C_2|,$$

$$C_1 = \frac{1}{2}A + \frac{1}{2}A^{1/2}|X^*|A^{1/2},$$

$$C_2 = \frac{1}{2}B^{1/2}X^*A^{1/2} + \frac{1}{2}B^{1/2}Y^*A^{1/2},$$

$$D = D_1 + |D_2|,$$

$$D_1 = \frac{1}{2}B + \frac{1}{2}B^{1/2}|Y|B^{1/2},$$

and

$$D_2 = \frac{1}{2}A^{1/2}XB^{1/2} + \frac{1}{2}A^{1/2}YB^{1/2}.$$

Proof. Letting $Y = -Y$, $K_2 = -C_2$ and $L_2 = -D_2$ in Theorem 2.7, we give inequality (2.3). □

Remark 2.11. Inequality (1.8) can be obtained by letting $X = Y$ in inequality (2.3).

Remark 2.12. Inequality (1.4) can be given by letting $X = Y = I$ in inequality (2.3).

Corollary 2.13. Let $A, B, X, Y \in \mathbb{M}_n$. Then

$$\|AX + YB\| \leq \max \{\|C\|, \|D\|\}, \quad (2.4)$$

where C and D are given in Corollary 2.10.

Proof. Inequality (2.4) is a direct consequence of inequality (2.3) by applying the spectral norm. □

Remark 2.14. Inequality (1.5) can be obtained by letting $X = Y = I$ in inequality (2.4).

Corollary 2.15. Let $A, B, X, Y \in \mathbb{M}_n$. Then

$$\|AX + YB\|_p \leq \left(\|C\|_p^p + \|D\|_p^p\right)^{1/p}, \quad (2.5)$$

where C and D are given in Corollary 2.10.
Proof. Apply the Schatten p-norms on inequality (2.3), we give inequality (2.5).

\[\square \]

Remark 2.16. Inequality (1.6) can be obtained by letting $X = Y = I$ in inequality (2.5).

A generalization of the generalized anticommutator will now be given.

Theorem 2.17. Let $A, B, X, Y \in \mathbb{M}_n$ and let f be a nonnegative increasing concave function on $[0, \infty)$. Then

\[
\left\| \left\| f\left(\left\| (AX + YB) \oplus 0\right\|\right) \right\| \leq \left\| Z \oplus W \right\|, \tag{2.6}
\]

where

\[Z = f(K_1) + f(|K_2|), \]

\[K_1 = \frac{1}{2} A + \frac{1}{2} A^{1/2} |X^*|^2 A^{1/2}, \]

\[K_2 = \frac{1}{2} B^{1/2} X^* A^{1/2} + \frac{1}{2} B^{1/2} Y^* A^{1/2}, \]

\[W = f(L_1) + f(|L_2|), \]

\[L_1 = \frac{1}{2} B + \frac{1}{2} B^{1/2} |Y|^2 B^{1/2} \]

and

\[L_2 = \frac{1}{2} A^{1/2} X B^{1/2} + \frac{1}{2} A^{1/2} Y B^{1/2}. \]

Proof. Let

\[S = \begin{bmatrix} A^{1/2} & Y B^{1/2} \\ 0 & 0 \end{bmatrix}, \]

\[T = \begin{bmatrix} X^* A^{1/2} & B^{1/2} \\ 0 & 0 \end{bmatrix}, \]

\[E = \begin{bmatrix} A & A^{1/2} Y B^{1/2} \\ B^{1/2} Y^* A^{1/2} & B^{1/2} |Y|^2 B^{1/2} \end{bmatrix} \]

and

\[F = \begin{bmatrix} A^{1/2} |X^*|^2 A^{1/2} & A^{1/2} X B^{1/2} \\ B^{1/2} X^* A^{1/2} & B \end{bmatrix}. \]
Then, we have

\[s_j(f(||(AX + YB) \oplus 0||)) = s_j(f(||ST^*||)) \]

\[= f(s_j(ST^*)) \]

\[\leq f \left(\frac{1}{2} s_j(S^*S + T^*T) \right) \quad \text{(by Lemma 2.1)} \]

\[= f \left(\frac{1}{2} s_j(E + F) \right) \]

\[= s_j \left(f \left(\frac{1}{2} E + \frac{1}{2} F \right) \right) \quad \text{(by Lemma 2.2)} \]

\[= s_j \left(f \left(\left[\begin{array}{cc} K_1 & L_2 \\ K_2 & L_1 \end{array} \right] \right) \right). \]

This implies that,

\[||f(||(AX + YB) \oplus 0||)|| \leq \left| f \left(\left[\begin{array}{cc} K_1 & L_2 \\ K_2 & L_1 \end{array} \right] \right) \right| \]

\[= \left| f \left(\left[\begin{array}{cc} K_1 & 0 \\ 0 & L_1 \end{array} \right] + \left[\begin{array}{cc} 0 & L_2 \\ K_2 & 0 \end{array} \right] \right) \right| \]

\[\leq \left| f \left(\left[\begin{array}{cc} K_1 & 0 \\ 0 & L_1 \end{array} \right] \right) \right| + \left| f \left(\left[\begin{array}{cc} 0 & L_2 \\ K_2 & 0 \end{array} \right] \right) \right|, \]

(by Lemma 2.3),

\[\leq \left| f \left(\left[\begin{array}{cc} K_1 & 0 \\ 0 & L_1 \end{array} \right] \right) \right| + f \left(\left[\begin{array}{cc} |K_2| & 0 \\ 0 & |L_2| \end{array} \right] \right| \]

\[= \left| \left[\begin{array}{cc} f(K_1) & 0 \\ 0 & f(L_1) \end{array} \right] \right| + \left| \left[\begin{array}{cc} f(|K_2|) & 0 \\ 0 & f(|L_2|) \end{array} \right] \right| \]

\[= \left| \left[\begin{array}{cc} Z & 0 \\ 0 & W \end{array} \right] \right| \]

\[= ||Z \oplus W||, \]

which is precisely inequality (2.6). \(\Box \)

Corollary 2.18. Let \(A, B, X, Y \in \mathbb{M}_n \). Then

\[||AX + YB|| \leq \max \{ ||K_1 + |K_2||, ||L_1 + |L_2|| \}, \quad (2.7) \]

where \(K_1, K_2, L_1 \) and \(L_2 \) are given in Theorem 2.17.

Proof. Inequality (2.7) is a direct consequence of Theorem 2.17 by considering \(||.|| \) and letting \(f(t) = t \). \(\Box \)

Remark 2.19. Inequality (1.5) can be obtained by letting \(X = Y = I \) in Corollary 2.18.

Corollary 2.20. Let \(A, B, X, Y \in \mathbb{M}_n \). Then for \(1 \leq p \leq \infty \),

\[
\|AX + YB\|_p \leq \left(\|K_1 + |K_2|\|_p^p + \|L_1 + |L_2|\|_p^p \right)^{1/p},
\]

(2.8)

where \(K_1, K_2, L_1 \) and \(L_2 \) are given in Theorem 2.17.

Proof. Inequality (2.8) is a direct consequence of Theorem 2.17 by considering \(\| \cdot \|_p \) and letting \(f(t) = t \). \(\square \)

Remark 2.21. Inequality (1.6) can be obtained by letting \(X = Y = I \) in Corollary 2.20.

Some applications of Theorem 2.17 will now be given.

Corollary 2.22. Let \(A, B, X, Y \in \mathbb{M}_n \). Then

\[
\||\log((AX + YB) + I)|| \leq ||M \oplus N||,
\]

(2.9)

where

\[
M = (\log(K_1 + I) + \log(|K_2| + I))
\]

and

\[
N = (\log(L_1 + I) + \log(|L_2| + I)).
\]

\(K_1, K_2, L_1 \) and \(L_2 \) are given in Theorem 2.17.

Proof. Inequality (2.9) is a direct consequence of Theorem 2.17 by letting \(f(t) = \log(t + 1) \). \(\square \)

Corollary 2.23. Let \(A, B, X, Y \in \mathbb{M}_n \). Then, for \(r \in (0, 1] \), we have

\[
\||((AX + YB)^r)|| \leq ||P \oplus Q||,
\]

(2.10)

where

\[
P = (K_1^r + |K_2|^r) \text{ and } Q = (L_1^r + |L_2|^r).
\]

\(K_1, K_2, L_1 \) and \(L_2 \) are given in Theorem 2.17.

Proof. Inequality (2.10) is a direct consequence of Theorem 2.17 by letting \(f(t) = t^r \) and \(r \in (0, 1] \). \(\square \)

Acknowledgement. The author is grateful to the anonymous referee for his careful reading of the paper and for his useful comments and suggestions. The author would like to express his gratitude to University of Petra for its support.
REFERENCES

(Received June 16, 2021)

Wasim Audeh
Department of Mathematics
Petra University
Amman, Jordan

e-mail: waudeh@uop.edu.jo