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PROOF OF A DOUBLE INEQUALITY IN TRIANGLES

JIAN LIU

(Communicated by T. Burić)

Abstract. A double geometric inequality involving the side lengths, medians, angle bisectors
and exradius of a triangle is proved by applying the “R− r− s” method in the theory of trian-
gle inequalities. Several corollaries are obtained by using the main result and the other known
inequalities.

1. Introduction

Let P be a point inside triangle ABC , let PA = R1 , PB = R2 , PC = R3 and let r1 ,
r2 , r3 denote the distances from P to the sides BC , CA , AB , respectively. Then the
following beautiful linear inequality holds:

R1 +R2 +R3 � 2(r1 + r2 + r3). (1)

This is the famous Erdoös-Mordell inequality. Some recent results on this subject can
be found in [6, 12, 13, 14, 15, 16, 20]. In fact, the inequality (1) can be extended to

Ra +Rb +Rc � R1 +R2 +R3 � 2(r1 + r2 + r3), (2)

where Ra , Rb , Rc are the circumradius of the triangles BPC , CPA , APB , respectively.
It is interesting that the first inequality in (2) is actully equivalent to the Erdoös-Mordell
inequality (see the fourth chapter of the author’s monograph [17]).

In [9], the author and Chu established the following inequality for the sum of R1 ,
R2 , and R3 :

R1 +R2 +R3 � 1
2
(ma +mb +mc +3r), (3)

where ma , mb , mc are the medians of the triangle ABC and r is the inradius. We also
further showed, via inequality (3), that

R1 +R2 +R3 � 1
3
(ma +mb +mc +ha +hb +hc), (4)

where ha , hb , hc are the altitudes of the triangle ABC .
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Inspired and motivated by the first inequality in (2) and inequality (4), the author
conjectures that the following inequality holds:

Ra +Rb +Rc � 1
3
(ma +mb +mc +wa +wb +wc), (5)

where wa , wb , wc are the lengths of angle bisectors of the triangle ABC . On the other
hand, noticing that the following known result (see [17, p. 252] and [22]):

Ra +Rb +Rc �
√

bc+ ca+ab, (6)

where a , b , c are the lengths of the side of triangle ABC , the author also further
conjectures that the following inequality holds:

ma +mb +mc +wa +wb +wc � 3
√

bc+ ca+ab. (7)

In addition, for any triangle ABC we have known that

ma +mb +mc � ra + rb + rc, (8)

where ra , rb , rc are the radii of excircles of the triangle ABC (see [1, inequality 8.20]).
With the help of the computer, we find that if replacing ma +mb +mc by ra + rb + rc

in (7), then we have the reverse inequality, i.e.,

ra + rb + rc +wa +wb +wc � 3
√

bc+ ca+ab. (9)

Of course, the above inequality can only be regarded as a conjecture before it is proved.
The aim of this article is to prove inequality (7) and inequality (9), i.e., the follow-

ing double inequality which was given in [17, p. 253] as a conjecture.

THEOREM. For any triangle ABC, the following inequality holds:

ma +mb +mc +wa +wb +wc � 3
√

bc+ ca+ab� wa +wb +wc + ra + rb + rc. (10)

Both equalities in (10) hold if and only if triangle ABC is equilateral.

Clearly, the double inequality (10) can be written as

ma +mb +mc � 3
√

bc+ ca+ab− (wa +wb +wc) � ra + rb + rc, (11)

which gives a refinement of the known inequality (8).

2. Lemmas

We shall apply the “R− r− s” method to prove the double inequality (10). This
method has been proved to be effective for a number of symmetric triangle inequalities
(cf. [2], [4], [5], [7], [10], [11], [23], [24]).

In what follows, we shall continue to use the previous symbols. Also, denote
the semi-perimeter, the circumradius and the inradius of the triangle ABC by s,R,r ,
respectively. For the sake of simplicity, we shall occasionally use ∑ and ∏ to express
cycle sums and products respectively.
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LEMMA 1. For any triangle ABC, the following inequality holds:

(ma +mb +mc)2

a2 +b2 + c2 � 2+
r2

R2 . (12)

Equality holds if and only if triangle ABC is equilateral.

The author has proved inequality (12) in [10]. Later, the author also gave two
simpler proofs in [11].

Next, we apply inequality (12) to prove the following inequality, which was first
given in [4] without proof.

LEMMA 2. For any triangle ABC, the following inequality holds:

ma +mb +mc � 2s2

√
bc+ ca+ab

. (13)

Equality holds if and only if the triangle ABC is equilateral.

Proof. By inequality (12), to prove inequality (13) we need to prove

(a2 +b2 + c2)
(

2+
r2

R2

)
� 4s4

bc+ ca+ab
,

i.e.,
4s4R2− (2R2 + r2)(bc+ ca+ab)(a2+b2 + c2) � 0.

Then, using the following known identities:

bc+ ca+ab= s2 +4Rr+ r2, (14)

a2 +b2 + c2 = 2(s2−4Rr− r2), (15)

the proof becomes
−2s4r2 +2r2(2R2 + r2)(4R+ r)2 � 0.

Since we have the following known inequality (see [1, inequality 5.5]):

(4R+ r)2 � 3s2, (16)

thus we only need to prove that

−s2 +3(2R2 + r2) � 0,

which can be written as

4R2 +4Rr+3r2− s2 +2R(R−2r) � 0.

By Euler’s inequality R � 2r and Gerretsen’s inequality (see [1, inequality 5.8])

g2 ≡ 4R2 +4Rr+3r2− s2 � 0 (17)

with equality iff ABC is equilateral, one sees that the claimed inequality is valid. Thus,
inequality (13) is proved. It is easy to know that the equality in (13) holds if and only if
the triangle is equilateral. This completes the proof of Lemma 2. �
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LEMMA 3. For any triangle ABC, the following inequality holds:

1
wa

+
1
wb

+
1
wc

� 1
2R

+
3
4r

. (18)

Equality holds if and only if the triangle ABC is equilateral.

Inequality (18) was first proposed by the author in a Chinese paper [8]. A simple
proof was given by Chu and the author in [4].

LEMMA 4. For any triangle ABC, the following inequality holds:

(wa +wb +wc)
2

bc+ ca+ab
� s4 +2r(10R+9r)s2+(4R+ r)r3

(s2 +2Rr+ r2)2 . (19)

Equality holds if and only if the triangle ABC is equilateral.

Proof. By inequality (18), we have

(wa +wb +wc)2 � w2
a +w2

b +w2
c +wawbwc

(
1
R

+
3
2r

)
.

Then using the following known identities:

wawbwc =
16Rr2s2

s2 +2Rr+ r2 , (20)

w2
a +w2

b +w2
c =

s6 +3r2s4 +(32R2 +40Rr+3r2)r2s2 +(4R+ r)2r4

s4 +2r(2R+ r)s2 + r2(2R+ r)2 , (21)

we easily obtain

(wa +wb +wc)2 �
(s2 +4Rr+ r2)

[
s4 +2r(10R+9r)s2 +(4R+ r)r3

]
(s2 +2Rr+ r2)2 .

Hence, inequality (19) follows immediately by using the previous identity (14). It is
easy to know that the equality conditions of (19) is as mentioned in Lemma 4. �

LEMMA 5. In the triangle ABC, if B−C, C−A, A−B �= 0 , then

∑ 1
cos(B−C)

=
2R

[
(R+6r)s2− (2R+ r)(2R2 +7Rr+2r2)

]
s4− (6R2 +8Rr−2r2)s2 +(2R2 +4Rr+ r2)(2R+ r)2 . (22)

Proof. We first deduce the following identity (for any triangle ABC ):

∏cos(B−C) =
s4 − (6R2 +8Rr−2r2)s2 +(2R2 +4Rr+ r2)(2R+ r)2

8R4 . (23)
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Since cos(B−C) = cosBcosC+ sinBsinC , it is easy to obtain

∏cos(B−C) =∏sin2 A+∏cos2 A+∏cosA∑sinBsinCcosA

+∏sinA∑sinAcosBcosC. (24)

Then using the following identities:

∑ sinBsinCcosA =
1
2 ∑sin2 A, (25)

∑ sinAcosBcosC = ∏sinA, (26)

we get

∏cos(B−C) = 2∏sin2 A+∏cos2 A+
1
2 ∏cosA∑sin2 A. (27)

Further, using the following known identities (cf. [19, p. 55]):

∏sinA =
rs

2R2 , (28)

∏cosA =
s2 − (2R+ r)2

4R2 , (29)

∑sin2 A =
1

2R2 (s2 −4Rr− r2), (30)

we obtain identity (23).
Now, we prove the following identity:

∑cos(C−A)cos(A−B) =
(R+6r)s2− (2R+ r)(2R2 +7Rr+2r2)

4R3 . (31)

Firstly, it is easy to get

∑cos(C−A)cos(A−B)

= ∏sinA∑sinA+∏cosA∑cosA+∑sinBsinCcosA(cosB+ cosC). (32)

Using identity (25), we have

∑sinBsinCcosA(cosB+ cosC)

= ∑sinBsinCcosA∑cosA−∑sinBsinCcos2 A

=
1
2 ∑ sin2 A∑cosA−∑sinBsinC+∏sinA∑ sinA,

and then

∑cos(C−A)cos(A−B)

= 2∏sinA∑ sinA+∏cosA∑cosA−∑sinBsinC

+
1
2 ∑cosA∑sin2 A. (33)
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Thus, by using identities (28), (30) and the following identities (cf. [19, p. 55]):

∑sinA =
s
R

, (34)

∑cosA = 1+
r
R

, (35)

∑sinBsinC =
s2 +4Rr+ r2

4R2 , (36)

we obtain identity (31).
When B−C , C−A , A−B �= 0, identity (22) follows from (23) and (31) immedi-

ately. Lemma 5 is proved.
�

3. Proof of the Theorem

3.1. Proof of the first inequality of the double inequality (10)

In this section, we prove the first inequality in (10), i.e., inequality (7).

Proof. According to Lemma 2, to prove inequality (7) we only need to prove

2s2
√

bc+ ca+ab
+wa +wb +wc � 3

√
bc+ ca+ab,

that is
(wa +wb +wc)

√
bc+ ca+ab� 3(bc+ ca+ab)−2s2.

Since bc+ ca+ab > s2 holds for any triangle ABC , we thus only consider to prove

(bc+ ca+ab)(wa +wb +wc)
2 � (3bc+3ca+3ab−2s2)2.

By Lemma 4, it is sufficient to prove

Q0 ≡(s2 +2Rr+ r2)2 (
3bc+3ca+3ab−2s2)2

− (bc+ ca+ab)2[s4 +2r(10R+9r)s2 +(4R+ r)r3] � 0. (37)

Substituting the previous identity (14) into Q0 , we get

Q0 = 4r2Q1, (38)

where

Q1 =−3s6 +(17R2−12Rr−4r2)s4 + r(4R+ r)(22R2 +8Rr+ r2)s2

+(9R2 +8Rr+2r2)(4R+ r)2r2.

Hence, we have to prove Q1 � 0. Through analysis, we find the following identity
(which is easily checked by expanding):

Q1 = Q2 +Q3 + rQ4, (39)



PROOF OF A DOUBLE INEQUALITY IN TRIANGLES 1367

where

Q2 = (5R2 +2r2)s2(s2 −16Rr+5r2),
Q3 = 3(s2 +24Rr)

[−s4 +(4R2 +20Rr−2r2)s2 − r(4R+ r)3] ,

Q4 = (72R3−1267R2r+224Rr2−6r3)s2 +(297R2 +80Rr+2r2)(4R+ r)2r.

For any triangle ABC , we have Gerretsen’s inequality (see [1, inequality 5.8])

g1 ≡ s2 −16Rr+5r2 � 0 (40)

(with equality iff the triangle ABC is equilateral) and the fundamental Sondat’s inequal-
ity (see [1, inequality 13.8] and [19, p. 2]):

t0 ≡−s4 +(4R2 +20Rr−2r2)s2 − r(4R+ r)3 � 0, (41)

with equality if and only if the triangle ABC is isosceles. Hence, we have Q2 � 0 and
Q3 � 0. It remains to prove that Q4 � 0 by (39). Obviously, if

72R3−1267R2r+224Rr2−6r3 � 0,

then Q4 > 0. If the above inequality holds reversely, by the previous Gerretsen’s in-
equality (17) we need to prove that

(72R3−1267R2r+224Rr2−6r3)(4R2 +4Rr+3r2)
+(297R2 +80Rr+2r2)(4R+ r)2r � 0,

i.e.,
4(R−2r)(72R4 +137R3r+199R2r2 −92Rr3 +2r4) � 0,

which is true by Euler’s inequality R � 2r . Hence, we conclude that Q4 � 0 holds
for all triangles ABC . This completes the proof of the inequality (7). Also, it is easily
known that the equality in (7) holds iff the triangle ABC is equilateral. �

3.2. Proof of the second inequality of the double inequality (10)

Next, we prove the second inequality in (10), i.e., inequality (9).

Proof. Firstly, we transform inequality (9) into an equivalent trigonometric in-
equality in the acute (non-obtuse) triangle ABC .

Let I be the incenter of the triangle ABC . Suppose that the line AI intersect BC

at X , then ∠AXC = B+
1
2
A =

π +B−C
2

. Using wa = AI + IX , we have

wa =
r

sin
A
2

+
r

cos
B−C

2

, (42)

so that

∑wa = r∑ 1

sin
A
2

+ r∑ 1

cos
B−C

2

. (43)
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Therefore, by the following two known identities:

ra + rb + rc = 4R+ r, (44)

r = 4R∏sin
A
2
, (45)

we see that inequality (9) is equivalent to

4R∏sin
A
2

⎛
⎜⎝∑ 1

sin
A
2

+∑ 1

cos
B−C

2

⎞
⎟⎠+4R

(
1+∏sin

A
2

)
� 3

√
∑bc.

Since a = 2RsinA etc., the above inequality is equivalent to the following trigonometric
inequality:

2∏sin
A
2

⎛
⎜⎝∑ 1

sin
A
2

+∑ 1

cos
B−C

2

⎞
⎟⎠+2

(
1+∏sin

A
2

)
� 3

√
∑ sinBsinC. (46)

Also, it is easily known that inequality (46) is equivalent to the following inequality in
the acute triangle ABC :

2∏cosA

[
∑ 1

cosA
+∑ 1

cos(B−C)

]
+2

(
1+∏cosA

)
� 3

√
∑ sin2Bsin2C. (47)

Secondly, we prove that inequality (47) is valid for the acute triangle ABC .
We denote by L0 the left hand of (47). Using identity (22) of Lemma 5, identity

(29) and the following known identity (see [19, p. 56]):

∑ 1
cosA

=
4R2− r2− s2

4R2 +4Rr+ r2− s2 , (48)

we easily obtain

L0 =
N0

M0
, (49)

where

M0 =R2 [
s4 − (6R2 +8Rr−2r2)s2 +(2R2 +4Rr+ r2)(2R+ r)2] ,

N0 =s6− (7R2 +4Rr−2r2)s4 +(12R4 +8R3r−2R2r2 −4Rr3 + r4)s2

+(4R+ r)(2R+ r)2R2r.

Also, it is easy to get

∑ sin2Bsin2C =
K0

4R4 , (50)

where
K0 = s4− (4R2 +8Rr−2r2)s2 + r(4R+ r)(2R+ r)2.
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Now, in view of the identities (49) and (50), to prove inequality (47) we need to prove

4R4N2
0 −9K0M

2
0 � 0. (51)

With the help Maple, one easily obtains

4R4N2
0 −9K0M

2
0 = R4X0, (52)

where

X0 =−5s12 +(88R2 +184Rr−38r2)s10− (608R4 +2592R3r+1792R2r2

−552Rr3 +111r4)s8 +(2064R6 +13696R5r+22672R4r2 +9696R3r3

−1392R2r4 +336Rr5−164r6)s6 − (3456R8 +32960R7r+90416R6r2

+103296R5r3 +47872R4r4 +5536R3r5 −640R2r6 +464Rr7 +131r8)s4

+(576R8 +7872R7r+26992R6r2 +39744R5r3 +26640R4r4 +7200R3r5

−208R2r6 −432Rr7−54r8)(2R+ r)2s2 − r(4R+ r)(144R6 +704R5r

+1328R4r2 +1152R3r3 +504R2r4 +108Rr5 +9r6)(2R+ r)4.

Hence, we have to prove that the inequality X0 � 0 holds for the acute triangle ABC .
In the acute (non-obtuse) triangle ABC , we have the following two inequalities:

s0 ≡ s2 − (2R+ r)2 � 0, (53)

s1 ≡ s2 − (2R2 +8Rr+3r2) � 0. (54)

Inequality (53) is equivalent to Ciamberlini’s inequality ([3]):

s � 2R+ r, (55)

which follows from the previous identity (29). Inequality (54) was first presented by
Walker in [21] (the author obtained a general generalization of this inequality in the
recent paper [18]). Also, we have known that the equality in (53) holds iff the triangle
ABC is a right triangle and the equality in (54) holds iff the triangle ABC is an isosceles
right triangle or an equilateral triangle.

Next, we apply s0 � 0,s1 � 0, Gerretsen’s inequality g2 � 0 (i.e.,inequality (17)),
and Sondat’s inequality t0 � 0 (i.e., inequality (41)) to prove that inequality X0 � 0
holds for the acute triangle ABC .

Through analysis, we obtain the following identity:

X0 = s0
[
g2t0(5g2s

2 + s0m1 +m2)+ s0s1m3
]
+Y0, (56)

where

m1 =8R2 +24Rr−63r2,

m2 =2r(144R3−14R2r−236Rr2−145r3),

m3 =16R6−256R5r+3280R4r2 +4256R3r3 −5944R2r4−2336Rr5−800r6,
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Y0 =(32R8 +1088R7r−6848R6r2 +15296R5r3 +27504R4r4−21184R3r5

−18640R2r6−8896Rr7−4928r8)s4 − (256R10 +8960R9r−47040R8r2

+63616R7r3 +326912R6r4 +84736R5r5−250304R4r6 −228928R3r7

−110912R2r8 −37888Rr9−6144r10)s2 +16(8R10 +280R9r−1502R8r2

+1796R7r3 +10224R6r4 +2952R5r5 −7711R4r6 −7028R3r7

−3063R2r8 −836Rr9−108r10)(2R+ r)2.

By Euler’s inequality R � 2r , one sees that m1 > 0. If we set

e = R−2r,

then e � 0 and it is easy to get

m2 =2r(144e3 +850e2r+1436er2 +479r3) > 0,

m3 =16e4(e2 −4er+105r2)+22816e3r3 +81672e2r4 +112512er5 +50112r6 > 0.

Thus, according to identity (56) and inequalities g2 � 0, t0 � 0, s0 � 0, s1 � 0, to
prove inequality X0 � 0 it remains to prove that Y0 � 0 holds for the acute triangle
ABC .

Putting
Y0 = f (s2),

then

f ′(s2) =2(32R8 +1088R7r−6848R6r2 +15296R5r3 +27504R4r4−21184R3r5

−18640R2r6−8896Rr7−4928r8)s2 − (256R10 +8960R9r−47040R8r2

+63616R7r3 +326912R6r4 +84736R5r5−250304R4r6 −228928R3r7

−110912R2r8 −37888Rr9−6144r10).

Since

32R8 +1088R7r−6848R6r2 +15296R5r3 +27504R4r4−21184R3r5

−18640R2r6−8896Rr7−4928r8

= 32e8 +1600e7r+11968e6r2 +38848e5r3 +110064e4r4

+381632e3r5 +882992e2r6 +971520er7+371968r8 > 0,

thus by inequality (55) we have for the acute triangle ABC that

f ′(s2) � 2(32R8 +1088R7r−6848R6r2 +15296R5r3 +27504R4r4−21184R3r5

−18640R2r6−8896Rr7−4928r8)(2R+ r)2 +(−256R10−8960R9r

+47040R8r2−63616R7r3 −326912R6r4−84736R5r5 +250304R4r6

+228928R3r7 +110912R2r8 +37888Rr9 +6144r10)

= 32e8 +704e7r+6328e6r2 +31024e5r3 +91425e4r4 +164970e3r5

+173409e2r6 +89424er7 +11752r8 > 0.
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Hence, f (s2) is increasing. According to this conclusion, we next divide two cases to
prove that Y0 � 0 holds for the non-obtuse triangle ABC .

Case 1. R and r satisfy the inequality R2−2Rr− r2 > 0.
In this case, to prove Y0 > 0 we need to prove f ((2R+ r)2) > 0 (since f (s2) is

increasing). It is easy to check that

f ((2R+ r)2) = 256(R2−2Rr− r2)(R2 +4Rr+2r2)(2R+ r)4r4. (57)

Thus, by the hypothesis we have f ((2R+ r)2) > 0 and inequality Y0 > 0 is proved.
Case 2. R and r satisfy the inequality R2−2Rr− r2 � 0.
Since f (s2) is increasing, by Walker’s inequality (54), to prove Y0 � 0 in the

above case we only need to prove that f (2R2 + 8Rr + 3r2) � 0. With the help of the
Maple software, it is easy to obtain

f (2R2 +8Rr+3r2) = −64(R−2r)(R2−2Rr− r2)Z0, (58)

where

Z0 =−2R9−68R8r+462R7r2 −628R6r3−1499R5r4 +2224R4r5 +3533R3r6

+2242R2r7 +1036Rr8 +216r9.

Thus, by Euler’s inequality R � 2r , we need to prove Z0 > 0 under the hypothesis. In
deed, we can rewrite Z0 as follows:

Z0 =− (R2−2Rr− r2)(2e7 +8122r6e+3372r5e2 +1863r4e3 +1788r3e4 +716r2e5

+100re6 +1560r7)+6(1801R+746r)r8, (59)

where e = R− 2r � 0. Hence, by the hypothesis R2 − 2Rr− r2 � 0 we have Z0 > 0
and Y0 � 0 is proved. Also, in the second case, the equality in Y0 � 0 holds if and only
if (R−2r)(r2 +2Rr−R2) = 0, and we further know that the equality holds if and only
if the triangle ABC is an equilateral triangle or an isosceles right triangle.

Combining the discussions of the above two cases, we complete the proof of Y0 �
for the acute triangle ABC and conclude that the equality in Y0 � 0 holds if and only
if the triangle ABC is an equilateral triangle or an isosceles right triangle. Thus, we
complete the proofs of inequality X0 � 0 and inequality (47).

Finally, making the substitutions A → (π −A)/2 etc., in (47), then inequality (46)
follows immediately. Therefore, inequality (9) is proved. According to identity (56)
and the equality conditions of (17), (41), (53) and (54), it is easy to conclude that the
equality condition of X0 � 0 is the same as that of Y0 � 0. Furthermore, we easily know
that both equalities of (46) and (9) hold if and only if the triangle ABC is equilateral.
This completes the proof of the theorem. �

4. Corollaries and Conjectures

In this section, we give several corollaries of the theorem and present a few related
interesting conjectures as open problems.

Since 3(bc + ca + ab) � (a + b + c)2 , by inequality (7) we obtain the following
linear inequality:
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COROLLARY 1. For any triangle ABC, the following inequality holds:

ma +mb +mc +wa +wb +wc � 2
√

3s. (60)

REMARK 1. Inspired by the above inequality, the author has proved the following
inequality:

3wa +ma +mb +mc � 3
√

3
2

(b+ c). (61)

Clearly, we also have the other two similar relations. Adding up these three inequalities,
we obtain inequality (60).

By the previous inequality (7) and the following equivalent form of the Gerretsen
inequality (17) (see [1, inequality 5.17]), i.e.,

bc+ ca+ab� 4(R+ r)2, (62)

we obtain the following linear inequality.

COROLLARY 2. For any triangle ABC, the following inequality holds:

ma +mb +mc +wa +wb +wc � 6(R+ r). (63)

The above inequality is obviously stronger than the following known result (see
[1, inequality 6.14]):

wa +wb +wc � 3(R+ r). (64)

In the triangle ABC , we have known that

mawa � s(s−a). (65)

Thus, by inequality (7) and the simplest arithmetic-geometric mean inequality, we can
obtain the following inequality involving the side lengths of the triangle ABC .

COROLLARY 3. For any triangle ABC, the following inequality holds:

√
b+ c−a+

√
c+a−b+

√
a+b− c � 3

√
bc+ ca+ab

a+b+ c
. (66)

In the acute triangle ABC , we have the following inequality (see [17, p. 252]):

bc+ ca+ab� 9
4
(R+2r)2. (67)

Thus, by the previous inequality (9) and identity (44) we can obtain the following in-
equality:

COROLLARY 4. For the acute triangle ABC, the following inequality holds:

wa +wb +wc � 1
2
R+8r. (68)
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In any triangle ABC , we have the known inequality wa � √
rbrc . Thus, using the

Cauchy-Schwarz inequality we have

(wa + ra)2 � (rc + ra)(ra + rb). (69)

Consequently, by the previous inequality (9) one obtains the following corollary:

COROLLARY 5. For any triangle ABC, the following inequality holds:
√

(rc + ra)(ra + rb)+
√

(ra + rb)(rb + rc)+
√

(rb + rc)(rc + ra)

� 3
√

bc+ ca+ab. (70)

Next, we introduce a conjecture related to
√

bc+ ca+ab:

CONJECTURE 1. For any triangle ABC, the following inequality holds:

ma +wb +wc � 3
2

√
bc+ ca+ab. (71)

REMARK 2. If the above inequality holds, then by the previous inequality (6) we
can deduce the following geometric inequality:

Ra +Rb +Rc � 2
3
(ma +wb +wc). (72)

Also, if (71) is true then we can deduce the following three inequalities:

ma +wb +wc �
√

3s, (73)

ma +wb +wc � 3(R+ r), (74)

2ma +wb +wc � wa + ra + rb + rc. (75)

However, the above four inequalities have not been proved at the present.

CONJECTURE 2. For any triangle ABC, the following inequality holds:

ma +mb +mc � w2
a

mb +mc
+

w2
b

mc +ma
+

w2
c

ma +mb
� ra + rb + rc. (76)

Finally, for the Erdös-Mordell inequality we present a new sharpened version:

CONJECTURE 3. Let k � 9/4 be a real number, then for any point P inside tri-
angle ABC it holds:

R1 +R2 +R3

r1 + r2 + r3
� 2 · ka

2 +mawa

ka2 + rbrc
. (77)

The equivalent form mawa � rbrc of inequality (65) shows that the value of the
right hand of (77) is at least 2.
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